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ROC 

ROC produces a receiver operating characteristic (ROC) curve. 

Notation and Definitions 
di  Actual state for case i, it is either positive or negative; 

positive usually means that a test detected some evidence for 
a condition to exist. 

xi  Test result score for case i. 

nTP  Number of true positive decisions 

nFN  Number of false negative decisions 

nTN  Number of true negative decisions 

nFP  Number of false positive decisions 

Sensitivity Probability of correctly identifying a positive 

Specificity Probability of correctly identifying a negative 

C  Cutoff or criterion value on the test result variable 

n
-

 Number of cases with negative actual state 

n
+

 Number of cases with positive actual state 

n j-=
 Number of true negative cases with test result equal to j. 

n j+>
 Number of true positive cases with test result greater than j. 

n j+=
 Number of true positive cases with test result equal to j. 

n j-<
 Number of true negative cases with test result less than j. 

Q1 The probability that two randomly chosen positive state 
subjects will both get a more positive test result than a 
randomly chosen negative state subject.   

Q2  The probability that one randomly chosen positive state 
subject will get a more positive test result than two randomly 
chosen negative state subjects. 
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Construction of the ROC Curve 
The ROC plot is merely the graph of points defined by sensitivity and (1 – 
specificity).  Customarily, sensitivity takes the y axis and (1 – specificity) takes the 
x axis. 

Computation of Sensitivity and Specificity 

The ROC procedure fixes the set of cutoffs to be the set defined by the values half 
the distance between each successive pair of observed test scores, plus max(xi ) + 1 

and min(xi ) – 1.   

Given a set of cutoffs, the actual state values, and test result values, one can 
classify each observation into one of TP, FN, TN, and FP according to a 
classification rule.  Then, the computation of sensitivity and specificity is 
immediate from their definitions. 

Four classification or decision rules are possible:  

(1) a test result is positive if the test result value is greater than or equal to C  and 
that a test result is negative if the test result is less than C ;  

(2) a test result is positive if the test result value is greater than C  and that a test 
result is negative if the test result is less than or equal to C ;  

(3) a test result is positive if the test result value is less than or equal to C  and that 
a test result is negative if the test result is greater than C ; and  

(4) a test result is positive if the test result value is less than C  and that a test 
result is negative if the test result is greater than or equal to C .   

Specificity 

Specificity is defined by 

n

n n
TN
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Sensitivity 

Sensitivity is defined by 
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Interpolation of the Points  

When the test result variable is a scale variable, the number of distinct test result 
values and thus the number of cutoff points tend to increase as the number of 
observations (or test results) increases.  Theoretically, in the “limit” the pairs of 
sensitivity and (1 – specificity) values form a dense set of points in itself and in 
some continuous curve, the ROC curve.  A continuous interpolation of the points 
may be reasonable in this sense. 

Note: The domain of the test result variable need only be a positive-measure 
subset of the real line.  For example, it could be defined only on (-1, 0] and (1, 

∞+ ).  As long as the variable is not discrete, the ROC curve will be continuous. 

When the test result variable is an ordinal discrete variable, the points never 
become dense, even when there are countably infinite number of (ordinal discrete) 
values.  Thus, a continuous interpolation may not be justifiable.  But, when it is 
reasonable to assume there is some underlying or latent continuous variable, an 
interpolation such as a linear interpolation, though imprecise, may be attempted.  
From now on, the test result variable is assumed continuous or practically so. 

The problem is related to having ties, but not the same.  In the continuous case, 
when values are tied, they are identical but unique.  In the ordinal case with the 
grouped/discretized continuous interpretation, values in some underlying 
continuous scale range may be grouped together and represented by a certain value, 
usually the mid range value.  Those values are represented as if they were ties, but 
in fact they are a collection of unordered values.  Now, even if each category/group 
contains only one observation, the problem still exists unless the observation’s 
latent value is identical to the representing value of the observation. 

Case 1: No ties between actual positive and actual negative groups 

If there are ties within a group, the vertical/horizontal distance between the points 
is simply multiplied by the number of ties.  If not, all the points are uniformly 
spaced within each of the vertical and horizontal directions, because as a cutoff 
value changes, only one observation at a time switches the test result.         

Case 2: Some ties between actual positive and actual negative groups 

For ties between actual positive and actual negative groups, both of the nTP  and 
nFP  change simultaneously, and we do not know “the correct path between two 
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adjacent points” (Zweig and Campbell, 1993, p. 566).  “It could be the minimal 
path (horizontal first, then vertical) or the maximal path (vice versa).  The straight 
diagonal line segment is the average of the two most extreme paths and tends to 
underestimate the plot for diagnostically accurate test” (Zweig and Campbell, 1993, 
p. 566).  But, it is our choice here.  In passing, the distance and angle of this 
diagonal line depend on the numbers of ties within D+ and D- groups.  

Computation of the Area Under the ROC Curve 

The area under the ROC curve 

Let x  represent the scale of the test result variable, with its low values suggesting 

a negative result and the high values a positive result.  Denote by +x  the x  values 

for cases with positive actual states.  Similarly, denote by −x  the x  values for 

cases with negative actual states.  Then, the “true” area under the ROC curve is 

θ = >
+ -

Pr( )x x .    

The nonparametric approximation of θ   is  
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Note that W  is the observed area under the ROC curve, which connects successive 
points by a straight line, i.e., by the trapezoidal rule. 

An alternative way to compute W  is as follows: 
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When a low value of x  suggests a positive test result and a high value a negative test result 

If a low value of x  suggests a positive test result and a high a negative test result, 
compute W  as above and then 

W W’ = -1 , 

where W ’ is the estimated area under the curve when a low test result score 
suggests a positive test result. 

The SE of  the area under the ROC curve statistic 

Under the nonparametric (distribution-free) assumption 

The standard deviation of  W  is estimated by: 

SE( )
( ) ( )( $ ) ( )( $ )
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When a low value of x  suggests a positive test result and a high value a negative test result 
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If we assume that a low value of x  suggests a positive test result and a high value 
a negative test result, then we estimate the standard deviation of �W  by 
SE SE( ) ( )� =W W . 

Under the bi-negative exponential distribution assumption, given −+ = nn  

Under the bi-negative exponential distribution assumption when −+ = nn , 

$Q
W

W1 2
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1
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SE( )W  is then computed as before. 

When a low value of x  suggests a positive test result and a high value a negative test result 

Once again, SE(W ′ ) = SE(W ).   

The asymptotic confidence interval of the area under the ROC curve 

A 2-sided asymptotic c% ( )%= -100 a  confidence interval for the true area under 
the ROC curve is  

W Z W�
a

 SE( ) . 

When a low value of x  suggests a positive test result and a high value a negative test result 

W Z W’ ’( )�
a

 SE  
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The asymptotic P-value under the null hypothesis that 5.0=θ  vs. the 
alternative hypothesis that 5.0≠θ  

Since W  is asymptotically normal under the null hypothesis that 5.0=θ , we can 

calculate the asymptotic P-value under the null hypothesis that 5.0=θ  vs. the 

alternative hypothesis that 5.0≠θ : 
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In the nonparametric case,  
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because we can deduce that 311 =Q  and 312 =Q  under the null hypothesis 

that 5.0=θ .  The argument for 311 =Q  is as follows.  5.0=θ  implies that 

the distribution of test results of  positive actual state subjects is identical to the 
distribution of test results of negative actual state subjects.  So, the mixture of the 
two distributions is identical to either one of the distributions.  Then, we can 

reinterpret 1Q  as the probability that, given three randomly chosen subjects from 

the (mixture) distribution, the subject with the lowest test result was selected, say, 
first.  (One may consider this subject as a negative state subject and the other two 
as positive state subjects.)  From here on, we can pursue a purely combinatorial 
argument, irrespective of the distribution of subjects’ test results, because the 
drawings are independent and given.  There are 6123!3 =××=  ways to order 
the three subjects, and there are two ways in which the subject with the lowest test 

result comes first.  So, if 5.0=θ , 31621 ==Q .  The argument for 

312 =Q  is similar. 

In the bi-negative exponential case,  
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where −+ = nn .  (Note that this formula is identical to the nonparametric one 

except for the sample size restriction.) 

When a low value of x  suggests a positive test result and a high value a negative test result 

The asymptotic P-value under the null hypothesis that 5.0=′θ  vs. the alternative 

hypothesis that 5.0≠′θ , if desired, may be computed, using W ′  and 

5.05.0
)(SD)(SD

==
=′

θθ WW .  
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