Missing values in a time series are estimated.

Notation

The following notation is used throughout this chapter unless otherwise stated:

$X=\left(X_{1}, \ldots, X_{n}\right)$	Original series
\hat{X}_{i}	Estimate for spans
p	Number of spans
k	The number of consecutive missing values
X_{i} to X_{i+k-1}	Set of consecutive missing values

Methods for Estimating Missing Values

Linear Interpolation (LINT(X))

$$
\hat{X}_{i+l}= \begin{cases}X_{i-1}+\frac{l+1}{k+1}\left(X_{i+k}-X_{i-1}\right) & l=0, \ldots, k-1 \\ \text { SYSMIS } & i=1 \text { or } i+k-1=n\end{cases}
$$

If $k=1$ (that is, only one consecutive missing observation), then

$$
\hat{X}_{i}= \begin{cases}\frac{1}{2}\left(X_{i-1}+X_{i+1}\right) & i=2, \ldots, n-1 \\ \text { SYSMIS } & i=1 \text { or } i=n\end{cases}
$$

2 RMV

Mean of p Nearest Preceding and p Subsequent Values (MEAN (X,p))

If the number of nonmissing observations in $\left(X_{1}, \ldots, X_{i-1}\right)$ or $\left(X_{i+k}, \ldots, X_{n}\right)$ is less than p, then set $\hat{X}_{i+l}=$ SYSMIS; otherwise, set $\hat{X}_{i+l}=$ average of p nonmissing observations preceding X_{i} and p nonmissing observations following X_{i+k-1}.

Median of p Nearest Preceding and p Subsequent Values (MEDIAN (X, p))

If the number of nonmissing observations in $\left(X_{1}, \ldots, X_{i-1}\right)$ or $\left(X_{i+k}, \ldots, X_{n}\right)$ is less than p, then set $\hat{X}_{i+l}=$ SYSMIS; otherwise, set $\hat{X}_{i+l}=$ median of p nonmissing observations preceding X_{i} and p nonmissing observations following X_{i+k-1}.

Series Mean (SMEAN (X))

$\hat{X}_{i+l}=$ average of all nonmissing observations in the series.

Linear Trend (TREND(X))

(1) Use all the nonmissing observations in the series to fit the regression line of the form

$$
\hat{X}_{t}=a+b t
$$

The least squares estimates are

$$
\begin{aligned}
& b=\frac{\sum\left(X_{t}-\bar{X}\right)(t-\bar{t})}{\sum_{\bar{X}}(t-\bar{t})^{2}} \\
& a=\bar{X}-b \bar{t}
\end{aligned}
$$

(2) Apply the regression equation to replace the missing values

$$
\hat{X}_{i+l}=a+b(i+l)
$$

