RMV

Missing values in a time series are estimated.

Notation

The following notation is used throughout this chapter unless otherwise stated:

$X = (X_1, \dots, X_n)$	Original series
\hat{X}_i	Estimate for spans
р	Number of spans
k	The number of consecutive missing values
X_i to X_{i+k-1}	Set of consecutive missing values

Methods for Estimating Missing Values

Linear Interpolation (LINT(X))

$$\hat{X}_{i+l} = \begin{cases} X_{i-1} + \frac{l+1}{k+1} (X_{i+k} - X_{i-1}) & l = 0, \dots, k-1 \\ \\ \text{SYSMIS} & i = 1 \text{ or } i+k-1 = n \end{cases}$$

If k = 1 (that is, only one consecutive missing observation), then

$$\hat{X}_{i} = \begin{cases} \frac{1}{2} (X_{i-1} + X_{i+1}) & i = 2, \dots, n-1 \\ \text{SYSMIS} & i = 1 \text{ or } i = n \end{cases}$$

2 RMV

Mean of p Nearest Preceding and p Subsequent Values (MEAN (X,p))

If the number of nonmissing observations in $(X_1,...,X_{i-1})$ or $(X_{i+k},...,X_n)$ is less than p, then set $\hat{X}_{i+l} = \text{SYSMIS}$; otherwise, set $\hat{X}_{i+l} =$ average of pnonmissing observations preceding X_i and p nonmissing observations following X_{i+k-1} .

Median of p Nearest Preceding and p Subsequent Values (MEDIAN (X,p))

If the number of nonmissing observations in $(X_1,...,X_{i-1})$ or $(X_{i+k},...,X_n)$ is less than p, then set $\hat{X}_{i+l} = \text{SYSMIS}$; otherwise, set $\hat{X}_{i+l} =$ median of pnonmissing observations preceding X_i and p nonmissing observations following X_{i+k-1} .

Series Mean (SMEAN (X))

 \hat{X}_{i+l} = average of all nonmissing observations in the series.

Linear Trend (TREND(X))

(1) Use all the nonmissing observations in the series to fit the regression line of the form

$$\hat{X}_t = a + bt$$

The least squares estimates are

$$b = \frac{\sum (X_t - \overline{X})(t - \overline{t})}{\sum (t - \overline{t})^2}$$
$$a = \overline{X} - b\,\overline{t}$$

(2) Apply the regression equation to replace the missing values

$$\hat{X}_{i+l} = a + b(i+l)$$