RANK

Notation

Let $y_1 < y_2 < \cdots < y_m$ be *m* distinct ordered observations for the sample and C_1, C_2, \dots, C_m be the corresponding sum of caseweights for each value. Define

$$CC_i = \sum_{k=1}^{l} C_k$$
 = cumulative sum of caseweights up to y_i
 $W = CC_m = \sum_{k=1}^{m} C_k$ = total sum of caseweights

Statistics

Rank (R_i)

A rank is assigned to each case based on four different ways of treating ties or caseweights not equal to 1.

For every *i*, i = 1,...,m, (a) if $C_i \ge 1$ $R_i = CC_{i-1} + 1$ if TIES = LOW $R_i = CC_i$ if TIES = HIGH $R_i = CC_{i-1} + (C_i + 1)/2$ if TIES = MEAN $R_i = i$ if TIES = CONDENSE

(b) if
$$C_i < 1$$

 $R_i = CC_{i-1}$ if TIES = LOW
 $R_i = CC_i$ if TIES = HIGH
 $R_i = CC_{i-1} + C_i/2$ if TIES = MEAN
 $R_i = i$ if TIES = CONDENSE

Note: $CC_0 = 0$.

RFRACTION (RF)

Fractional rank: $RF_i = R_i / W$, i = 1,...,m

PERCENT (P)

Fractional rank as a percentage:

$$P_i = \frac{R_i}{W} \times 100$$
, $i = 1, ..., m$

PROPORTION (F): Estimate for Cumulative Proportion

The proportion is calculated for each case based on four different methods of estimating fractional rank:

$$\begin{split} F_i &= \left(R_i - \frac{3}{8}\right) / \left(W + \frac{1}{4}\right) \qquad \text{(BLOM)} \\ F_i &= \left(R_i - \frac{1}{2}\right) / W \qquad \text{(RANKIT)} \\ F_i &= \left(R_i - \frac{1}{3}\right) / \left(W + \frac{1}{3}\right) \qquad \text{(TUKEY)} \\ F_i &= R_i / (W + 1) \qquad \text{(Van der Waerden)} \end{split}$$

Note: F_i will be set to SYSMIS if the calculated value of F_i by the formula is negative.

NORMAL (a)

Normal scores that are the Z-scores from the standard normal distribution that corresponds to the estimated cumulative proportion F. The normal score is defined by

$$a_i = \Psi(F_i), i = 1, \dots, m$$

where Ψ is the inverse cumulative standard normal distribution (PROBIT).

NITLES (K)

Assign group membership for the requested number of groups. If K groups are requested, the *n*-tile (N_i) for case *i* is defined by

$$N_i = \left[\frac{R_i K}{W+1}\right] + 1$$

where $\left[\frac{R_i K}{W+1}\right]$ is the greatest integer that is less than or equal to $R_i K/(W+1)$.

SAVAGE (S)

Savage scores based on exponential distribution. The Savage score is calculated by

$$S_{i} = \begin{cases} \left\{ \left[\left(1 - g_{i_{1}}\right) l_{i_{1}+1} + g_{i_{2}} l_{i_{2}+1} + \sum_{j=i_{1}+2}^{i_{2}} l_{j} \right] \middle/ C_{i} \right\} - 1 & i_{1} + 2 \le i_{2} \\ \left\{ \left[\left(1 - g_{i_{1}}\right) l_{i_{1}+1} + g_{i_{2}} l_{i_{2}+1} \right] \middle/ C_{i} \right\} - 1 & i_{1} + 1 = i_{2} \\ l_{i_{1}+1} - 1 & i_{1} = i_{2} \end{cases}$$

where

$$i_1 = \begin{bmatrix} CC_{i-1} \end{bmatrix}, \quad i_2 = \begin{bmatrix} CC_i \end{bmatrix}, \quad W^* = \begin{cases} W & \text{if } W \text{ is an integer} \\ \begin{bmatrix} W \end{bmatrix} + 1 & \text{if } W \text{ is not an integer} \end{cases}$$
$$g_{i_1} = CC_{i-1} - i_1, \quad g_{i_2} = CC_i - i_2$$

and l_1, \ldots, l_{w^*} are defined as the expected values of the order statistics from an exponential distribution; that is

$$l_j = \sum_{K=1}^j \frac{1}{W^* - K + 1}$$

References

- Blom, G. 1958. *Statistical estimates and transformed beta variables*. New York: John Wiley & Sons, Inc.
- Chambers, J. M., Cleveland, W. S., Kleiner, B., and Tukey, P. A. 1983. *Graphical methods for data analysis*. Belmont, Calif.: Wadsworth International Group; Boston: Duxbury Press.
- Lehmann, E. L. 1975. *Nonparametrics: Statistical Methods Based on Ranks*. San Francisco: Holden-Day.
- Tukey, J. W. 1962. The future of data analysis. *The Annals of Mathematical Statistics*, 33: 1–67 (Correction: 33: 812)