RANK

Notation

Let $y_{1}<y_{2}<\cdots<y_{m}$ be m distinct ordered observations for the sample and $C_{1}, C_{2}, \ldots, C_{m}$ be the corresponding sum of caseweights for each value. Define $C C_{i}=\sum_{k=1}^{i} C_{k}=$ cumulative sum of caseweights up to y_{i} $W=C C_{m}=\sum_{k=1}^{m} C_{k}=$ total sum of caseweights

Statistics

Rank $\left(R_{i}\right)$

A rank is assigned to each case based on four different ways of treating ties or caseweights not equal to 1 .

For every $i, i=1, \ldots, m$,
(a) if $C_{i} \geq 1$

$$
\begin{array}{lr}
R_{i}=C C_{i-1}+1 & \text { if TIES }=\text { LOW } \\
R_{i}=C C_{i} & \text { if TIES }=\text { HIGH } \\
R_{i}=C C_{i-1}+\left(C_{i}+1\right) / 2 & \text { if TIES }=\text { MEAN } \\
R_{i}=i &
\end{array}
$$

(b) if $C_{i}<1$

$$
\begin{array}{ll}
R_{i}=C C_{i-1} & \\
\text { if TIES }=\text { LOW } \\
R_{i}=C C_{i} & \\
R_{i}=C C_{i-1}+C_{i} / 2 & \\
\text { if TIES }=\text { HIGS }=\text { MEAN } \\
R_{i}=i &
\end{array}
$$

Note: $C C_{0}=0$.

RFRACTION (RF $_{\text {; }}$)

Fractional rank:

$$
R F_{i}=R_{i} / W, i=1, \ldots, m
$$

PERCENT $\left(P_{i}\right)$

Fractional rank as a percentage:

$$
P_{i}=\frac{R_{i}}{W} \times 100, i=1, \ldots, m
$$

PROPORTION $\left(F_{i}\right)$: Estimate for Cumulative Proportion

The proportion is calculated for each case based on four different methods of estimating fractional rank:

$$
\begin{array}{ll}
F_{i}=\left(R_{i}-\frac{3}{8}\right) /\left(W+\frac{1}{4}\right) & (\text { BLOM }) \\
F_{i}=\left(R_{i}-\frac{1}{2}\right) / W & \text { (RANKIT) } \\
F_{i}=\left(R_{i}-\frac{1}{3}\right) /\left(W+\frac{1}{3}\right) & \text { (TUKEY) } \\
F_{i}=R_{i} /(W+1) & \text { (Van der Waerden) }
\end{array}
$$

Note: F_{i} will be set to SYSMIS if the calculated value of F_{i} by the formula is negative.

NORMAL (a)

Normal scores that are the Z-scores from the standard normal distribution that corresponds to the estimated cumulative proportion F. The normal score is defined by
$a_{i}=\Psi\left(F_{i}\right), i=1, \ldots, m$
where Ψ is the inverse cumulative standard normal distribution (PROBIT).

NITLES (K)

Assign group membership for the requested number of groups. If K groups are requested, the n-tile $\left(N_{i}\right)$ for case i is defined by
$N_{i}=\left[\frac{R_{i} K}{W+1}\right]+1$
where $\left[\frac{R_{i} K}{W+1}\right]$ is the greatest integer that is less than or equal to $R_{i} K /(W+1)$.

SAVAGE (S)

Savage scores based on exponential distribution. The Savage score is calculated by

$$
S_{i}= \begin{cases}\left\{\left[\left(1-g_{i_{1}}\right) l_{i_{1}+1}+g_{i_{2}} l_{i_{2}+1}+\sum_{j=i_{1}+2}^{i_{2}} l_{j}\right] / C_{i}\right\}-1 & i_{1}+2 \leq i_{2} \\ \left\{\left[\left(1-g_{i_{1}}\right) l_{i_{1}+1}+g_{i_{2}} l_{i_{2}+1}\right] / C_{i}\right\}-1 & i_{1}+1=i_{2} \\ l_{i_{1}+1}-1 & i_{1}=i_{2}\end{cases}
$$

where

$$
i_{1}=\left[C C_{i-1}\right], \quad i_{2}=\left[C C_{i}\right], \quad W^{*}= \begin{cases}W & \text { if } W \text { is an integer } \\ {[W]+1} & \text { if } W \text { is not an integer }\end{cases}
$$

$$
g_{i_{1}}=C C_{i-1}-i_{1}, \quad g_{i_{2}}=C C_{i}-i_{2}
$$

and $l_{1}, \ldots, l_{w^{*}}$ are defined as the expected values of the order statistics from an exponential distribution; that is
$l_{j}=\sum_{K=1}^{j} \frac{1}{W^{*}-K+1}$

References

Blom, G. 1958. Statistical estimates and transformed beta variables. New York: John Wiley \& Sons, Inc.

Chambers, J. M., Cleveland, W. S., Kleiner, B., and Tukey, P. A. 1983. Graphical methods for data analysis. Belmont, Calif.: Wadsworth International Group; Boston: Duxbury Press.

Lehmann, E. L. 1975. Nonparametrics: Statistical Methods Based on Ranks. San Francisco: Holden-Day.

Tukey, J. W. 1962. The future of data analysis. The Annals of Mathematical Statistics, 33: 1-67 (Correction: 33: 812)

