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OVERALS 

The OVERALS algorithm was first described in Gifi (1981) and Van der Burg, De 
Leeuw and Verdegaal (1984); also see Verdegaal (1986), Van de Geer(1987), Van 
der Burg, De Leeuw and Verdegaal (1988), and Van der Burg (1988). 
Characteristic features of OVERALS, conceived by De Leeuw (1973), are the 
partitioning of the variables into K sets and the ability to specify any of a number of 
measurement levels for each variable separately. Analogously to the situation in 
multiple regression and canonical correlation analysis, OVERALS focuses on the 
relationships between sets; any particular variable contributes to the results only 
inasmuch as it provides information that is independent of the other variables in the 
same set. 

Notation 
The following notation is used throughout this chapter unless otherwise stated: 

 
n Number of cases (objects) 

m Total number of variables 

p Number of dimensions 

K Number of sets 

For variable j, j m= 1, ,K  

k j  Number of categories (distinct values) of variable j 

G j  Indicator matrix for variable j, of order n k j×  

The elements of G j  are defined as i n r k j= =1 1, , ; , ,K K  

g
i r j

i r jj ir1 6 =
%&'
1

0

when the th object is in the th category of variable 

when the th object is not in the th category of variable 
 

D j  Diagonal matrix containing the univariate marginals; that is, the column 
sums of G j  
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For set k k K, , , = 1 K  

J k1 6  index set of the variables that belong to set k (so that you can write 

j J k∈ 1 6 ) 

mk  Number of variables in set k (number of elements in J k1 6 ) 

Mk  Binary, diagonal n n×  matrix, with diagonal elements defined as 

 

m
i k j J k

i k j J kk ii
j

j
1 6

1 6
1 6=

∈
∈

%&K'K
1 1

0 1

when the th observation is within the range [  for all 

when the th observation is outside the range [  for all 

, ]

, ]
 

The quantification matrices and parameter vectors are: 

X Object scores, of order n p×  

X j  Auxiliary matrix of order n p× , with corrected object scores when fitting 

variable j 

Y j  Category quantifications for multiple variables, of order k pj × : multiple 

category coordinates for multiple variables 

y j  Category quantifications for single variables, of order k j  

a j  Variable weights for single variables, of order p 

Qk  Quantified variables of the kth set, of order n mk×  with columns 

q G yj j j=  

Y  Collection of multiple and single category quantifications across variables 
and sets 

Note: The matrices Mk , Gj, Mj, and Mk are exclusively notational devices; they 

are stored in reduced form, and the program fully profits from their sparseness by 

replacing matrix multiplications with selective accumulation. 



OVERALS   3 

 

Objective Function Optimization 
The OVERALS objective is to find object scores X and a set of Y j  (for 

j m= 1, ,K )  the underlining indicates that they may be restricted in various 

ways  so that the function 

σ X Y X G Y M X G Y;1 6
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is minimal, under the normalization restriction ′ =∗X M X Ikn , where the matrix 

M M∗ = ∑ k

k

, and I is the p p×  identity matrix. The inclusion of Mk  in 

σ X Y;1 6  provides the following mechanism for weighting the loss: whenever any 

of the data values for object i in set k falls outside its particular range [ , ]1 k j , a 

circumstance that may indicate either genuine missing values or simulated missing 
values for the sake of analysis, all other data values for object i in set k are 
disregarded (listwise deletion per set). The diagonal of M∗  contains the number of 

“active” sets for each object. The object scores are also centered; that is, they 
satisfy ′ =∗u M X 0  with u denoting an n-vector with ones. 

The following measurement levels are distinguished in OVERALS: 

Multiple Nominal 

Y Yj j= unrestricted1 6  

Single Nominal 

Y y aj j j= ′ rank - one and equality restrictions1 6  
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(Single) Ordinal 

Y y a y Cj j j j j= ′ ∈ and rank - one and monotonicity restrictions1 6  

(Single) Numerical 

Y y a y Lj j j j j= ′ ∈ and rank - one and linearity restrictions1 6  

For each variable, these levels can be chosen independently. The general 
requirement in the “single” options is Y y aj j j= ′ ; that is, Y j  is of rank one; for 

identification purposes, y j  is always normalized so that ′ =y D yj j j n , which 

implies that the variance of the quantified variable q G yj j j=  is 1. In the ordinal 

case, the additional restriction y Cj j∈  means that y j  must be located in the 

convex cone of all k j -vectors with nondecreasing elements; in the numerical case, 

the additional restriction y j jL∈  means that y j  must be located in the subspace 

of all k j -vectors that are a linear transformation of the vector consisting of k j  

successive integers (=normalized data vector). 

Optimization is achieved by executing the following iteration scheme: 

1. Initialization I or II 

2. Loop across sets and variables 

3. Eliminate contributions of other variables 

4. Update category quantifications 

5. Update object scores 

6. Orthonormalization 

7. Convergence test: repeat (2)(6) or continue 

8. Rotation 

Steps (1) through (8) are explained below. 
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(1) Initialization 

I. Random 

The object scores X are initialized with random numbers, which are normalized so 

that ′ =∗u M X 0  and ′ =∗X M X IKn , yielding 
~
X . For multiple variables, the 

initial category quantifications are set equal to 0. For single variables, the initial 
category quantifications ~y j  are defined as the first k j  successive integers 

normalized in such a way that ′ =u D yj j
~ 0  and ~ ~y D yj j j n= , and the initial 

variable weights are set equal to 0. 

II. Nested 

In this case, the above iteration scheme is executed twice. In the first cycle, 
(initialized with initialization I) all single variables are temporarily treated as single 
numerical, so that for the second, proper cycle, all relevant quantities can be copies 
from the results of the first one. 

(2) Loop across sets and variables 

The next two steps are repeated for k K= 1, ,K  and all j J k∈ 1 6 . During the 

updating of variable j, all parameters of the remaining variables are fixed at their 

current values. 

(3) Eliminate contributions of other variables 

For quantifying variable j in set k, define the auxiliary matrix 

V G Y G Yk j j jj J k
j j1 6 1 6= −

∈∑  

which accumulates the contributions of the other variables in set k; then in 

X V− k j1 64 9 , the contributions of the other variables are eliminated from the object 

scores. This device enables you to write the loss σ X Y; j4 9  as a function of X and 

Y j  only: 

σ X Y X V G Y M X V G Y; j k j j j k k j j jK4 9 4 9 4 91 6 1 6= + − −�� ��
′

− −�� ��
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With fixed current values 
~
X  the unconstrained minimum over Y j  is attained for 

the matrix 

~ ~
Y G M G G M X Vj j k j j k k j= ′ ′ −

−3 8 4 91 6
1

 

which forms the basis of the further computations. When switching to another 

variable l in the same set, the matrix V k l1 6  is not computed from scratch, but 

updated: 

V V G Y G Yk l k j j j l l1 6 1 6← + −  

(4) Update category quantifications 

(a) For multiple nominal variables, the new category quantifications are simply 

Y Yj j
+ = ~

 

(b) For single variables one cycle of an ALS algorithm (De Leeuw et al., 1976) is 

executed for computing the rank-one decomposition of 
~
Yj , with restrictions on 

the left-hand vector. 

This cycle starts from the previous category quantification ~y j  with 

a Y D yj j j j
+ = ′~ ~  

When the current variable is numerical, we are ready; otherwise we compute 

y Y aj j j
∗ += ~

. 

Now, when the current variable is single nominal, you can simply obtain y j
+  by 

normalizing y j
∗  in the way indicated below; otherwise the variable must be ordinal, 

and you have to insert the weighted monotonic regression process 
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y yj jWMON∗ ∗← 4 9  

which makes y j
∗  monotonically increasing. The weights used are the diagonal 

elements of D j  and the subalgorithm used is the up-and-down-blocks minimum 

violators algorithm (Kruskal, 1964; Barlow et al., 1972). The result is normalized: 

y y y D yj j j j jn+ ∗ ∗ ∗
−

= ′
�
��

�
��

1 2
1 2

 

Finally, we set 

Y y aj j j
+ + += ′  

(5) Update object scores 

During the loop across sets, the auxiliary score matrix W is accumulated as 

W W M G Y← + +
∈∑k j jj J k1 6  

and centered with respect to M∗ : 

X I M uu u M u W∗
∗ ∗= − ′ ′; @  

From these two steps, M X∗
− ∗1  would yield the locally best update without 

orthogonality constraints. 

(6) Orthonormalization 

The orthonormalization problem is to find an M∗ -orthonormal X+  that is closest 

to M X∗
− ∗1  in the M∗ -weighted least squares sense. In OVERALS, this is done by 

setting 



8   OVERALS 

 

X M M X+
∗
−

∗
− ∗← m1 2 1 2 1 2PROCRU4 9  

The notation PROCRU( ) is used to denote the Procrustes orthonormalization 

process. If the singular value decomposition of the input matrix M X∗
− ∗1 2  is 

denoted by K LΛ ′ , with ′ = ′ =K K I L L I, , and Λ  diagonal, then the output 

matrix KL M X L L′ = ′∗
− ∗ −1 2 1Λ  satisfies orthonormality in the metric M∗ . The 

calculation of L and Λ  is based on tridiagonalization with Householder 
transformations followed by the implicit QL algorithm (Wilkinson, 1965). 

(7) Convergence test 

The difference between consecutive values of tr Λ4  is compared with the user-
specified convergence criterion ε  a small positive number. After convergence, 

the badness-of-fit values σ X Y;1 6 4 9= −p tr Λ4 is also given. Steps (2) through (6) 

are repeated as long as the loss difference exceeds ε . 

(8) Rotation 

The OVERALS loss function σ X Y;1 6  is invariant under simultaneous rotations of 

X and Y . It can be shown that the solution is related to the principal axes of the 

average projection operator 

Q K k k k k k
k

k k∗
−= ′ ′∑1

1M Q Q M Q Q M1 6  

In order to achieve principal axes orientation, which is useful for purposes of 
interpretation and comparison, it is sufficient to find a rotation matrix that makes 

the cross-products of the matrix M X∗
− ∗1 2  diagonal  a matrix identical to the one 

used in the Procrustes orthonormalization in step (6). In the terminology of that 

section, we rotate the matrices X Y+ +, , and the vectors a j  with the matrix L. The 

rotation matrix L is taken from the last PROCRU operation as described in step (6). 
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Diagnostics 

Maximum Rank 

The maximum rank ρmax  indicates the maximum number of dimensions that can 

be computed for any data set (if exceeded, OVERALS adjusts the number of 
dimensions if possible and issues a message). In general, 

ρmax
min , ,

min ,max
=

− =
− >

%
&K
'K

n r r K

n r Kk

1 2

1 2
1 21 6< A

1 6< A
if 

if 
 

where the quantities rk  are defined as 

r k m mk j k k

j JM k

= + −
∈
∑ 1 2

1 6
. 

Here mk1  is the number of multiple variables with no missing values in set k mk, 2  

is the number of single variables in set k, and JM k1 6  is an index set recording 

which variables are multiple in set k. Furthermore, OVERALS stops when any one 
of the following conditions is not satisfied: 

1. r nk k< −1 

2. nk > 2  

3. r n nk

k

k
k∑ ∑≤ − − −1 11 6 1 6max  

Here nk  denotes the number of nonmissing objects in set k, and nmax  denotes the 

maximum across all of nk . 

Marginal Frequencies 

The frequencies table gives the univariate marginals and the number of missing 

values (that is, values that are regarded as out of range for the current analysis) for 

each variable. These are computed as the column sums of D j  and the total sum of 

Mk  for j J k∈ 1 6 . 
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Fit and Loss Measures 

In the Summary of Analysis, loss and fit measures are reported. 

Loss Per Set 

This is K times σ X Y;1 6 , partitioned with respect to sets and dimensions; the 

means per dimension are also given. 

Eigenvalue 

The values listed here are 1 minus the means per dimension defined above, forming 
a partitioning of FIT, which is ρ σ− X Y;1 6  when convergence is reached. These 

quantities are the eigenvalues of Q∗  defined in section (8). 

Other fit and loss measures reported are: 

Multiple Fit 

This measure is computed as the diagonal of the matrix Y D Yj j j′ , computed for 

all variables (rows) with dimensions given in the columns. 

Single Fit 

This table gives the squared weights, computed only for variables that are single. 
The sum of squares of the weights: ′a aj j . 

Single Loss 

Single loss is equal to multiple fit minus single fit for single variables only. It is the 
loss incurred by the imposition of the rank-one measurement level restrictions. 

Component Loadings and Qualifications 

After the Summary of Analysis, the weights are reported, then the quantities. 
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Component Loadings for Single Variables 

Loadings are the lengths of the projections of the quantified (single) variables onto 

the object space: ′q Xj . When there are no missing data, the loadings are equal to 

the correlations between the quantified variables and the object scores (the 

principal components). 

Category Quantifications (Either Yj  or y j ) 

Single Coordinates 

For single variables only: Y y aj j j= ′ . 

Multiple Coordinates 

These are 
~
Y j  defined previously; that is, the unconstrained minimizers of the loss 

function, for multiple variables equal to the category quantifications. 

Category Centroids 

The centroids of all objects that share the same category, D G Xj j
− ′1 . Note that they 

are not necessarily equal to the multiple coordinates. 

Projected Category Centroids 

For single variables only, y bj j′ . These are the points on a line in the direction 

given by the loadings b j  that result from projection of the category centroids with 

weights D j . 
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