The program performs univariate and multivariate analysis of variance and covariance for any crossed and/or nested design.

Analysis of Variance

Notation

The experimental design model (the model with covariates will be discussed later) can be expressed as

Y	=	W	β	+	Ε
$N \times p$		$N \times m$	$m \times p$		$N \times p$

where

Y	is the observed matrix
W	is the design matrix
β	is the matrix of parameters
Ε	is the matrix of random errors
Ν	is the total number of observations
р	is the number of dependent variables
т	is the number of parameters

Since the rows of W will be identical for all observations in the same cell, the model is rewritten in terms of cell means as

Y.	=	Α	β	+	E.	
$g \times p$		$g \times m$	$m \times p$		$g \times p$	

where g is the number of cells and Y_{\bullet} and E_{\bullet} denote matrices of means.

Reparameterization

The reparameterization of the model (Bock, 1975; Finn, 1977) is done by factoring \mathbf{A} into

 $\mathbf{A} = \mathbf{K} \quad \mathbf{L}$ $g \times m \qquad g \times r \quad r \times m$

K forms a column basis for the model and has rank *r*. **L** contains the coefficients of linear combinations of parameters and rank *r*. The contrast matrix **L** can be specified by the user. Given **L**, **K** can be obtained from $AL'(LL')^{-1}$. For designs with more than one factor, **L**, and hence **K**, can be constructed from Kronecker products of contrast matrices of each factor. After reparameterization, the model can be expressed as

$$Y = A\beta + E$$

$$g \times p$$

$$= K(L\beta) + E$$

$$= \frac{K \theta}{g \times r} + \frac{E}{g \times p}$$

Parameter Estimation

An orthogonal decomposition (Golub, 1969) is performed on **K**. That is, **K** is represented as

 $\mathbf{K} = \mathbf{Q}\mathbf{R}$

where **Q** is an orthonormal matrix such that $\mathbf{Q'DQ} = \mathbf{I}$; **D** is the diagonal matrix of cell frequencies; and **R** is an upper-triangular matrix.

The normal equation of the model is

$$(\mathbf{K'DK})\hat{\mathbf{\theta}} = \mathbf{K'DY}$$

or

$$\mathbf{R}\hat{\boldsymbol{\theta}} = \mathbf{Q}'\mathbf{D}\mathbf{Y} = \mathbf{U}$$

This triangular system can therefore be solved forming the cross-product matrix.

Significance Tests

The sum of squares and cross-products (SSCP) matrix due to the model is

$$\hat{\theta}'\mathbf{R}'\mathbf{R}\hat{\theta} = \mathbf{U}'\mathbf{U}$$

and since $var(\mathbf{U}) = \mathbf{R} var(\theta)\mathbf{R'} = \mathbf{I} \otimes \Sigma$ the SSCP matrix of each individual effect can be obtained from the components of

$$\mathbf{U'U} = (U_1, \dots, U_k) \begin{pmatrix} U'_1 \\ \vdots \\ U'_k \end{pmatrix} = U_1 U'_1 + \dots + U_k U'_k$$

Therefore the hypothesis SSCP matrix for testing $H_o: \theta_h = \mathbf{0}$ is

$$\mathbf{S}_H = \mathbf{U}_h \quad \mathbf{U}'_h \\ p \times p \quad p \times n_h \quad n_h \times p$$

The default error SSCP matrix is the pooled within-groups SSCP:

$$\mathbf{S}_E = \mathbf{Y'Y} - \mathbf{Y'DY}$$

if the pooled within-groups SSCP matrix does not exist, the residual SSCP matrix is used:

$$\mathbf{S}_E = \mathbf{Y'Y} - \mathbf{U'U}$$

Four test criteria are available. Each of these statistics is a function of the nonzero eigenvalues λ_i of the matrix $\mathbf{S}_H \mathbf{S}_E^{-1}$. The number of nonzero eigenvalues, *s*, is equal to min (p, n_h) .

Pillai's Criterion (Pillai, 1967)

$$T = \sum_{i=1}^{s} \lambda_i / (1 + \lambda_i)$$

Approximate $F = (n_e - p - s)T/(b(s - T))$ with b_s and $s(n_e - p + s)$ degrees of freedom, where

 n_e = degrees of freedom for S_E $b = \max(p, n_h)$

Hotelling's Trace

$$T = \sum_{i=1}^{s} \lambda_i$$

Approximate $F = 2(sn+1)T/(s^2(2m+s+1))$ with s(2m+s+1) and 2(sn+1) degrees of freedom where

$$m = (|n_h - p| - 1)/2$$

$$n = (n_e - p - 1)/2$$

Wilks' Lambda (Rao, 1973)

$$T = \prod_{i=1}^{s} 1/(1+\lambda_i)$$

Approximate $F = \left(1 - T^{1/l}\right) \left(Ml + 1 - n_h p/2\right) / \left(T^{1/l} n_h p\right)$ with $n_h p$

and $(Ml+1-n_h p/2)$ degrees of freedom, where

$$l^{2} = \left(p^{2}n_{h}^{2} - 4\right) / \left(p^{2} + n_{h}^{2} - 5\right)$$
$$M = n_{e} - \left(p + 1 - n_{h}\right) / 2$$

Roy's Largest Root

$$T = \lambda_1 / (1 + \lambda_1)$$

Stepdown F Tests

The stepdown *F* statistics are

$$F_{i} = \frac{\left(t^{2} - t_{e}^{2}\right) / n_{h}}{t_{e}^{2} / (n_{e} - i + 1)}$$

with n_h and $n_e - i + 1$ degrees of freedom, where t_e and t are the *i*th diagonal element of \mathbf{T}_E and \mathbf{T} respectively, and where

$$\mathbf{S}_E = \mathbf{T}'_E \mathbf{T}_E$$
$$\mathbf{S}_E + \mathbf{S}_H = \mathbf{T}'\mathbf{T}$$

Design Matrix

K

Estimated Cell Means

 $\hat{\mathbf{Y}}_{\bullet} = \mathbf{K}\hat{\mathbf{\theta}}$

Analysis of Covariance

Model

Y.	=	K	θ	+	X.	В	+	E₊
$g \times p$		$g \times r$	$r \times p$		$g \times q$	$q \times p$		$g \times p$

where g, p, and r are as before and q is the number of covariates, and X_{\bullet} is the mean of X, the matrix of covariates.

Parameter Estimation and Significance Tests

For purposes of parameter estimation, no initial distinction is made between dependent variables and covariates.

Let

$$\mathbf{V} = (\mathbf{Y} \mathbf{X})$$
$$\mathbf{V}_{\bullet} = (\mathbf{Y}_{\bullet} \mathbf{X}_{\bullet})$$

The normal equation of the model

$$\mathbf{V}_{\bullet} = \mathbf{K} \quad \boldsymbol{\theta} + \mathbf{E}_{\bullet}$$
$$g \times (p+q) \qquad g \times r \quad r \times (p+q) \qquad g \times (p+q)$$

is

$$(\mathbf{K'DK})\hat{\boldsymbol{\theta}} = \mathbf{K'DY}_{\bullet}$$

or

$$\mathbf{R}\hat{\mathbf{\theta}} = \mathbf{Q}'\mathbf{D}\mathbf{V}_{\bullet} = \mathbf{U}$$

 $\hat{\theta} = (\hat{\theta}_Y \quad \hat{\theta}_X)$ $r \times (p+q) \quad r \times p \quad r \times q$

If \mathbf{S}_E and \mathbf{S}_T are partitioned as

$$\begin{split} \mathbf{S}_{E} = & \begin{pmatrix} \mathbf{S}_{E}^{(Y)} & \mathbf{S}_{E}^{(YX)} \\ \mathbf{S}_{E}^{(XY)} & \mathbf{S}_{E}^{(X)} \end{pmatrix} \\ \mathbf{S}_{T} = & \begin{pmatrix} \mathbf{S}_{T}^{(Y)} & \mathbf{S}_{T}^{(YX)} \\ \mathbf{S}_{T}^{(XY)} & \mathbf{S}_{T}^{(X)} \end{pmatrix} \end{split}$$

then the adjusted error SSCP matrix is

$$\mathbf{S}_{E}^{*} = \mathbf{S}_{E}^{(Y)} - \mathbf{S}_{E}^{(YX)} \left(\mathbf{S}_{E}^{(X)}\right)^{-1} \mathbf{S}_{E}^{(XY)}$$

and the adjusted total SSCP matrix is

$$\mathbf{S}_T^* = \mathbf{S}_T^{(Y)} - \mathbf{S}_T^{(YX)} \left(\mathbf{S}_T^{(X)}\right)^{-1} \mathbf{S}_T^{(XY)}$$

The adjusted hypothesis SSCP matrix is then

$$\mathbf{S}_{H}^{*} = \mathbf{S}_{T}^{*} - \mathbf{S}_{E}^{*}$$

The estimate of **B** is

$$\hat{\mathbf{B}} = \left(\mathbf{S}_T^{(X)}\right)^{-1} \mathbf{S}_T^{(XY)}$$

or

The adjusted parameter estimates are

$$\hat{\boldsymbol{\theta}}^* = \hat{\boldsymbol{\theta}}_Y - \hat{\boldsymbol{\theta}}_X \hat{\mathbf{B}}$$

The adjusted cell means are

$$\hat{\mathbf{Y}}^* = \mathbf{K}\hat{\mathbf{\theta}}^*$$

Repeated Measures

Notation

The following notation is used within this section unless otherwise stated:

k	Degrees of freedom for the within-subject factor
\mathbf{SSE}^*	Orthonormal transformed error matrix
Ν	Total number of observations
ndfb	Degrees of freedom for all between-subject factors (including the constant)

Statistics

Greenhouse-Geisser Epsilon

ggeps =
$$\frac{\left(\operatorname{tr}(\mathbf{SSE}^*)\right)^2}{k \times \operatorname{tr}\left(\left(\mathbf{SSE}^*\right)^2\right)}$$

Huynh-Feldt Epsilon

hfeps =
$$\frac{N \times k \times ggeps - 2}{k \times (N - ndfb) - k^2 \times ggeps}$$

if
$$hfeps > 1$$
, set $hfeps = 1$

Lower bound Epsilon

lbeps =
$$\frac{1}{k}$$

Effect Size

Notation

The following notation is used within this section unless otherwise stated:

dfh	Hypothesis degrees of freedom
dfe	Error degrees of freedom
F	F test
W	Wilks' lambda
S	Number of non-zero eigenvalues of \mathbf{HE}^{-1}
Т	Hotelling's trace
V	Pillai's trace

Statistic

Partial eta - squared =
$$\frac{dfh \times F}{dfh \times F + dfe} = \frac{SS \text{ hyp}}{SS \text{ hyp} + SS \text{ error}}$$

Eta – squared (Wilks') =
$$1 - W^{1/s}$$

Eta – squared (Hotelling's) =
$$\frac{T/s}{T/s+1}$$

Total eta - squared = $\frac{\text{sum of squares for effect}}{\text{total (corrected) sum of squares}}$

Hay's omega - squared =
$$\frac{SS \text{ for effect } - df(effect) \times MSE}{corrected total SS + MSE}$$

$$Pillai = V/S$$

Power

Univariate Non-Centrality

$$\lambda = \frac{\text{SS hyp}}{\text{SS error}} \times dfe$$

Multivariate Non-Centrality

For a single degree of freedom hypothesis

$$\lambda = T \times dfe$$

where T is Hotelling's trace and dfe is the error degrees of freedom. Approximate power non-centrality based on Wilks' lambda is

$$\lambda = \frac{\text{Wilks' eta square}}{1 - \text{Wilks' eta square}} \times dfe(W)$$

where dfe(W) is the error df from Rao's *F*-approximation to the distribution of Wilks' lambda.

Hotelling's Trace

$$\lambda = \frac{\text{Hotelling's eta square}}{1 - \text{Hotelling's eta square}} \times dfe(H)$$

where dfe(H) is the error df from the *F*-approximation to the distribution of Hotelling's trace.

Pillai's Trace

$$\lambda = \frac{\text{Pillai's eta square}}{1 - \text{Pillai's eta square}} \times dfe(P)$$

where dfe(P) is the error df from Pillai's *F*-approximation to the distribution of Pillai's trace.

Approximate Power

Approximate power is computed using an Edgeworth Series Expansion (Mudholkar, Chaubey, and Lin, 1976).

$$r = v_1 + \lambda$$
$$b = \lambda/r$$

$$\begin{split} K_{1} &= \left\{ \left(\frac{r}{v_{1}}\right)^{1/3} \left(1 - \frac{2(b+1)}{9r} - \frac{40b^{2}}{3^{4}r^{2}} + \frac{80(1+3b+33b^{2}-77b^{3})}{3^{7}r^{3}} + \frac{176(1+4b-210b^{2}+2380b^{3}-2975b^{4})}{3^{9}r^{4}} \right) \right\} \\ &- c^{1/3} \left\{ \left(1 - \frac{2}{9v_{2}} + \frac{80}{3^{7}v_{2}^{3}} + \frac{176}{3^{9}v_{2}^{4}} \right) \right\} \\ K_{2} &= \left\{ \left(\frac{r}{v_{1}}\right)^{2/3} \left(\frac{2(b+1)}{9r} + \frac{16b^{2}}{3^{3}r^{2}} - \frac{8(13+39b+405b^{2}-1025b^{3})}{3^{7}r^{3}} + \frac{160(1+4b-87b^{2}+1168b^{3}-1544b^{4})}{3^{8}r^{4}} \right) \right\} \\ &+ c^{2/3} \left(\frac{2}{9v_{2}} - \frac{104}{3^{7}v_{2}^{3}} - \frac{160}{3^{8}v_{2}^{4}} \right) \\ K_{3} &= \left\{ \left(\frac{-r}{v_{1}} \right) \left(\frac{8b^{2}}{27r^{2}} - \frac{32(1+3b+21b^{2}-62b^{3})}{3^{6}r^{3}} - \frac{32(8+32b-177b^{2}+4550b^{3}-6625b^{4})}{3^{8}r^{4}} \right) \right\} \\ &- c \left(\frac{32}{3^{6}v_{2}^{3}} + \frac{256}{3^{8}v_{2}^{4}} \right) \end{split}$$

$$K_{4} = \left\{ \left(\frac{r}{v_{1}} \right)^{4/3} \left(\frac{16\left(1+3b+12b^{2}-44b^{3}\right)}{3^{6}r^{3}} + \frac{256\left(1+4b+6b^{2}+247b^{3}-458b^{4}\right)}{3^{8}r^{4}} \right) \right\}$$
$$-c^{4/3} \left(\frac{16}{3^{6}v_{2}^{3}} + \frac{256}{3^{8}v_{2}^{4}} \right)$$
$$Y = \frac{K_{1}}{\sqrt{K_{2}}}$$
Power = $1 - \Phi(Y) - \frac{1}{\sqrt{2\pi}} e^{-Y^{2}/2} \left\{ \frac{K_{3}}{6} (Y^{2}-1) + \frac{K_{4}}{24} (Y^{3}-3Y) \frac{K_{1}^{2}}{72} (Y^{5}-10Y^{3}+15Y) \right\}$

Joint and Individual Confidence Intervals

The intervals are calculated as follows:

Lower bound = parameter estimate $-k^*$ stderr

Upper bound = parameter estimate $+k^*$ stderr

where *stderr* is the standard error of the parameter estimate, and k is the critical constant whose value depends upon the type of confidence interval requested.

Univariate Intervals

Individual Confidence Intervals

$$k = \sqrt{\left(F(a; 1, ne)\right)}$$

where

ne is the error degrees of freedom

a is the confidence level desired

F is the percentage point of the *F* distribution

Joint Confidence Intervals

For Scheffé intervals:

$$k = \sqrt{\left(nh * F(a; nh, ne)\right)}$$

where

ne is the error degrees of freedom

nh is the hypothesis degrees of freedom

a is the confidence level desired

F is the percentage point of the F distribution

For Bonferroni intervals:

$$k = t(a/(2*nh), ne)$$

where

ne is the error degrees of freedom

nh is the hypothesis degrees of freedom

a is 100 minus the confidence level desired

F is the percentage point of Student's t distribution

Multivariate Intervals

The value of the multipliers \underline{k} for the multivariate case is computed as follows:

Let

p = the number of dependent variables nh = the hypothesis degrees of freedom ne = the error degrees of freedom a = the desired confidence level

$$s = \min(p, nh)$$
$$m = (|nh - p| - 1)/2$$

$$n = (ne - p - 1)/2$$

For Roy's largest root, define

$$c = G/(1-G)$$

where

G = GCR(a; s, m, n), the percentage point of the largest root distribution

For Wilks' lambda, define

$$t = (p * nh)^{2} - 4$$

$$b = p * p + nh * nh - 5$$

$$r = \sqrt{(t/b)} \text{ if } b \neq 0, \quad \text{else } r = 1$$

$$u = (p * nh - 2)/4$$

$$t = p * nh$$

$$b = (nh + ne - (p + nh + 1)/2) * r - 2 * u$$

$$f = (t * F(a; t, b))/b$$

$$W = (1/(1+c))^{r}$$

$$c = (1-W)/W$$

For Hotelling's trace, define

$$t = s(2m+s+1)$$

$$b = 2(sn+1)$$

$$T = (stF(a; t, b))/b$$

$$c = T$$

For Pillai's trace, define

$$t = s(\max(p, nh))$$

$$b = s(ne - p + s)$$

$$D = (F(a; t, b)t)/b$$

$$V = (sc)/(c + 1)$$

$$c = V/(1 - V)$$

Now for each of the above criteria, the critical value is

$$K = \sqrt{\left(ne * c\right)}$$

For Bonferroni intervals,

$$K = t \left(a / (2p(nh)); ne \right)$$

where t is the percentage point of the Student's t distribution.

Regression Statistics

Correlation between independent variables and predicted dependent variables

$$r(X_i, \hat{Y}_j) = \frac{r_{ij}}{R_j}$$

where

 $X_i = i$ th predictor (covariate)

 $\hat{Y}_j = j$ th predicted dependent variable

 r_{ij} = correlation between *i*th predictor and *j*th dependent variable

 R_i = multiple *R* for *j*th dependent variable across all predictors

References

- Bock, R. D. 1975. *Multivariate statistical methods in behavioral research*. New York: McGraw-Hill.
- Finn, J. D. 1977. Multivariate analysis of variance and covariance, In: *Statistical Methods for Digital Computers*, Volume 3, K. Enslein, A. Ralston, and H. Wilf, eds. New York: John Wiley & Sons, Inc.
- Golub, G. H. 1969. Matrix decompositions and statistical calculations. In: *Statistical Computation*, R. C. Milton and J. A. Nelder, eds. New York: Academic Press.
- Green, P. 1977. Analyzing multivariate data. New York: John Wiley & Sons, Inc.
- Mudholkar, G. S., Chaubrey, Y. P., and Lin, C. 1976b. Some Approximations for the noncentral F-distribution. *Technometrics*, 18:351–358.
- Muller, K. E., and Peterson, B. L. 1984. Practical methods for computing power in testing the multivariate general linear hypothesis. *Computational Statistics and Data Analysis*, 2: 143–158.
- Pillai, K. C. S. 1967. Upper percentage points of the largest root of a matrix in multivariate analysis. *Biometrika*, 54: 189–194.
- Timm, N. H. 1975. *Multivariate analysis with applications in education and psychology*. Monterey, Calif.: Brooks and Cole.