MANOVA

The program performs univariate and multivariate analysis of variance and covariance for any crossed and/or nested design.

Analysis of Variance

Notation

The experimental design model (the model with covariates will be discussed later) can be expressed as

$$
\begin{array}{ccccc}
\mathbf{Y} & = & \mathbf{W} & \beta & + \\
N \times p & & N \times m & \mathbf{E} \times p & \\
N \times p
\end{array}
$$

where

\mathbf{Y}	is the observed matrix
\mathbf{W}	is the design matrix
β	is the matrix of parameters
\mathbf{E}	is the matrix of random errors
N	is the total number of observations
p	is the number of dependent variables
m	is the number of parameters

Since the rows of \mathbf{W} will be identical for all observations in the same cell, the model is rewritten in terms of cell means as

$$
\begin{aligned}
& \mathbf{Y}_{\bullet}=\mathbf{A} \quad \beta+\mathbf{E}_{\bullet} \\
& g \times p \quad g \times m \quad m \times p \quad g \times p
\end{aligned}
$$

where g is the number of cells and \mathbf{Y}_{\bullet} and \mathbf{E}_{\bullet} denote matrices of means.

Reparameterization

The reparameterization of the model (Bock, 1975; Finn, 1977) is done by factoring A into

\mathbf{A}	$=$	\mathbf{K}
$g \times m$		\mathbf{L}
$g \times r$	$r \times m$	

\mathbf{K} forms a column basis for the model and has rank r. \mathbf{L} contains the coefficients of linear combinations of parameters and rank r. The contrast matrix \mathbf{L} can be specified by the user. Given \mathbf{L}, \mathbf{K} can be obtained from $\mathbf{A L} \mathbf{L}^{\prime}\left(\mathbf{L} \mathbf{L}^{\prime}\right)^{-1}$. For designs with more than one factor, \mathbf{L}, and hence \mathbf{K}, can be constructed from Kronecker products of contrast matrices of each factor. After reparameterization, the model can be expressed as

$$
\begin{aligned}
\mathbf{Y} & =\mathbf{A} \boldsymbol{\beta}+\mathbf{E} \\
g \times p & \\
& =\mathbf{K}(\mathbf{L} \beta)+\mathbf{E} \\
& =\begin{array}{l}
\mathbf{K} \\
g \times r
\end{array} \quad \begin{array}{r}
r \times p
\end{array}+\quad \begin{array}{l}
\mathbf{E} \\
\end{array}
\end{aligned}
$$

Parameter Estimation

An orthogonal decomposition (Golub, 1969) is performed on \mathbf{K}. That is, \mathbf{K} is represented as

$$
\mathbf{K}=\mathbf{Q R}
$$

where \mathbf{Q} is an orthonormal matrix such that $\mathbf{Q}^{\prime} \mathbf{D Q}=\mathbf{I} ; \mathbf{D}$ is the diagonal matrix of cell frequencies; and \mathbf{R} is an upper-triangular matrix.

The normal equation of the model is
$\left(\mathbf{K}^{\prime} \mathbf{D K}\right) \hat{\theta}=\mathbf{K}^{\prime} \mathbf{D Y}$
or
$\mathbf{R} \hat{\boldsymbol{\theta}}=\mathbf{Q}^{\prime} \mathbf{D Y}=\mathbf{U}$

This triangular system can therefore be solved forming the cross-product matrix.

Significance Tests

The sum of squares and cross-products (SSCP) matrix due to the model is
$\hat{\theta}^{\prime} \mathbf{R}^{\prime} \mathbf{R} \hat{\boldsymbol{\theta}}=\mathbf{U}^{\prime} \mathbf{U}$
and since $\operatorname{var}(\mathbf{U})=\mathbf{R} \operatorname{var}(\theta) \mathbf{R}^{\prime}=\mathbf{I} \otimes \Sigma$ the SSCP matrix of each individual effect can be obtained from the components of
$\mathbf{U}^{\prime} \mathbf{U}=\left(U_{1}, \ldots, U_{k}\right)\left(\begin{array}{c}U_{1}^{\prime} \\ \vdots \\ U_{k}^{\prime}\end{array}\right)=U_{1} U_{1}^{\prime}+\ldots+U_{k} U_{k}^{\prime}$

Therefore the hypothesis SSCP matrix for testing $H_{o}: \theta_{h}=\mathbf{0}$ is

$$
\underset{p \times p}{\mathbf{S}_{H}}=\underset{p \times n_{h}}{\mathbf{U}_{h}} \quad \underset{n_{h} \times p}{\mathbf{U}_{h}^{\prime}}
$$

The default error SSCP matrix is the pooled within-groups $\mathbf{S S C P}$:
$\mathbf{S}_{E}=\mathbf{Y}^{\prime} \mathbf{Y}-\mathbf{Y}^{\prime} \mathbf{D} \mathbf{Y}$
if the pooled within-groups SSCP matrix does not exist, the residual SSCP matrix is used:
$\mathbf{S}_{E}=\mathbf{Y}^{\prime} \mathbf{Y}-\mathbf{U}^{\prime} \mathbf{U}$

Four test criteria are available. Each of these statistics is a function of the nonzero eigenvalues λ_{i} of the matrix $\mathbf{S}_{H} \mathbf{S}_{E}^{-1}$. The number of nonzero eigenvalues, s, is equal to $\min \left(p, n_{h}\right)$.

Pillai's Criterion (Pillai, 1967)

$$
T=\sum_{i=1}^{s} \lambda_{i} /\left(1+\lambda_{i}\right)
$$

Approximate $F=\left(n_{e}-p-s\right) T /(b(s-T))$ with b_{s} and $s\left(n_{e}-p+s\right)$ degrees of freedom, where

$$
\begin{aligned}
& n_{e}=\text { degrees of freedom for } S_{E} \\
& b=\max \left(p, n_{h}\right)
\end{aligned}
$$

Hotelling's Trace

$$
T=\sum_{i=1}^{s} \lambda_{i}
$$

Approximate $F=2(s n+1) T /\left(s^{2}(2 m+s+1)\right)$ with $s(2 m+s+1)$ and $2(s n+1)$ degrees of freedom where

$$
\begin{aligned}
& m=\left(\left|n_{h}-p\right|-1\right) / 2 \\
& n=\left(n_{e}-p-1\right) / 2
\end{aligned}
$$

Wilks' Lambda (Rao, 1973)

$$
T=\prod_{i=1}^{s} 1 /\left(1+\lambda_{i}\right)
$$

Approximate $F=\left(1-T^{1 / l}\right)\left(M l+1-n_{h} p / 2\right) /\left(T^{1 / l} n_{h} p\right)$ with $n_{h} p$
and $\left(M l+1-n_{h} p / 2\right)$ degrees of freedom, where

$$
\begin{aligned}
& l^{2}=\left(p^{2} n_{h}^{2}-4\right) /\left(p^{2}+n_{h}^{2}-5\right) \\
& M=n_{e}-\left(p+1-n_{h}\right) / 2
\end{aligned}
$$

Roy's Largest Root

$$
T=\lambda_{1} /\left(1+\lambda_{1}\right)
$$

Stepdown FTests

The stepdown F statistics are

$$
F_{i}=\frac{\left(t^{2}-t_{e}^{2}\right) / n_{h}}{t_{e}^{2} /\left(n_{e}-i+1\right)}
$$

with n_{h} and $n_{e}-i+1$ degrees of freedom, where t_{e} and t are the i th diagonal element of \mathbf{T}_{E} and \mathbf{T} respectively, and where
$\mathbf{S}_{E}=\mathbf{T}_{E}^{\prime} \mathbf{T}_{E}$
$\mathbf{S}_{E}+\mathbf{S}_{H}=\mathbf{T}^{\prime} \mathbf{T}$

Design Matrix

K

Estimated Cell Means

$\hat{\mathbf{Y}}_{.}=\mathrm{K} \hat{\theta}$

6 MANOVA

Analysis of Covariance

Model

$$
\begin{array}{cccccccc}
\mathbf{Y _ { \bullet }} & = & \mathbf{K} & \theta & + & \mathbf{X} & \mathbf{B} & + \\
g \times p & & \mathbf{E}_{\bullet} \\
g \times r & r \times p
\end{array}
$$

where g, p, and r are as before and q is the number of covariates, and \mathbf{X}_{\bullet} is the mean of \mathbf{X}, the matrix of covariates.

Parameter Estimation and Significance Tests

For purposes of parameter estimation, no initial distinction is made between dependent variables and covariates.

Let

$$
\begin{aligned}
& \mathbf{V}=(\mathbf{Y} \mathbf{X}) \\
& \mathbf{V}_{\bullet}=\left(\mathbf{Y}_{\bullet} \mathbf{X}_{\bullet}\right)
\end{aligned}
$$

The normal equation of the model

$$
\begin{array}{cccccc}
\mathbf{V}_{\bullet} & = & \mathbf{K} & \theta & + & \mathbf{\mathbf { E } _ { \bullet }} \\
g \times(p+q) & & g \times r & r \times(p+q) & & g \times(p+q)
\end{array}
$$

is
$\left(\mathbf{K}^{\prime} \mathbf{D K}\right) \hat{\theta}=\mathbf{K}^{\prime} \mathbf{D Y}$.
or
$\mathbf{R} \hat{\boldsymbol{\theta}}=\mathbf{Q}^{\prime} \mathbf{D} \mathbf{V}_{\bullet}=\mathbf{U}$
or

$$
\begin{gathered}
\hat{\theta} \\
r \times(p+q)
\end{gathered} \quad=\begin{array}{cc}
\left(\hat{\theta}_{Y}\right. & \left.\hat{\theta}_{X}\right) \\
r \times p & r \times q
\end{array}
$$

If \mathbf{S}_{E} and \mathbf{S}_{T} are partitioned as
$\mathbf{S}_{E}=\left(\begin{array}{ll}\mathbf{S}_{E}^{(Y)} & \mathbf{S}_{E}^{(Y X)} \\ \mathbf{S}_{E}^{(X Y)} & \mathbf{S}_{E}^{(X)}\end{array}\right)$
$\mathbf{S}_{T}=\left(\begin{array}{ll}\mathbf{S}_{T}^{(Y)} & \mathbf{S}_{T}^{(Y X)} \\ \mathbf{S}_{T}^{(X Y)} & \mathbf{S}_{T}^{(X)}\end{array}\right)$
then the adjusted error SSCP matrix is
$\mathbf{S}_{E}^{*}=\mathbf{S}_{E}^{(Y)}-\mathbf{S}_{E}^{(Y X)}\left(\mathbf{S}_{E}^{(X)}\right)^{-1} \mathbf{S}_{E}^{(X Y)}$
and the adjusted total SSCP matrix is
$\mathbf{S}_{T}^{*}=\mathbf{S}_{T}^{(Y)}-\mathbf{S}_{T}^{(Y X)}\left(\mathbf{S}_{T}^{(X)}\right)^{-1} \mathbf{S}_{T}^{(X Y)}$

The adjusted hypothesis SSCP matrix is then
$\mathbf{S}_{H}^{*}=\mathbf{S}_{T}^{*}-\mathbf{S}_{E}^{*}$

The estimate of \mathbf{B} is
$\hat{\mathbf{B}}=\left(\mathbf{S}_{T}^{(X)}\right)^{-1} \mathbf{S}_{T}^{(X Y)}$

The adjusted parameter estimates are
$\hat{\theta}^{*}=\hat{\theta}_{Y}-\hat{\theta}_{X} \hat{\mathbf{B}}$

The adjusted cell means are
$\hat{\mathbf{Y}}^{*}=\mathbf{K} \hat{\boldsymbol{\theta}}{ }^{*}$

Repeated Measures

Notation

The following notation is used within this section unless otherwise stated:

k	Degrees of freedom for the within-subject factor SSE
N	Orthonormal transformed error matrix
$n d f b$	Total number of observations
	Degrees of freedom for all between-subject factors (including the constant)

Statistics

Greenhouse-Geisser Epsilon

$$
\text { ggeps }=\frac{\left(\operatorname{tr}\left(\mathbf{S S E}^{*}\right)\right)^{2}}{k \times \operatorname{tr}\left(\left(\mathbf{S S E}^{*}\right)^{2}\right)}
$$

Huynh-Feldt Epsilon
hfeps $=\frac{N \times k \times \text { ggeps }-2}{k \times(N-\text { ndfb })-k^{2} \times \text { ggeps }}$
if hfeps >1, set hfeps $=1$

Lower bound Epsilon

$$
\text { lbeps }=\frac{1}{k}
$$

Effect Size

Notation

The following notation is used within this section unless otherwise stated:

$d f h$	Hypothesis degrees of freedom
$d f e$	Error degrees of freedom
F	F test
W	Wilks' lambda
s	Number of non-zero eigenvalues of $\mathbf{H E}^{-1}$
T	Hotelling's trace
V	Pillai's trace

Statistic

Partial eta-squared $=\frac{d f h \times F}{d f h \times F+d f e}=\frac{\text { SS hyp }}{\text { SS hyp }+ \text { SS error }}$

Eta $-\operatorname{squared}($ Wilks' $)=1-W^{1 / s}$

Eta $-\operatorname{squared}($ Hotelling's $)=\frac{T / s}{T / s+1}$

Total eta - squared $=\frac{\text { sum of squares for effect }}{\text { total (corrected) sum of squares }}$

$$
\text { Hay's omega }- \text { squared }=\frac{\text { SS for effect }-\mathrm{df}(\mathrm{effect}) \times \mathrm{MSE}}{\text { corrected total } \mathrm{SS}+\mathrm{MSE}}
$$

$$
\text { Pillai }=V / S
$$

Power

Univariate Non-Centrality

$$
\lambda=\frac{\text { SS hyp }}{\text { SS error }} \times d f e
$$

Multivariate Non-Centrality

For a single degree of freedom hypothesis

$$
\lambda=T \times d f e
$$

where T is Hotelling's trace and $d f e$ is the error degrees of freedom. Approximate power non-centrality based on Wilks' lambda is

$$
\lambda=\frac{\text { Wilks' eta square }}{1-\text { Wilks' eta square }} \times d f e(W)
$$

where $d f e(W)$ is the error $d f$ from Rao's F-approximation to the distribution of Wilks' lambda.

Hotelling's Trace

$$
\lambda=\frac{\text { Hotelling's eta square }}{1-\text { Hotelling's eta square }} \times d f e(H)
$$

where $d f e(H)$ is the error $d f$ from the F-approximation to the distribution of Hotelling's trace.

Pillai's Trace

$$
\lambda=\frac{\text { Pillai's eta square }}{1-\text { Pillai's eta square }} \times d f e(P)
$$

where $d f e(P)$ is the error $d f$ from Pillai's F-approximation to the distribution of Pillai's trace.

Approximate Power

Approximate power is computed using an Edgeworth Series Expansion (Mudholkar, Chaubey, and Lin, 1976).

$$
\begin{aligned}
& r=v_{1}+\lambda \\
& b=\lambda / r
\end{aligned}
$$

$$
K_{1}=\left\{\left(\frac{r}{v_{1}}\right)^{1 / 3}\left(1-\frac{2(b+1)}{9 r}-\frac{40 b^{2}}{3^{4} r^{2}}+\frac{80\left(1+3 b+33 b^{2}-77 b^{3}\right)}{3^{7} r^{3}}+\frac{176\left(1+4 b-210 b^{2}+2380 b^{3}-2975 b^{4}\right)}{3^{9} r^{4}}\right)\right\}
$$

$$
-c^{1 / 3}\left\{\left(1-\frac{2}{9 v_{2}}+\frac{80}{3^{7} v_{2}^{3}}+\frac{176}{3^{9} v_{2}^{4}}\right)\right\}
$$

$$
K_{2}=\left\{\left(\frac{r}{v_{1}}\right)^{2 / 3}\left(\frac{2(b+1)}{9 r}+\frac{16 b^{2}}{3^{3} r^{2}}-\frac{8\left(13+39 b+405 b^{2}-1025 b^{3}\right)}{3^{7} r^{3}}+\frac{160\left(1+4 b-87 b^{2}+1168 b^{3}-1544 b^{4}\right)}{3^{8} r^{4}}\right)\right\}
$$

$$
+c^{2 / 3}\left(\frac{2}{9 v_{2}}-\frac{104}{3^{7} v_{2}^{3}}-\frac{160}{3^{8} v_{2}^{4}}\right)
$$

$$
K_{3}=\left\{\left(\frac{-r}{v_{1}}\right)\left(\frac{8 b^{2}}{27 r^{2}}-\frac{32\left(1+3 b+21 b^{2}-62 b^{3}\right)}{3^{6} r^{3}}-\frac{32\left(8+32 b-177 b^{2}+4550 b^{3}-6625 b^{4}\right)}{3^{8} r^{4}}\right)\right\}
$$

$$
-c\left(\frac{32}{3^{6} v_{2}^{3}}+\frac{256}{3^{8} v_{2}^{4}}\right)
$$

$$
\begin{aligned}
& K_{4}=\left\{\left(\frac{r}{v_{1}}\right)^{4 / 3}\left(\frac{16\left(1+3 b+12 b^{2}-44 b^{3}\right)}{3^{6} r^{3}}+\frac{256\left(1+4 b+6 b^{2}+247 b^{3}-458 b^{4}\right)}{3^{8} r^{4}}\right)\right\} \\
&-c^{4 / 3}\left(\frac{16}{3^{6} v_{2}^{3}}+\frac{256}{3^{8} v_{2}^{4}}\right) \\
& Y= \frac{K_{1}}{\sqrt{K_{2}}} \\
& \text { Power }=1-\Phi(Y)-\frac{1}{\sqrt{2 \pi}} e^{-Y^{2} / 2}\left\{\frac{K_{3}}{6}\left(Y^{2}-1\right)+\frac{K_{4}}{24}\left(Y^{3}-3 Y\right) \frac{K_{1}^{2}}{72}\left(Y^{5}-10 Y^{3}+15 Y\right)\right\}
\end{aligned}
$$

Joint and Individual Confidence Intervals

The intervals are calculated as follows:
Lower bound $=$ parameter estimate $-k^{*}$ stderr
Upper bound $=$ parameter estimate $+k^{*}$ stderr
where stderr is the standard error of the parameter estimate, and k is the critical constant whose value depends upon the type of confidence interval requested.

Univariate Intervals

Individual Confidence Intervals

$$
k=\sqrt{(F(a ; 1, n e))}
$$

where
$n e$ is the error degrees of freedom
a is the confidence level desired
F is the percentage point of the F distribution

Joint Confidence Intervals

For Scheffé intervals:
$k=\sqrt{(n h * F(a ; n h, n e))}$
where
$n e$ is the error degrees of freedom
$n h$ is the hypothesis degrees of freedom
a is the confidence level desired
F is the percentage point of the F distribution

For Bonferroni intervals:
$k=t(a /(2 * n h), n e)$
where
$n e$ is the error degrees of freedom
$n h$ is the hypothesis degrees of freedom
a is 100 minus the confidence level desired
F is the percentage point of Student's t distribution

Multivariate Intervals

The value of the multipliers \underline{k} for the multivariate case is computed as follows:
Let
$p=$ the number of dependent variables
$n h=$ the hypothesis degrees of freedom
$n e=$ the error degrees of freedom
$a=$ the desired confidence level
$s=\min (p, n h)$
$m=(|n h-p|-1) / 2$
$n=(n e-p-1) / 2$

For Roy's largest root, define
$c=G /(1-G)$
where
$\mathrm{G}=\operatorname{GCR}(a ; s, m, n)$, the percentage point of the largest root distribution

For Wilks' lambda, define

$$
\begin{aligned}
& t=(p * n h)^{2}-4 \\
& b=p * p+n h * n h-5 \\
& r=\sqrt{(t / b)} \text { if } b \neq 0, \quad \text { else } r=1 \\
& u=(p * n h-2) / 4 \\
& t=p * n h \\
& b=(n h+n e-(p+n h+1) / 2) * r-2 * u \\
& f=(t * F(a ; t, b)) / b \\
& W=(1 /(1+c))^{r} \\
& c=(1-W) / W
\end{aligned}
$$

For Hotelling's trace, define

$$
\begin{aligned}
& t=s(2 m+s+1) \\
& b=2(s n+1) \\
& T=(s t F(a ; t, b)) / b \\
& c=T
\end{aligned}
$$

For Pillai's trace, define
$t=s(\max (p, n h))$
$b=s(n e-p+s)$
$D=(F(a ; t, b) t) / b$
$V=(s c) /(c+1)$
$c=V /(1-V)$

Now for each of the above criteria, the critical value is

$$
K=\sqrt{(n e * c)}
$$

For Bonferroni intervals,

$$
K=t(a /(2 p(n h)) ; n e)
$$

where t is the percentage point of the Student's t distribution.

Regression Statistics

Correlation between independent variables and predicted dependent variables
$r\left(X_{i}, \hat{Y}_{j}\right)=\frac{r_{i j}}{R_{j}}$
where
$X_{i}=i$ th predictor (covariate)
$\hat{Y}_{j}=j$ th predicted dependent variable
$r_{i j}=$ correlation between i th predictor and j th dependent variable
$R_{j}=$ multiple R for j th dependent variable across all predictors

References

Bock, R. D. 1975. Multivariate statistical methods in behavioral research. New York: McGraw-Hill.

Finn, J. D. 1977. Multivariate analysis of variance and covariance, In: Statistical Methods for Digital Computers, Volume 3, K. Enslein, A. Ralston, and H. Wilf, eds. New York: John Wiley \& Sons, Inc.

Golub, G. H. 1969. Matrix decompositions and statistical calculations. In: Statistical Computation, R. C. Milton and J. A. Nelder, eds. New York: Academic Press.

Green, P. 1977. Analyzing multivariate data. New York: John Wiley \& Sons, Inc.
Mudholkar, G. S., Chaubrey, Y. P., and Lin, C. 1976b. Some Approximations for the noncentral F-distribution. Technometrics, 18:351-358.

Muller, K. E., and Peterson, B. L. 1984. Practical methods for computing power in testing the multivariate general linear hypothesis. Computational Statistics and Data Analysis, 2: 143-158.

Pillai, K. C. S. 1967. Upper percentage points of the largest root of a matrix in multivariate analysis. Biometrika, 54: 189-194.

Timm, N. H. 1975. Multivariate analysis with applications in education and psychology. Monterey, Calif.: Brooks and Cole.

