LOGLINEAR

The LOGLINEAR procedure models cell frequencies using the multinomial response model and produces maximum likelihood estimates of parameters by the Newton-Raphson method. The contingency tables are converted to two-way $I \times J$ tables, with I and J being the dimensions of the independent and dependent categorical variables respectively.

Notation

The following notation is used throughout this chapter unless otherwise stated:

$$
\begin{array}{ll}
n_{i j} & \text { Observed frequency of cell }(i, j) \\
I & \text { Dimension of the row variable, associated with independent variables } \\
J & \text { Dimension of the column variable, associated with dependent variables } \\
w_{i j} & \text { Weight of cell }(i, j) \\
\beta_{k} & \text { Coefficients in the loglinear model; } 1 \leq k \leq p \\
\beta_{k}^{(l)} & \text { Estimate of } \beta_{k} \text { at the } l \text { th iteration } \\
\hat{\beta}_{k} & \text { Final estimate of } \beta_{k} \\
m_{i j} & \text { Expected values of } n_{i j} \\
m_{i j}^{(l)} & \text { Estimate of } m_{i j} \text { at the } l \text { th iteration } \\
\hat{m}_{i j} & \text { Estimate of } m_{i j} \text { at the final iteration } \\
\hat{M}_{i .} & \sum_{j=1}^{J} \hat{m}_{i j} \\
\hat{M}_{. j} & \sum_{i=1}^{I} \hat{m}_{i j} \\
M & \sum_{j=1}^{J} \sum_{i=1}^{I} \hat{m}_{i j}
\end{array}
$$

Model

In the general LOGLINEAR model, the logarithms of the cell frequencies are formulated as a linear function of the parameters. The actual form of the model is determined by the contrast and the effects specified. The model has the form

$$
y_{i j} \equiv \ln \left(\frac{m_{i j}}{w_{i j}}\right)=\lambda_{i}+\sum_{k=1}^{p} \beta_{k} x_{i j k} \quad 1 \leq i \leq I, 1 \leq j \leq J
$$

where λ_{i} are chosen so that $\sum_{j} m_{i j}=\sum_{j} n_{i j}$, and $x_{i j k}$ are the independent variables in the linear model.

Contrasts

The values of $x_{i j k}$ are determined by the types of contrasts specified in the procedure. The default contrast is DEVIATION.

Computational Algorithm

To estimate the coefficients, a series of weighted regressions is used for iterative calculations. The iterative process is outlined (also see Haberman, 1978) as follows:
(1) Obtain initial approximations $y_{i j}^{(0)}$ and use them to obtain $\beta_{k}^{(0)}$.
(2) Obtain the next approximations $y_{i j}^{(1)}$ and $m_{i j}^{(1)}$.
(3) Use the updated $y_{i j}^{(1)}$ in (2) to obtain the next approximations $\beta_{k}^{(1)}$.
(4) Repeat steps 2 and 3 , replacing $\beta_{k}^{(l)}$ with $\beta_{k}^{(l+1)}$. Continue repeating this until convergence is achieved.

The computations begin with selection of initial approximations $m_{i j}^{(0)}=n_{i j}+\delta$ for $m_{i j}$. The default for δ is 0.5 . If the model is saturated, δ is added to $n_{i j}$
permanently. So, for a saturated model, the observed counts $n_{i j}$ are increased by δ. If the model is not saturated, δ is added to $n_{i j}$ only at the initial step and is then subtracted at the second step.

The maximum likelihood estimates $\hat{\beta}_{k}$ of β_{k} are found by the NewtonRaphson method. Let $\beta^{(l)}$ be the column vector containing the ML estimates at the lth iteration; then
$\beta^{(0)}=\left(C^{(0)}\right)^{-1} a^{(0)}$
$\beta^{(l+1)}=\beta^{(l)}+\left(C^{(l+1)}\right)^{-1} a^{(l+1)}, \quad$ for $l \geq 0$,
where the (k, l)-element of $C^{(l)}$ is
$c_{k l}^{(l)}=\sum_{j=1}^{J} \sum_{i=1}^{I}\left(x_{i j k}-\theta_{i k}^{(l)}\right)\left(x_{i j l}-\theta_{i l}^{(l)}\right) m_{i j}^{(l)}$
with

$$
\theta_{i k}^{(l)}=\frac{\sum_{j} m_{i j}^{(l)} x_{i j k}}{\sum_{j} m_{i j}^{(l)}} \quad \text { for } 1 \leq i \leq I, 1 \leq k \leq p
$$

and the k th element of $a^{(0)}$ is

$$
a_{k}^{(0)}=\sum_{i, j} x_{i j k} y_{i j}^{(0)} m_{i j}^{(0)}-\frac{\left(\sum_{i, j} x_{i j k} m_{i j}^{(0)}\right)\left(\sum_{i, j} y_{i j} m_{i j}^{(0)}\right)}{\sum_{i, j} m_{i j}^{(0)}}
$$

and the k th element of $a^{(l)}$ is
$a_{k}^{(l)}=\sum_{i, j} x_{i j k}\left(n_{i j}-m_{i j}^{(l)}\right) \quad$ for $l \geq 1$.

The estimated cell means are updated by
$m_{i j}^{(l)}=\frac{T w_{i j} \exp \left(v_{i j}^{(l-1)}\right)}{\sum_{i, j} w_{i j} \exp \left(v_{i j}^{(l-1)}\right)} \quad$ for $l \geq 1$
where
$T= \begin{cases}\sum_{i, j}\left(n_{i j}+\delta\right) & \text { if the model is saturated } \\ \sum_{i, j}\left(n_{i j}\right) & \text { otherwise }\end{cases}$
and
$v_{i j}^{(l-1)}=\sum_{k=1}^{p} x_{i j k} \beta_{k}^{(l-1)}$

The iterative process stops when either the maximum number of iterations (default=20) is reached or
$\max _{i, j}\left|v_{i j}^{(l+1)}-v_{i j}^{(l)}\right|<\varepsilon \quad$ (with default $\left.\varepsilon=0.001\right)$.

Computed Statistics

Correlation Matrix of Parameter Estimates

Let C be the final $C^{(l)}$ and $H=C^{-1}$. The correlation between $\hat{\beta}_{i}$ and $\hat{\beta}_{j}$ is computed as

$$
\frac{h_{i j}}{\sqrt{h_{i i} h_{i j}}}
$$

Goodness of Fit
The Pearson chi-square is computed as

$$
\chi^{2}=\sum_{i, j} \frac{\left(n_{i j}-\hat{m}_{i j}\right)^{2}}{\hat{m}_{i j}}
$$

and the likelihood-ratio chi-square is

$$
L=2 \sum_{i, j} n_{i j} \ln \left(\frac{n_{i j}}{\hat{m}_{i j}}\right)
$$

The degrees of freedom are $I \times(J-1)-p-E$, where E is the number of cells with $n_{i j} w_{i j} \leq 0$ and p is the number of coefficients in the model.

Residuals

Residuals

$$
\text { residual }_{i j}=n_{i j}-\hat{m}_{i j}
$$

Standardized Residuals

$$
\text { standard residual }_{i j}=\frac{n_{i j}-\hat{m}_{i j}}{\sqrt{\hat{m}_{i j}}}
$$

Adjusted Residuals

$$
\text { adjusted residual }_{i j}=\frac{n_{i j}-\hat{m}_{i j}}{\sqrt{s_{i j}}}
$$

where

$$
\begin{aligned}
& s_{i j}=\hat{m}_{i j}\left[1-\frac{\hat{m}_{i j}}{T}-\hat{m}_{i j} \sum_{k, l}\left(x_{i j k}-\hat{\theta}_{i k}\right)\left(x_{i j l}-\hat{\theta}_{i l}\right) h_{k l}\right] \\
& \hat{\theta}_{i k}=\frac{\sum_{j} \hat{m}_{i j} x_{i j k}}{\sum_{j} \hat{m}_{i j}}
\end{aligned}
$$

Generalized Residuals

Consider a linear combination of the cell counts
$\sum_{i, j} d_{i j} n_{i j}$

The estimated expected value is computed as

$$
\sum_{i, j} d_{i j} \hat{m}_{i j}
$$

Two generalized residuals are computed.

Residuals

$$
\text { residual }=\sum_{i, j} d_{i j} n_{i j}-\sum_{i, j} d_{i j} \hat{m}_{i j}
$$

Adjusted Residuals

$$
\text { adjusted residual }=\frac{\sum_{i, j} d_{i j} n_{i j}-\sum_{i, j} d_{i j} \hat{m}_{i j}}{\sqrt{C_{1}}}
$$

where

$$
\begin{aligned}
& C_{1}=\sum_{i, j} d_{i j}^{2} \hat{m}_{i j}-\sum_{i}\left[\frac{\left(\sum_{j} \hat{m}_{i j} d_{i j}\right)^{2}}{\sum_{j} \hat{m}_{i j}}\right]-\sum_{k=1}^{p} \sum_{l=1}^{p} f_{k} f_{l} h_{k l} \\
& f_{k}=\sum_{i, j} \hat{m}_{i j} d_{i j}\left(x_{i j k}-\hat{\theta}_{i k}\right)
\end{aligned}
$$

8 LOGLINEAR

Analysis of Dispersion

Following Haberman (1982), define
$S(Y)=$ Total dispersion
$S(Y \mid X)=$ Conditional dispersion
$S(X)=$ Dispersion due to fit
$R=\frac{S(X)}{S(Y)}=$ Measure of association

For entropy

$$
\begin{aligned}
& S(Y)=-M \sum_{j=1}^{J} \hat{p}_{j} \ln \left(\hat{p}_{j}\right) \\
& S(Y \mid X)=-\sum_{i=1}^{I} \hat{M}_{i \bullet} \sum_{j=1}^{J} \hat{p}_{i \mid j} \ln \left(\hat{p}_{i \mid j}\right) \\
& S(X)=S(Y)-S(Y \mid X)
\end{aligned}
$$

For concentration

$$
\begin{aligned}
& S(Y)=M \times\left(1-\sum_{j=1}^{J} \hat{p}_{j}^{2}\right) \\
& S(Y \mid X)=\sum_{i=1}^{I} \hat{M}_{i \bullet}\left(1-\sum_{j=1}^{J} \hat{p}_{i \mid j}^{2}\right) \\
& S(X)=S(Y)-S(Y \mid X)
\end{aligned}
$$

where
$\hat{p}_{j}=\frac{\hat{M}_{\bullet j}}{M}$
$\hat{p}_{j \mid i}=\frac{\hat{m}_{i j}}{\hat{M}_{i \bullet}}$

Haberman (1977) shows that, under the hypothesis that Y and X are independent,
$\psi_{E}=2 S(X) \rightarrow \chi_{I(J-1)}^{2}$
in the case of entropy, and

$$
\psi_{C}=\frac{M(J-1) S(X)}{S(Y)} \rightarrow \chi_{I-1}^{2}
$$

in the case of concentration.

References

Haberman, S. J. 1977. Maximum likelihood estimates in exponential response models. Annals of Statistics, 5: 815-841.

Haberman, S. J. 1978. Analysis of qualitative data, Volume 1. New York: Academic Press.

Haberman, S. J. 1982. Analysis of dispersion of multinomial responses. Journal of the American Statistical Association, 77: 568-580.

