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GENLOG 
Multinomial Loglinear and Logit Models 

This chapter describes the algorithms used to calculate maximum-likelihood 
estimates for the multinomial loglinear model and the multinomial logit model. 
This algorithm is applicable only to aggregated data. 

Notation 
The following notation is used throughout this chapter unless otherwise stated: 

A Generic categorical independent (explanatory) variable. Its categories are 
indexed by an array of integers. 

B Generic categorical dependent (response) variable. Its categories are 
indexed by an array of integers. 

r Number of categories of B.   

c Number of categories of A.   

p Number of nonredundant (nonaliased) parameters. 

i Generic index for the category of B.   

j Generic index for the categories of A.  

k Generic index for the parameter.   

nij  Observed count in the ith response of B and the jth setting of A.  

N j  Marginal total count at the jth setting of A. It is equal to 

nij
i

r

=∑ 1
. 

N Total observed count. It is equal to 

nij
i

r

j

c

== ∑∑ 11
.  

mij  Expected count. 
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π ij  Probability of having an observation in the ith response of B and the jth 

setting of A. 0 1 1
1

≤ ≤ =
=∑∑π πij ij

i

r

j

c
  

=1
and . 

zij  Cell structure value. 

α j  jth normalizing constant. 

β k  kth nonredundant parameter. 

β  A vector of β β1, ,K p3 8′ . 

xijk  An element in the ith row and the kth column of the design matrix for the j 
setting. 

The same notation is used for both loglinear and logit models so that the methods 
are presented in a unified way. Conceptually, one can consider a loglinear model as 
a special case of a logit model where the explanatory variable has only one level 
(that is, c = 1). 

Components of the Model 
There are two components in a loglinear model: the random component and the 
systematic component.  

Random Component 

The random component describes the joint distribution of the counts.  

• The counts n nj rj1 , ,K= B at the jth setting of A have the multinomial 

N j j rj, , ,π π1 K3 8  distribution. 

• The counts n nij i j and ′ ′  are independent if j j≠ ′ . 
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• The joint probability distribution of nij= B is the product of these c independent 

multinomial distributions. The probability density function is  

N

n

j

ij
i

r ij
n

i

r

j

c

ij
!

!
=

== ∏ ∏∏
�

�
���

�

�
���

1
11

π      (1) 

• The expected count is E n m Nij ij j ij3 8 = = π . 

• The covariance is 

cov
if

if
n n

N j j

j j
ij i j

j ij ii i j, ′ ′
′ ′= − = ′

≠ ′

%&K'K4 9 4 9π δ π
0

 

where δ δab aba b a b= = = ≠1 if  and  if 0 . 

Systematic Component 

The systematic component describes the linkage function between the expected 
counts and the parameters. The expected counts are themselves functions of other 
parameters. Explicitly, for i r= 1, ,K  and j c= 1, ,K , 

m
z e z

z
ij

ij
v

ij

ij

j ij

= >
≤

%
&K
'K

+α
if 

if 

0

0 0
 

where  

v xij ijk k

k

p

=
=

∑ β
1

 

SPSS does not consider α1 to α c  as parameters, but as normalizing constants. 
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Normalizing Constants 

α j
j

ij
v

i

r

N

z e
j c

ij

=

�

�
���

�

�
���

=

=∑
log , ,

1

1K  (2) 

Cell Structure Values 

The cell structure values play two roles in SPSS loglinear procedures, depending on 

their signs. If zij > 0 , it is a usual weight for the corresponding cell and log zij3 8 is 

sometimes called the offset. If zij ≤ 0 , a structural zero is imposed on the cell 

B i A j= =,0 5 . Contingency tables containing at least one structural zero are called 

incomplete tables. If n zij ij= >0 0 but , the cell B i A j= =,0 5  contains a 

sampling zero. Although SPSS still considers a structural zero part of the 

contingency table, it is not used in fitting the model. Cellwise statistics are not 

computed for structural zeros. 

Maximum-Likelihood Estimation 
The multinomial log-likelihood is 

L L n mp ij ij

i

r

j

c

β β β1 6 3 8 3 8= = +
==
∑∑1

11

, , logK constant  (3) 

Likelihood Equations 

It can be shown that 

∂
∂β

L
n m x

k
ij ij

i

r

j

c

ijk= −
==
∑∑ 3 8

11

       for k p= 1, ,K  
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Let g β β β1 6 1 6 1 63 8= ′g gp1 , ,K be the p +10 5  gradient vector with 

g
L

k
k

β ∂
∂β

1 6 =  

The maximum-likelihood estimates $ $ , , $β β β= 1 K p

t
4 9  are regarded as a solution to 

the vector of likelihood equations: 

g β1 6 = 0   (4) 

Hessian Matrix 

The likelihood equations are nonlinear functions of β. Solving them for $β  requires 
an iterative method. The Newton-Raphson method is used. It can be shown that 

∂
∂β ∂β

θ θ
2

11

L
m x x

k t
ij ijk jk ijl jl

i

r

j

c

= − − −
==
∑∑ 3 83 8  

where 

θ jk
j

ij ijk

i

r

N
m x j c k p= = =

=
∑1

1 1
1

, , , ,K K and  (5) 

Let H β1 6  be the p p×  information matrix, where −H β1 6  is the Hessian matrix of 

(3). The elements of H β1 6  are 

h
L

k p l pkl
k l

β ∂
∂β ∂β

1 6 = − = =
2

1 1, , , ,K K and  (6) 

Note: H β1 6  is a symmetric positive-definite matrix. The asymptotic covariance 

matrix of $β  is estimated by H−1 β1 6. 
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Newton-Raphson Method 

Let β s0 5  denote the sth approximation for the solution to (4). By the Newton-
Raphson method, 

β β β βs s s s+ −= +1 10 5 0 5 0 5 0 54 9 4 9H g  

Define q H gβ β β β1 6 1 6 1 6= + . Using (5) again, the kth element of q β1 6  is  

q xk ij ijk jk

i

r

j

c

β η θ1 6 3 8= −
==
∑∑

11

 (7) 

where 

ηij
ij ij ij ij ij ijm v n m z m= + − > >%&K'K

3 8 if  and 

otherwise

0 0

0
 

Then  

H qβ β βs s s0 5 0 5 0 54 9 4 9+ =1   (8) 

Thus, given β s0 5 , the s +10 5th approximation β s+10 5  is found by solving the system 
of equations in (8). 
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Initial Values 

SPSS uses the β 00 5, which corresponds to a saturated model as the initial value for 

β. Then the initial estimates for the expected cell counts are 

m
n z

zij
ij ij

ij

0 0

0 0
0 5 =

+ >
≤

%&'
∆ if

if
 (9) 

where ∆ ≥ 0  is a constant. 

Note: For saturated models, SPSS adds ∆ to nij  if zij > 0 . This is done to avoid 

numerical problems in case some observed counts are 0. We advise users to set ∆ to 

0 whenever all observed counts (other than structural zeros) are positive. 

The initial values for other quantities are 

θ jk
j

ij
i

r

ijkN
m x0 0

1

10 5 0 5=
=
∑   (10) 

and 

ηij
ij ij ij ij ij ij ijm m z n m z m0
0 0 0 00 0

0

0 5 0 5 0 5 0 5 0 54 9 4 9= + − > >%
&K
'K

log / if  and 

otherwise
 (11) 

Stopping Criteria 

SPSS checks the following conditions for convergence: 

1. maxi j ij
s

ij
s

ij
sm m m, /+ −�� �� <10 5 0 5 0 5 ε  provided that mij

s0 5 > 0 

2. maxi j ij
s

ij
sm m,

+ −�� �� <10 5 0 5 ε  

3. g pk
k

p 2

1
$ /β ε4 9=∑��� �
�� <  
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The iteration is said to be converged if either conditions 1 and 3 or conditions 2 

and 3 are satisfied. If p = 0 , then condition 3 will be automatically satisfied. The 

iteration is said to be not converged if neither pair of conditions is satisfied within 

the maximum number of iterations. 

Algorithm 

The iteration process uses the following steps: 

1. Calculate mij
00 5  using (9), θ jk

00 5 using (10), and nij
00 5  using (11). 

2. Set s = 0 . 

3. Calculate H β s0 54 9 using (6) evaluated at m mij ij
s= 0 5 ; calculate q β s0 54 9 using 

(7) evaluated at n nij ij
s= 0 5 . 

4. Solve for β s+10 5  using (8). 

5. Calculate v xij
s

ijk k
s

k

p+ +
=

= ∑1 1

1

0 5 0 5β  and 

m
N z e z e z

z
ij
s j ij

v
tj

v

t

r
ij

ij

ij
s

ij
s

+
==

�
��

�
��

�
��

�
�� >

≤

%
&K
'K

+ +

∑1
1

1 1

0

0 0

0 5
0 5 0 5

/ if  

if
 

6. Check whether the stopping criteria are satisfied. If yes, stop iteration and 
declare convergence. Otherwise continue. 

7. Increase s by 1 and check whether the maximum iteration has been reached. If yes, 
stop iteration and declare the process not converged. Otherwise repeat steps 3-7. 
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Estimated Normalizing Constants 
Using (2), the maximum-likelihood estimate for α j  is 

$ log , ,
$

α j
j

ij
v

i

r

N

z e
j c

ij

=

�

�
���

�

�
���

=

=∑ 1

1K  

where 

$ $v xij ijk k

k

p

=
=

∑ β
1

 

Estimated Cell Counts 
The estimated expected count is 

$
/

$ $

m
N z e z e z

z
ij

j ij
v

tj
v

t

r
ij

ij

ij tj

=
�
��

�
��

�
��

�
�� >

≤

%
&K
'K

=∑ 1
0

0 0

if

if
 

Goodness-of-Fit Statistics 
The Pearson chi-square statistic is 

X Xij

i

r

j

c
2 2

11

=
==
∑∑  
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where 

X

n m m z n m

z n m

z n m
ij

ij ij ij ij ij ij

ij ij ij

ij ij ij

2

2
0 0 0

0 0 0

0 0

=
− > > >

> > =
≤ =

%
&
KK

'
KK

$ / $ , , $

, , $

$

3 8 if  and 

SYSMIS if  and 

if  or 

 

If any Xij
2 is system missing, then X2  is also system missing.  

The likelihood-ratio chi-square statistic is 

G Gij

i

r

j

c
2 2

11

2=
==
∑∑  

where 

G

n n m z n m

z n m

z n m

z n m

ij

ij ij ij ij ij ij

ij ij ij

ij ij ij

ij ij ij

2

0 0 0

0 0 0

0 0 0 0

0

=

> > >
> > =

> = ≥
≤ =

%

&
KK

'
KK

log / $ , $

, $

, , $ ;

$

3 84 9 if  and 

SYSMIS if  and 

if  and 

 or 

 

If any Gij
2 is system missing, then G2  is also system missing. 

Degrees of Freedom 

The degrees of freedom for each statistic is defined as a c r p E= − − −10 5 , where E 
is the number of cells with z mij ij≤ =0 0 or $ . 

Significance Level 

The significance level (or the p value) for the Pearson chi-square statistic is 

Prob 2χ a X> 24 9  and that for the likelihood-ratio chi-square statistic is 

Prob 2χ a G> 24 9 . In both cases, χ a
2  is the central chi-square distribution with a 

degrees of freedom. 
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Analysis of Dispersion (Logit Models Only) 
SPSS provides the analysis of dispersion based on two types of dispersion: entropy 
and concentration. The following definitions are used: 

S(A) Dispersion due to the model 

S(B|A) Dispersion due to residuals 

S(B) Total dispersion 

R=S(A)/S(B) Measure of association 

where S A S B A S B0 5 0 5 0 5+ =| . Also define 

$
$

π i

ij
j

c

j
j

c

m

N
= =

=

∑
∑

1

1

 

$
$

|π i j
ij

j

m

N
=  

The bounds are 0 1 1≤ ≤ ≤ ≤$ $π πi i j and 0 | . 

Entropy 

S B N S Bi

i

r

0 5 0 5= −
=
∑

1

 

where 

S Bi
i i i

i
0 5 1 6=

< ≤
=

%&'
$ log $

$

π π π
π

if

if

0 1

0 0
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and 

S B A N S B Aj

j

c

ij

i

r

| |1 6 1 6= −
= =

∑ ∑
1 1

 

where 

S B Aij
i j i j i j

i j
|

$ log $ $

$
| | |

|
1 6 3 8=

< ≤
=

%
&K
'K
π π π

π
if

if

0 1

0 0
 

Concentration 

S B N i

i

r

0 5 = −
�
�
��

�
�
��

=
∑1 2

1

$π  

S B A N j i j

i

r

j

c

| $ |1 6 = −
�
�
��

�
�
��

==
∑∑ 1 2

11

π  

Degrees of Freedom 

 
Source of Dispersion Measure Degrees of 

Freedom 

Due to model S(A) f r −10 5  
Due to residuals S(B|A) N f r− − −1 10 50 5

 

Total S(B) N r− −1 10 50 5  

where f equals p minus the number of nonredundant columns (in the design matrix) 
associated with the main effects of the dependent factors. 
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Residuals 
Goodness-of-fit statistics provide only broad summaries of how models fit data. 
The pattern of lack of fit is revealed in cell-by-cell comparisons of observed and 
fitted cell counts. 

Simple Residuals 

The simple residual of the (i,j)th cell is 

r
n m z

zij
ij ij ij

ij
=

− >
≤

%&'
$ if

SYSMIS if

0

0
 

Standardized Residuals 

The standardized residual for the (i,j)th cell is 

r

n m m m N z m N

z n mij
S

ij ij ij ij j ij ij j

ij ij ij=
− − > <

> =

%
&
KK

'
KK

$ / $ $ / $

$

3 8 3 81 0

0 0

if  and 0 <

if  and 

SYSMIS otherwise

 

The standardized residuals are also known as Pearson residuals even though 

r Xij
S

i

r

j

c 4 92
11

2

== ∑∑ ≠ . Although the standardized residuals are asymptotically 

normal, their asymptotic variances are less than 1.  

Adjusted Residuals 

The adjusted residual is the simple residual divided by its estimated standard 
error. Its definition and applications first appeared in Haberman (1973) and re-
appeared on page 454 of Haberman (1979). This statistic for the (i,j)th cell is 
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r

n m s z m

z mij
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ij ij ij ij ij
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N
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p
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p
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�
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$
$ $ $1

1 1

θ θ4 94 9  

hkl  is the (k,l)th element of H−1 $β4 9. The adjusted residuals are asymptotically 

standard normal. 

Deviance Residuals 

Pierce and Schafer (1986) and McCullagh and Nelder (1989) define the signed 
square root of the individual contribution to the G2  statistic as the deviance 
residual. This statistic for the (i,j)th cell is 

r n m dij
D

ij ij ij= −sign $3 8  

where 

d

n n m n m z m n

m z m

z m
ij

ij ij ij ij ij ij ij ij

ij ij ij

ij ij

=

− − > > >

> ≥ =
> =

%

&
KK

'
KK

2 0 0 0

2 0 0 0

0 0

log / $ $ , $ ,

$ , $ ,

$

3 84 9 3 84 9 if  and 

if  and n

if  and n

SYSMIS otherwise

ij

ij

 

For multinomial sampling, the individual contribution to the G2  statistic is only 

2n n mij ij ijlog / $3 8 , but this is negative when n mij ij< $ . Thus, an extra term 

2 n mij ij− $3 8  is added to it so that dij > 0  for all i and j. However, we still have 

r Gij
D

i

r

j

c 4 92 2

11
=

== ∑∑ . 
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Generalized Residual 
Consider a linear combination of the cell counts d nij ij

i

r

j

c

== ∑∑ 11
, where dij  are 

real numbers.  

The estimated expected value is  

d mij ij

i

r

j

c

$

==
∑∑

11

 

The simple residual for this linear combination is 

d n mij ij ij

i

r

j

c

−
==
∑∑ $3 8

11

 

The standardized residual for this linear combination is 

d n m

d m d m N

ij ij ij
i

r

j

c

ij ij ij ij
i

r

i

r
j

j

c

−

− ���
�
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�
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3 8
11
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The adjusted residual for this linear combination is, as given on page 420 of 
Haberman (1979), 

d n m

V

ij ij ij
i

r

j

c
−

== ∑∑ $3 8
11  
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where 

V d m
N

d m f f hij ij
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r

j

c
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ij ij
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r
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== = = ==
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11 1 1

2

11

1
$ $  

f d m xk ij

i

r

j

c

ij ijk ik= −
==
∑∑

11

$ θ3 8 

Generalized Log-Odds Ratio 
Consider a linear combination of the natural logarithm of cell counts 

d mij

i

r

j

c

ij

==
∑∑

11

log3 8   (12) 

where dij  are real numbers with the restriction 

d j cij

i

r

= =
=
∑ 0 1

1

, ,K  

The quantity in (12) is estimated by  

d m d z d xij

i

r

j

c

ij ij

i

r

j

c

ij ij ijk k

k

p

i

r

j

c

== == ===
∑∑ ∑∑ ∑∑∑= +

11 11 111

log $ log $3 8 3 8 β  (13) 
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The variance of (13) is 

var d m w w hij

i

r

j

c

ij k l
kl

l

p

k

p

== ==
∑∑ ∑∑

�

�
��

�
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�� =

11 11

log $3 8  (14) 

where 

w d x k pk ij

i

r

j

c

ijk= =
==
∑∑

11

1, ,K  

Wald Statistic 

The null hypothesis is 

H d mij

i

r

j

c

ij0

11

0: log
==
∑∑ =3 8  

The Wald statistic is 

W

d m

w w h

ij
i

r

j

c
ij

k l
kl

l

p

k

p=

�
��

�
��==

==

∑∑
∑∑

11

2

11

log $3 8
 

Under H0 , W asymptotically distributes as a chi-square distribution with 1 degree 

of freedom. The significance level is Prob 1
2χ ≥ W4 9 . Note: W will be system 

missing if (14) is 0. 
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Asymptotic Confidence Interval 

The asymptotic 1 100%− ×α0 5  confidence interval for (12) is  

d m z w w hij

i

r

j

c

ij k l
kl

l

p

k

p

== ==
∑∑ ∑∑±

11

2

11

log $ /3 8 α  

where zα /2  is the upper α / 2  point of the standard normal distribution. The default 

value of α is 0.05. 

Aggregated Data 
This section shows how data are aggregated for a multinomial distribution. The 
following notation is used in this section: 

 
vij  Number of SPSS cases for B i i r= = 1, ,K0 5 and A j j c= = 1, ,K0 5 
nijs  sth SPSS caseweight for B i A j=  and =    s vi= 1, ,K1 6  
xijs  Covariate 
zijs  Cell weight 
cijs  GRESID coefficient 
eijs  GLOR coefficient 

vij
+  Number of positive zijs (cell weights) for 1 ≤ ≤s vij  
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The cell count is 

n
n v

v v
ij

ijs
s v

ij

ij ij

ij=
>

= =

%
&K
'K

+
≤ ≤

+

+

∑1
0

0 0 0

*
if

if  or 
 

where 

n
n n z

n zijs
ijs ijs ijs

ijs ijs

+ =
> >
≤ >

%&'
if  and 

if  and 

0 0

0 0 0
 

and 
1≤ ≤∑ s vij

*
means summation over the range of s with the terms zijs > 0. 

The cell weight value is 

z

n z n n v

z v n v

v

v

ij

ijs
s v

ijs ij ij ij

ijs ij
s v

ij ij

ij

ij

ij
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=

> >

= >

=
=

%

&

KKK

'

KKK

+
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+

+
≤ ≤

+

+

∑
∑

1

1

0 0

0 0

0 0

1 0

*

*

/

/

if  and 

if  and 

if

if

 

If no variable is specified as the cell weight variable, then all cases have unit cell 
weights by default. 
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The cell covariate value is 

x

n x n n v

x v n v

v v

ij

ijs
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ijs ij ij ij

ijs ij
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ij ij
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= >

= =

%

&
KKK

'
KKK

+
≤ ≤
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*
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The cell GRESID coefficient is 

c

n c n n v

c v n v

v v

ij

ijs
s v

ijs ij ij ij

ijs ij
s v

ij ij

ij ij

ij

ij

=

> >

= >
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&
KKK

'
KKK

+
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+
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+

+

∑
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1

1

0 0
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*

*

/

/

if  and 

if  and 

if  or 

 

There are no defaults for the GRESID coefficients. 

The cell GLOR coefficient is 

e

n e n n v

e v n v

v v

ij

ijs
s v

ijs ij ij ij

ijs ij
s v

ij ij

ij ij

ij

ij

=

> >

= >

= =
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&
KKK

'
KKK

+
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+
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+

+

∑
∑

1

1

0 0

0 0

0 0 0

*

*

/

/

if  and 

if  and 

if  or 

 

There are no defaults for the GLOR coefficients. 
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