
1

CNLR

CNLR is used to estimate the parameters of a function by minimizing a smooth
nonlinear loss function (objective function) when the parameters are subject to a set
of constraints.

Model
Consider the model

f f= (x ~~ ,)θ

where θ~ is a p ×1 parameter vector, x~ is an independent variable vector, and f
is a function of x~ and θ~ .

Goal

Find the estimate θ ∗
~ of θ~ such that θ~

∗ minimizes

F F y f= ,1 6

subject to

l A q

C

u~

~

~≤
%
&K
'K

(
)K
*K

≤
θ

θ
L

()~

~

where F is the smooth loss function (objective function), which can be specified by
the user. A L is an m pL × matrix of linear constraints, and C()~θ is an mN ×1
vector of nonlinear constraint functions. l l l l~ ~ ~ ~(, ,)′ = ′ ′ ′

B NL
, where l~ B

′ , l~ L
′ ,

2 CNLR

and l~ N
′ represent the lower bounds, linear constraints and nonlinear constraints,

respectively. The upper bound u~ is defined similarly.

Algorithm

CNLR uses the algorithms proposed and implemented in NPSOL by Gill, Murray,
Saunders, and Wright. A description of the algorithms can be found in the User’s

Guide for NPSOL, Version 4.0 (1986).

The method used in NPSOL is a sequential quadratic programming (SQP)

method. For an overview of SQP methods, see Gill, Murray, and Wright (1981),

pp. 237–242.

The basic structure of NPSOL involves major and minor iterations. Based on

the given initial value θ~
0() of θ~ , the algorithm first selects an initial working set

that includes bounds or general inequality constraints that lie within a crash
tolerance (CRSHTOL). At the kth iteration, the algorithm starts with

(I) Minor Iteration

This iteration searches for the direction Pk , which is the solution of a quadratic

subproblem; that is, Pk , is found by minimizing

′ + ′g P P H Pk k
1
2

 (1)

subject to

l

P

A P

A P

u()
~

()
~

k
L

N

k≤
%
&K
'K

(
)K
*K

≤

where gk is the gradient of F at θ~
()k , the matrixp Hk is a positive-definite quasi-

Newton approximation to the Hessian of the Lagrangian function, A N is the

Jacobian matrix of the nonlinear-constraint vector C evaluated at θ~
()k , and

CNLR 3

l l l l

u u u u

l l q

l l A q

l l C q

u u q

u u A q

u u C q

~

~

~

~
()

~
()

~
()

~
()

~
()

()

()

()

, ,

, ,

()

().

k
B L N

k
B L N

B B
k

L L L
k

N N
k

B B
k

L L L
k

N N
k

= ′ ′ ′

= ′ ′ ′

= −

= −

= −

= −

= −

= −

3 8

1 6

The linear feasibility tolerance, the nonlinear feasibility tolerance, and the
feasibility tolerance are used to decide if a solution of (1) is feasible for linear and
nonlinear constraints.

Once the search direction Pk is found, the algorithm goes to the major
iteration.

(II) Major Iteration

The purpose of the major iteration is to find a non-negative scalar α k such that

θ θ~ ~
k k

k k
+ = +11 6 1 6 α P

4 CNLR

satisfies the following conditions:

• θ~
k +11 6 produces a “sufficient decrease” in the augmented Lagrangian merit

function

L F c s c si i i

i

i i i

i

(, ,) () () ()~ ~ ~ ~θ λ θ θ θs~ ~= − −�
�

�
� + −�

�
�
�∑ ∑λ ρ1

2

2

 (2)

The summation terms in (2) involve only the nonlinear constraints. The vector

λ is an estimate of the Lagrange multipliers for the nonlinear constraints. The

non-negative slack variables si; @ allow nonlinear inequality constraints to be

treated without introducing discontinuities. The solution of the QP subproblem
defined in (1) provides a vector triple that serves as a direction search for θ~ ,

λ~ and s~ . The non-negative vector of penalty parameters ρ1 6 is initialized to

zero at the beginning of the first major iteration. Function precision criteria are
used as a measure of the accuracy with which the functions F and ci can be

evaluated.

• θ~
k +11 6 is close to a minimum of F along Pk . The criterion is

′ < − ′+g P g P()~θ
k

k k k
11 6 η

where η is the Line Search Tolerance and 0 1≤ <η . The value of η
determines the accuracy with which α k approximates a stationary point of F
along Pk . A smaller value of η produces a more accurate line search.

• The step length is in a certain range; that is,

θ θ~ ~
k k

k k
+ − = ≤11 6 1 6 α P Step Limit .

CNLR 5

(III) Convergence Tests

After α k is determined from the major iteration, the following conditions are
checked:

• k + ≤1 Maximum number of major iterations

• The sequence { }~θ
l1 6 converged at θ~

k +11 6 ; that is,

α k k
krP ≤ +��
�
�

+1 1|| ||~θ
1 6

• θ~
k +11 6 satisfies the Kuhn-Tucker conditions to the accuracy requested; that is,

|| ()|| max | ()|,|| ()||~ ~g ~z
k k kr F gθ θ θ+ + +≤ + +��

�
�

�
��

�
��

1 1 11 11 6 1 6 1 6

and

res FTOLj ≤ , for all j,

where gz is the projected gradient, g is the gradient of F with respect to the
free parameters, res j is the violation of the jth nonlinear constraint, FTOL is
the Nonlinear Feasibility Tolerance, and r is the Optimality Tolerance.

If none of these three conditions are satisfied, the algorithm continues with the
Minor Iteration to find a new search direction.

Termination

The following are termination conditions.

• Underflow. A single underflow will always occur if machine constants are
computed automatically. Other floating-point underflows may occur
occasionally, but can usually be ignored.

6 CNLR

• Overflow. If the printed output before the overflow error contains a warning
about serious ill-conditioning in the working set when adding the jth
constraint, it may be possible to avoid the difficulty by increasing the
magnitude of FTOL, LFTOL, or NFTOL and rerunning the program. If the
message recurs after this change, the offending linearly dependent constrains
(with index “j”) must be removed from the problem.

• Optimal solution found.

• Optimal solution found, but the requested accuracy could not be achieved,
NPSOL terminates because no further improvement can be made in the merit
function. This is probably caused by requesting a more accurate solution than
is attainable with the given precision of the problem (as specified by
FPRECISION).

• No point has been found that satisfies the linear constraints. NPSOL terminates
without finding a feasible point for the given value of LFTOL. The user should
check that there are no constraint redundancies and ensure that the value of
LFTOL is greater than the precision of parameter estimates.

• No point has been found which satisfies the nonlinear constraints. There is no
feasible point found in QP subproblems. The user should check the validity of
constraints. If the user is convinced that a feasible point does exist, NPSOL
should be restarted at a different starting point.

• Too many iterations. If the algorithm appears to be making progress, increase
the value of ITER and rerun NPSOL. If the algorithm seems to be “bogged
down”, the user should check for incorrect gradients.

• Cannot improve on current point. A sufficient decrease in the merit function
could not be attained during the final line search. This sometimes occurs
because an overly stringent accuracy has been requested; for example,
Optimality Tolerance is too small or a too-small step limit is given when the
parameters are measured on different scales.

Please note the following:

• Unlike the other procedures in SPSS, the weight function is not treated as a
case replicate in CNLR.

• When both weight and loss function are specified, the algorithm takes the
product of these two functions are the loss function.

CNLR 7

• If the loss function is not specified, the default loss function is a squared loss
function and the default output in NLR will be printed. However, if the loss
function is not a squared loss function, CNLR prints only the final parameter
estimates, iteration history, and termination message. In order to obtain
estimates of the standard errors of parameter estimates and correlations
between parameter estimates, the bootstrapping method can be requested.

Bootstrapping Estimates
Bootstrapping is a nonparametric technique of estimating the standard error of a
parameter estimate using repeated samples from the original data. This is done by
sampling with replacement. CNLR computes and saves the parameter estimates for
each sample generated. This results, for each parameter, in a sample of estimates
from which the standard deviation is calculated. This is the estimated standard
error.

Mathematically, the bootstrap covariance matrix S for the p parameter estimates
is

S =
×

sij p p
3 8

where

s

m

ij ik i jk j

k

m

i ik

k

m

= − −

=

=

=

∑

∑

$ $

$

θ θ θ θ

θ θ

4 94 9
1

1

and $θ ik is the CNLR parameter estimate of θ i for the kth bootstrap sample and m

is the number of samples generated by the bootstrap. By default, m
p p

=
+10 1

2

1 6
.

The standard error for the jth parameter estimate is estimated by

s

m
jj

−1

8 CNLR

and the correlation between the ith and jth parameter estimates is estimated by

s

s s

ij

ii jj

The “95% Trimmed Range” values are the most extreme values that remain after
trimming from the set of estimates for a parameter, the g largest, and the g smallest
estimates, where g is the largest integer not exceeding 0.025m.

References
Gill, P. E., Murray, W. M., and Wright, M. H. 1981. Practical Optimization.

London: Academic Press.

Gill, P. E., Murray, W. M., Saunders, M. A., and Wright, M. H. 1984. Procedures
for optimization problems with a mixture of bounds and general linear
constraints. ACM Transactions on Mathematical Software, 10(3): 282–296.

Gill, P. E., Murray, W. M., Saunders, M. A., and Wright, M. H. 1986. User’s guide
for NPSOL (version 4.0): A fortran package for nonlinear programming.
Technical Report SOL 86–2, Department of Operations Research, Stanford
University.

