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CLUSTER 

Cluster Measures 

Measures for Continuous Data 

EUCLID 

The distance between two items, x and y, is the square root of the sum of the 
squared differences between the values for the items. 

EUCLID x y x yi i
i

,1 6 1 6= −∑ 2  

SEUCLID 

The distance between two items is the sum of the squared differences between the 
values for the items. 

SEUCLID x y x yi i
i

,1 6 1 6= −∑ 2  

CORRELATION 

This is a pattern similarity measure. 

CORRELATION x y
Z Z

N

xi yi
i,1 6
3 8

=
∑

 

where Zxi  is the (standardized) Z-score value of x for the ith case or variable, and 

N is the number of cases or variables. 
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COSINE 

This is a pattern similarity measure. 

COSINE x y
x y

x y

i i
i

i
i

i
i

,1 6
1 6

=
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CHEBYCHEV 

The distance between two items is the maximum absolute difference between the 
values for the items. 

CHEBYCHEV x y x yi i i, max1 6 = −  

BLOCK 

The distance between two items is the sum of the absolute differences between the 
values for the items. 

BLOCK x y x yi i
i

,1 6 = −∑  

MINKOWSKI(p) 

The distance between two items is the pth root of the sum of the absolute 
differences to the pth power between the values for the items. 

MINKOWSKI x y x yi i
i

p p

,1 6 = −�
��

�
��∑

1
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POWER p r,1 6  

The distance between two items is the rth root of the sum of the absolute 
differences to the pth power between the values for the items. 

POWER x y x yi i
i

p r

,1 6 = −�
��

�
��∑

1

 

Measures for Frequency Count Data 

CHISQ 

The magnitude of this similarity measure depends on the total frequencies of the 
two cases or variables whose  proximity is computed. Expected values are from the 
model of independence of cases (or variables), x and y. 

CHISQ x y
x E x

E x

y E y

E y

i i

ii

i i

ii

,1 6 1 62 7
1 6

1 62 7
1 6=

−
+

−∑ ∑
2 2

 

PH2 

This is the CHISQ measure normalized by the square root of the combined 
frequency. Therefore, its value does not depend on the total frequencies of the two 
cases or variables whose proximity is computed. 

PH2
CHISQ

x y
x y

N
,

,1 6 1 6
=  

Measures for Binary Data 

PROXIMITIES constructs a 2 2×  contingency table for each pair of items in turn. 
It uses this table to compute a proximity measure for the pair. 

  Item 2 
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  Present Absent 

Item 1 Present      a      b 

 Absent      c      d 

 

PROXIMITIES computes all binary measures from the values of a, b, c, and d. 
These values are tallies across variables (when the items are cases) or tallies across 
cases (when the items are variables). 

Russel and Rao Similarity Measure 

This is the binary dot product. 

RR x y
a

a b c d
,1 6 =

+ + +
 

Simple Matching Similarity Measure 

This is the ratio of the number of matches to the total number of characteristics. 

SM x y
a d

a b c d
,1 6 = +

+ + +
 

Jaccard Similarity Measure 

This is also known as the similarity ratio. 

JACCARD x y
a

a b c
,1 6 =

+ +
 

Dice or Czekanowski or Sorenson Similarity Measure 

DICE x y
a

a b c
,1 6 =

+ +
2

2
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Sokal and Sneath Similarity Measure 1 

SS1 x y
a d

a d b c
,1 6 1 6

1 6=
+

+ + +
2

2
 

Rogers and Tanimoto Similarity Measure 

RT x y
a d

a d b c
,1 6 1 6= +

+ + +2
 

Sokal and Sneath Similarity Measure 2 

SS2 x y
a

a b c
,1 6 1 6=

+ +2
 

Kulczynski Similarity Measure 1 

This measure has a minimum value of 0 and no upper limit. It is undefined when 
there are no nonmatches b c= =0 0 and 1 6 . Therefore, PROXIMITIES assigns an 

artificial upper limit of 9999.999 to K1 when it is undefined or exceeds this value. 

K1 x y
a

b c
,1 6 =

+
 

Sokal and Sneath Similarity Measure 3 

This measure has a minimum value of 0, has no upper limit, and is undefined when 
there are no nonmatches b c= =0 0 and 1 6 . As with K1, PROXIMITIES assigns an 

artificial upper limit of 9999.999 to SS3 when it is undefined or exceeds this value. 

SS3 x y
a d

b c
,1 6 = +

+
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Conditional Probabilities 

The following three binary measures yield values that you can interpret in terms of 
conditional probability. All three are similarity measures. 

Kulczynski Similarity Measure 2 

This yields the average conditional probability that a characteristic is present in one 
item given that the characteristic is present in the other item. The measure is an 
average over both items acting as predictors. It has a range of 0 to 1. 

K2 x y
a a b a a c

,1 6 1 6 1 6
=

+ + +
2

 

Sokal and Sneath Similarity Measure 4 

This yields the conditional probability that a characteristic of one item is in the 
same state (present or absent) as the characteristic of the other item. The measure is 
an average over both items acting as predictors. It has a range of 0 to 1. 

SS4 x y
a a b a a c d b d d c d

,1 6 1 6 1 6 1 6 1 6
=

+ + + + + + +
4

 

Hamann Similarity Measure 

This measure gives the probability that a characteristic has the same state in both 
items (present in both or absent from both) minus the probability that a 
characteristic has different states in the two items (present in one and absent from 
the other). HAMANN has a range of –1 to +1 and is monotonically related to SM, 
SS1, and RT. 

HAMANN x y
a d b c

a b c d
,1 6 1 6 1 6

=
+ − +
+ + +
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Predictability Measures 

The following four binary measures assess the association between items as the 
predictability of one given the other. All four measures yield similarities. 

Goodman and Kruskal Lambda (Similarity) 

This coefficient assesses the predictability of the state of a characteristic on one 
item (presence or absence) given the state on the other item. Specifically, lambda 
measures the proportional reduction in error using one item to predict the other, 
when the directions of prediction are of equal importance. Lambda has a range of 0 
to 1. 

t a b c d a c b d

t a c b d a b c d

x y
t t

a b c d t

1

2

1 2

22

= + + +
= + + + + +

=
−

+ + + −

max , max , max , max ,

max , max ,

,

1 6 1 6 1 6 1 6
1 6 1 6
1 6 1 6LAMBDA

 

Anderberg’s D (Similarity) 

This coefficient assesses the predictability of the state of a characteristic on one 
item (presence or absence) given the state on the other. D measures the actual 
reduction in the error probability when one item is used to predict the other. The 
range of D is 0 to 1. 

t a b c d a c b d

t a c b d a b c d

x y
t t

a b c d

1

2

1 2

2

= + + +
= + + + + +

=
−

+ + +

max , max , max , max ,

max , max ,

,

1 6 1 6 1 6 1 6
1 6 1 6

1 6 1 6D

 

Yule’s Y Coefficient of Colligation (Similarity) 

This is a function of the cross-product ratio for a 2 2×  table. It has a range of –1 to +1. 

Y x y
ad bc

ad bc
,1 6 = −

+
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Yule’s Q (Similarity) 

This is the 2 2×  version of Goodman and Kruskal’s ordinal measure gamma. Like 
Yule’s Y, Q is a function of the cross-product ratio for a 2 2×  table and has a range 
of –1 to +1. 

Q x y
ad bc

ad bc
,1 6 = −

+
 

Other Binary Measures 

The remaining binary measures available in PROXIMITIES are either binary 
equivalents of association measures for continuous variables or measures of special 
properties of the relation between items. 

Ochiai Similarity Measure 

This is the binary form of the cosine. It has a range of 0 to 1 and is a similarity 
measure. 

OCHIAI x y
a

a b

a

a c
,1 6 =

+
�
��

�
�� +
�
��

�
��  

Sokal and Sneath Similarity Measure 5 

This is a similarity measure. Its range is 0 to 1. 

SS5 x y
ad

a b a c b d c d
,1 6 1 61 61 61 6

=
+ + + +

 

Fourfold Point Correlation (Similarity) 

This is the binary form of the Pearson product-moment correlation coefficient. Phi 
is a similarity measure, and its range is 0 to 1. 

PHI x y
ad bc

a b a c b d c d
,1 6 1 61 61 61 6

= −

+ + + +
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Binary Euclidean Distance 

This is a distance measure. Its minimum value is 0, and it has no upper limit. 

BEUCLID x y b c,1 6 = +  

Binary Squared Euclidean Distance 

This is also a distance measure. Its minimum value is 0, and it has no upper limit. 

BSEUCLID x y b c,1 6 = +  

Size Difference 

This is a dissimilarity measure with a minimum value of 0 and no upper limit. 

SIZE x y
b c

a b c d
,1 6 1 6

1 6
=

−

+ + +

2

2
 

Pattern Difference 

This is also a dissimilarity measure. Its range is 0 to 1. 

PATTERN x y
bc

a b c d
,1 6 1 6

=
+ + + 2

 

Binary Shape Difference 

This dissimilarity measure has no upper or lower limit. 

BSHAPE x y
a b c d b c b c

a b c d
,1 6 1 61 6 1 6

1 6
=

+ + + + − −

+ + +

2

2
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Dispersion Similarity Measure 

This similarity measure has a range of –1 to +1. 

DISPER x y
ad bc

a b c d
,1 6 1 6

= −

+ + + 2
 

Variance Dissimilarity Measure 

This dissimilarity measure has a minimum value of 0 and no upper limit. 

VARIANCE x y
b c

a b c d
,1 6 1 6= +

+ + +4
 

Binary Lance-and-Williams Nonmetric Dissimilarity Measure 

Also known as the Bray-Curtis nonmetric coefficient, this dissimilarity measure has 
a range of 0 to 1. 

BLWMN x y
b c

a b c
,1 6 = +

+ +2
 

Clustering Methods 

Notation 

The following notation is used unless otherwise specified: 

S Matrix of similarity or dissimilarity measures 

sij  Similarity or dissimilarity measure between cluster i and cluster j 

Ni  Number of cases in cluster i 
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General Procedure 

Begin with N clusters each containing one case. Denote the clusters 1 through N. 

• Find the most similar pair of clusters p and q p q>1 6 . Denote this similarity 

spq . If a dissimilarity measure is used, large values indicate dissimilarity. If a 

similarity measure is used, small values indicate dissimilarity. 

• Reduce the number of clusters by one through merger of clusters p and q. 
Label the new cluster t = q1 6  and update similarity matrix (by the method 
specified) to reflect revised similarities or dissimilarities between cluster t and 
all other clusters. Delete the row and column of S corresponding to cluster p. 

• Perform the previous two steps until all entities are in one cluster. 

• For each of the following methods, the similarity or dissimilarity matrix S is 
updated to reflect revised similarities or dissimilarities str1 6  between the new 
cluster t and all other clusters r as given below. 

Average Linkage between Groups 

Before the first merge, let Ni = 1  for i = 1  to N. Update str  by 

s s str pr qr= +  

Update Nt  by 

N N Nt p q= +  

and then choose the most similar pair based on the value 

s N Nij i j3 8  
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Average Linkage within Groups 

Before the first merge, let SUMi = 0  and Ni = 1  for i = 1  to N. Update str  by 

s s str pr qr= +  

Update SUMt  and Nt  by 

SUM SUM SUM s

N N N

t p q pq

t p q

= + +

= +
 

and choose the most similar pair based on 

SUM SUM s

N N N N

i j ij

i j i j

+ +

+ + −3 83 84 91 2
 

Single Linkage 

Update str  by 

s
s s S

s s S
tr

pr qr

pr qr

=
%
&K
'K

min ,

max ,

3 8
3 8

if  is a dissimilarity matrix

if  is a similarity matrix
 

Complete Linkage 

Update str  by 

s
s s S

s s S
tr

pr qr

pr qr

=
%
&K
'K

max ,

min ,

3 8
3 8

if  is a dissimilarity matrix

if  is a similarity matrix
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Centroid Method 

Update str  by 

s
N

N N
s

N

N N
s

N N

N N
str

p

p q
pr

q

p q
qr

p q

p q

pq=
+

+
+

−
+3 82

 

Median Method 

Update str  by 

s s s str pr qr pq= + −3 8 2 4  

Ward’s Method 

Update str  by 

s
N N

N N s N N s N str
t r

r p rp r q rq r pq=
+

+ + + −1

1 6 3 8 3 8  

Update the coefficient W by 

W W spq= + .5  

Note that for Ward’s method, the coefficient given in the agglomeration schedule is 
really the within-cluster sum of squares at that step. For all other methods, this 
coefficient represents the distance at which the clusters p and q were joined. 
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