AREG

In the ordinary regression model the errors are assumed to be uncorrelated. The model considered here has the form
$y_{t}=a+\sum_{i=1}^{p} b_{i} x_{t i}+u_{t} \quad t=1, \ldots, n$
$u_{t}=\rho u_{t-1}+\varepsilon_{t}$
where ε_{t} is an uncorrelated random error with variance σ^{2} and zero mean. The error terms u_{t} follow a first-order autoregressive process. The constant term a can be included or excluded as specified. In the discussion below, if a is not included, it is set to be zero and not involved in the subsequent computation.

Two computational methods-Prais-Winsten and Cochrane-Orcutt-are described here.

Cochrane-Orcutt Method

Note that model (1) can be rewritten in two equivalent forms as:

$$
\begin{align*}
& y_{t}-\rho y_{t-1}=a(1-\rho)+\sum_{i=1}^{p} b_{i}\left(x_{t i}-\rho x_{(t-1) i}\right)+\varepsilon_{t} \tag{2}\\
& y_{t}-a-\sum_{i=1}^{p} b_{i} x_{t i}=\rho\left(y_{t-1}-a-\sum_{i=1}^{p} b_{i} x_{(t-1) i}\right)+\varepsilon_{t} \tag{3}
\end{align*}
$$

Defining $y_{t}^{*}=y_{t}-\rho y_{t-1}$ and $x_{t i}^{*}=x_{t i}-\rho x_{(t-1) i}$ for $t=2, \ldots, n$, equation (2) can be rewritten as

$$
\begin{equation*}
y_{t}^{*}=a(1-\rho)+\sum_{i=1}^{p} b_{i} x_{t i}^{*}+\varepsilon_{t} \tag{*}
\end{equation*}
$$

Starting with an initial value for ρ, the difference y_{t}^{*} and $x_{t i}^{*}$ in equation (2*) are computed and OLS then applied to equation (2*) to estimate a and b_{i}. These estimates in turn can be used in equation (3) to update $\hat{\rho}$ and the standard error of the estimate $\hat{\rho}$.

Initial Results

An initial value for ρ can be pre-set by the user or set to be zero by default. The OLS method is used to obtain an initial estimate for a (if constant term is include) and b_{i}.

ANOVA

Based on the OLS results, an analysis of variance table is constructed in which the degrees of freedom for regression are p, the number of X variables in equation (1), while the degrees of freedom for the residual are $n-p^{*}-1$ if initial $\rho \neq 0$ and are $n-p^{*}$ otherwise. p^{*} is the number of coefficients in equation (1). The sums of squares, mean squares, and other statistics are computed as in the REGRESSION procedure.

Intermediate Results

At each iteration, the following statistics are calculated:
Rho

An updated value for ρ is computed as

$$
\hat{\rho}=\frac{\sum_{t=2}^{n} \tilde{u}_{t} \tilde{u}_{t-1}}{\sum_{t=1}^{n} \tilde{u}_{t}^{2}}
$$

where the residuals \tilde{u}_{t} are obtained from equation (1).

Standard Error of rho

An estimate of the standard error of $\hat{\rho}$

$$
\operatorname{se}(\hat{\rho})=\sqrt{\frac{1-\hat{\rho}^{2}}{n-1-p^{*}}}
$$

where $p^{*}=p+1$ if there is a constant term; p otherwise.

Durbin-Watson Statistic

$$
D W=\frac{\sum_{i=1}^{n-1}\left(\tilde{\varepsilon}_{i+1}-\tilde{\varepsilon}_{i}\right)^{2}}{\sum_{i=1}^{n} \tilde{\varepsilon}_{i}^{2}}
$$

where

$$
\tilde{\varepsilon}_{1}=\sqrt{1-\hat{\rho}^{2}} \tilde{u}_{1}
$$

$$
\tilde{\varepsilon}_{i}=\tilde{u}_{i}-\hat{\rho} \tilde{u}_{i-1} \quad i=2, \ldots, n
$$

Mean Square Error

An estimate of the variance of ε_{t}

$$
M S E=\frac{\sum_{t=2}^{n}\left(\tilde{u}_{t}-\hat{\rho} \tilde{u}_{t-1}\right)^{2}}{n-2-p^{*}}
$$

Final Results

Iteration terminates if either all the parameters change by less than a specified value (default 0.001) or the number of iterations exceeds the cutoff value (default 10).

The following variables are computed for each case:

FIT
Fitted responses are computed as

$$
\tilde{y}_{1}=\hat{y}_{1}
$$

and

$$
\tilde{y}_{t}=\hat{y}_{t}+\hat{\rho} \hat{u}_{t-1} \quad t=2, \ldots, n
$$

in which $\hat{\rho}$ is the final estimate of ρ, and

$$
\begin{aligned}
& \hat{y}_{t}=\hat{a}+\sum_{i=1}^{p} \hat{b}_{i} x_{t i} \\
& \hat{u}_{t}=y_{t}-\hat{y}_{t} \quad t=1, \ldots, n
\end{aligned}
$$

Residuals are computed as

$$
\tilde{\varepsilon}_{t}=y_{t}-\tilde{y}_{t} \quad t=2, \ldots, n
$$

$$
\tilde{\varepsilon}_{1}=\sqrt{1-\hat{\rho}^{2}\left(y_{1}-\tilde{y}_{1}\right)}
$$

SEP
Standard error of predicted values at time t
$S E P_{1}=\sqrt{M S E} \sqrt{\left(\frac{1}{1-\hat{\rho}^{2}}+\tilde{h}_{1}\right)}$
and
$S E P_{t}=\sqrt{M S E} \sqrt{\left(1+\tilde{h}_{t}\right)} \quad t=2, \ldots, n$
where
$\tilde{h}_{i}=\mathbf{X}_{i}\left(\mathbf{X}^{* \prime} \mathbf{X}^{*}\right)^{-1} \mathbf{X}_{i}^{\prime}$
in which \mathbf{X}_{i} is the predictor vector at time i with the first component 1 if a constant term is included in equation (2*). \mathbf{X}^{*} is a $(n-1) \times p^{*}$ design matrix for equation (2*). The first column has value of $1-\hat{\rho}$ if a constant term is included in equation (2*).

LCL and UCL
95% prediction interval for the future y_{k} is
$\tilde{y}_{k} \pm t_{n-1-p^{*} ; 0.025} S E P_{k}$

Other Statistics
Other statistics such as Multiple R, R-Squared, Adjusted R-Squared, and so on, are computed. Consult the REGRESSION procedure for details.

Prais-Winsten Method

This method is a modification of the Cochrane-Orcutt method in that the first case gets explicit treatment. By adding an extra equation to $\left(2^{*}\right)$, the model has the form of

$$
\begin{align*}
& (1-\rho) y_{1}=a(1-\rho)+\sum_{i=1}^{p} b_{i}(1-\rho) x_{1 i}+(1-\rho) u_{1} \tag{4}\\
& y_{t}^{*}=a(1-\rho)+\sum_{i=1}^{p} b_{i} x_{t i}^{*}+\varepsilon_{t} \quad \text { for } t=2, \ldots, n
\end{align*}
$$

Like the Cochrane-Orcutt method, an initial value of ρ can be set by the user or a default value of zero can be used. The iterative process of estimating the parameters is performed via weighted least squares (WLS). The weights used in WLS computation are $w_{1}=\left(1-\hat{\rho}^{2}\right) /(1-\hat{\rho})^{2}$ and $w_{i}=1$ for $i=2, \ldots, n$. The computation of the variance of ε_{t} and the variance of $\hat{\rho}$ is the same as that of the WLS in the REGRESSION procedure.

Initial Results

The WLS method is used to obtain initial parameter estimates.

ANOVA
The degrees of freedom are p for regression and $n-p^{*}$ for residuals.

Intermediate Results

The formulas for RHO, SE Rho, DW, and MSE are exactly the same as those in the Cochrane-Orcutt method. The degrees of freedom for residuals, however, are $n-1-p^{*}$.

Final Results

SEP
Standard error of predicted value at time t is computed as

$$
S E P_{1}=\sqrt{M S E} \sqrt{\left(\frac{1}{1-\hat{\rho}^{2}}+\tilde{h}_{1}\right)}
$$

$$
S E P_{t}=\sqrt{M S E} \sqrt{\left(1+\tilde{h}_{t}\right)} \quad t=2, \ldots, n
$$

where \tilde{h} is computed as
$\tilde{h}_{i}=\mathbf{X}_{i}\left(\mathbf{X}^{*} \mathbf{X}^{*}\right)^{-1} \mathbf{X}_{i}^{\prime}$
in which \mathbf{X}_{i} is the predictor vector at time i and \mathbf{X}^{*} is a $n \times p^{*}$ design matrix for equation (4). If a constant term is included in the model, the first column of \mathbf{X}^{*} has a constant value of $1-\hat{\rho}$, the first row of \mathbf{X}^{*} is $\sqrt{w_{1}}\left(x_{11}, \ldots, x_{1 p}\right)$, and $p^{*}=p+1$.

LCL and UCL
95% prediction interval for y_{k} at time k is
$\tilde{y}_{k} \pm t_{n-p^{*} ; 0.025} S E P_{k}$

