Appendix 5: Significance Levels for Fisher's Exact Test ${ }^{1}$

The procedure described in this appendix is used to calculate the exact one-tailed and two-tailed significance levels of Fisher's exact test for a 2×2 table under the assumption of independence of rows and columns and conditional on the marginal totals. All cell counts are rounded to the nearest integers.

Background

Consider the following observed 2×2 table:

n_{1}	n_{2}	$n_{1}+n_{2}$
n_{3}	n_{4}	$n_{3}+n_{4}$
$+n_{3}$	$n_{2}+n_{4}$	N

Conditional on the observed marginal totals, the values of the four cell counts can be expressed as the observed count of the first cell n_{1} only. Under the hypothesis of independence, the count of the first cell N_{1} follows a hypergeometric distribution with the probability of $N_{1}=n_{1}$ given by
$\operatorname{Prob}\left(N_{1}=n_{1}\right)=\frac{\left(n_{1}+n_{2}\right)!\left(n_{3}+n_{4}\right)!\left(n_{1}+n_{3}\right)!\left(n_{2}+n_{4}\right)!}{N!n_{1}!n_{2}!n_{3}!n_{4}!}$
where N_{1} ranges from $\max \left(0, n_{1}-n_{4}\right)$ to $\min \left(n_{1}+n_{2}, n_{1}+n_{3}\right)$ and $N=n_{1}+n_{2}+n_{3}+n_{4}$.

The exact one-tailed significance level p_{1} is defined as
$p_{1}= \begin{cases}\operatorname{Prob}\left(N_{1} \geq n_{1}\right) & \text { if } n_{1}>E\left(N_{1}\right) \\ \operatorname{Prob}\left(N_{1} \leq n_{1}\right) & \text { if } n_{1} \leq E\left(N_{1}\right)\end{cases}$
${ }^{1}$ This algorithm applies to SPSS 6.1.2 and later releases.
where $E\left(N_{1}\right)=\left(n_{1}+n_{2}\right)\left(n_{1}+n_{3}\right) / N$.
The exact two-tailed significance level p_{2} is defined as the sum of the onetailed significance level p_{1} and the probabilities of all points in the other side of the sample space of N_{1} which are not greater than the probability of $N_{1}=n_{1}$.

Computations

To begin the computation of the two significance levels p_{1} and p_{2}, the counts in the observed 2×2 table are rearranged. Then the exact one-tailed and two-tailed significance levels are computed using the CDF.HYPER cumulative distribution function.

Table Rearrangement

The following steps are used to rearrange the table:

1. Check whether $n_{1}>E\left(N_{1}\right)$, which can be done by checking whether $n_{1} n_{4}>n_{2} n_{3}$. If so, rearrange the table so that the first cell contains the minimum of n_{2} and n_{3}, maintaining the row and column totals; otherwise, rearrange the table so that the first cell contains the minimum of n_{1} and n_{4}, again maintaining the row and column totals.
2. Without loss of generality, we assume that the count of the first cell is n_{1} after the above rearrangement. Calculate the first row total, the first column total, and the overall total, and name them SAMPLE, HITS, and TOTAL, respectively.

One-Tailed Significance Level

The following steps are used to calculate the one-tailed significance level:

1. If $T O T A L=0$, set the one-tailed significance level p_{1} equal to 1 ; otherwise, obtain p_{1} by using the CDF.HYPER cumulative distribution function with arguments $n_{1}, S A M P L E, H I T S$, and TOTAL.
2. Also calculate the probability of the first cell count equal to n_{1} by finding the difference between p_{1} and the value obtained from CDF.HYPER with $n_{1}-1$, SAMPLE, HITS, and TOTAL as its arguments, provided that $n_{1}>0$. Call this probability PEXACT.
3. If $n_{1}=0$, set PEXACT $=p_{1}$. PEXACT will be used in the next step to find the points for which the probabilities are not greater than PEXACT.

Two-Tailed Significance Level

The following steps are used to calculate the two-tailed significance level:

1. If $T O T A L=0$, set the two-tailed significance level p_{2} equal to 1 ; otherwise, start searching backwards from $\min \left(n_{1}+n_{2}, n_{1}+n_{3}\right)$ to $\left(n_{1}+1\right)$, and find the first point x with its point probability greater than PEXACT. (Notice that this backward search takes advantage of the unimodal property of the hypergeometric distribution.)
2. If such an x exists between $\min \left(n_{1}+n_{2}, n_{1}+n_{3}\right)$ and $\left(n_{1}+1\right)$, calculate the probability value obtained from CDF.HYPER with arguments x, SAMPLE, HITS, and TOTAL. Call this probability p_{x}.
3. The two-tailed significance level p_{2} is obtained by finding the sum of p_{1} and $\left(1-p_{x}\right)$. If no qualified x exists, the two-tailed significance level p_{2} is equal to 1 .
