Appendix 5: Significance Levels for Fisher's Exact Test¹

The procedure described in this appendix is used to calculate the exact one-tailed and two-tailed significance levels of Fisher's exact test for a 2×2 table under the assumption of independence of rows and columns and conditional on the marginal totals. All cell counts are rounded to the nearest integers.

Background

Consider the following observed 2×2 table:

<i>n</i> ₁	<i>n</i> ₂	$n_1 + n_2$
<i>n</i> ₃	n_4	$n_3 + n_4$
$n_1 + n_3$	$n_2 + n_4$	Ν

Conditional on the observed marginal totals, the values of the four cell counts can be expressed as the observed count of the first cell n_1 only. Under the hypothesis of independence, the count of the first cell N_1 follows a hypergeometric distribution with the probability of $N_1 = n_1$ given by

$$\operatorname{Prob}(N_1 = n_1) = \frac{(n_1 + n_2)!(n_3 + n_4)!(n_1 + n_3)!(n_2 + n_4)!}{N!n_1!n_2!n_3!n_4!}$$

where N_1 ranges from $\max(0, n_1 - n_4)$ to $\min(n_1 + n_2, n_1 + n_3)$ and $N = n_1 + n_2 + n_3 + n_4$.

The exact one-tailed significance level p_1 is defined as

$$p_1 = \begin{cases} \operatorname{Prob}(N_1 \ge n_1) & \text{if } n_1 > E(N_1) \\ \operatorname{Prob}(N_1 \le n_1) & \text{if } n_1 \le E(N_1) \end{cases}$$

¹ This algorithm applies to SPSS 6.1.2 and later releases.

where $E(N_1) = (n_1 + n_2)(n_1 + n_3) / N$.

The exact two-tailed significance level p_2 is defined as the sum of the onetailed significance level p_1 and the probabilities of all points in the other side of the sample space of N_1 which are not greater than the probability of $N_1 = n_1$.

Computations

To begin the computation of the two significance levels p_1 and p_2 , the counts in the observed 2×2 table are rearranged. Then the exact one-tailed and two-tailed significance levels are computed using the CDF.HYPER cumulative distribution function.

Table Rearrangement

The following steps are used to rearrange the table:

- 1. Check whether $n_1 > E(N_1)$, which can be done by checking whether $n_1n_4 > n_2n_3$. If so, rearrange the table so that the first cell contains the minimum of n_2 and n_3 , maintaining the row and column totals; otherwise, rearrange the table so that the first cell contains the minimum of n_1 and n_4 , again maintaining the row and column totals.
- 2. Without loss of generality, we assume that the count of the first cell is n_1 after the above rearrangement. Calculate the first row total, the first column total, and the overall total, and name them *SAMPLE*, *HITS*, and *TOTAL*, respectively.

One-Tailed Significance Level

The following steps are used to calculate the one-tailed significance level:

- 1. If TOTAL = 0, set the one-tailed significance level p_1 equal to 1; otherwise, obtain p_1 by using the CDF.HYPER cumulative distribution function with arguments n_1 , *SAMPLE*, *HITS*, and *TOTAL*.
- 2. Also calculate the probability of the first cell count equal to n_1 by finding the difference between p_1 and the value obtained from CDF.HYPER with $n_1 1$, *SAMPLE*, *HITS*, and *TOTAL* as its arguments, provided that $n_1 > 0$. Call this probability *PEXACT*.
- 3. If $n_1 = 0$, set *PEXACT* = p_1 . *PEXACT* will be used in the next step to find the points for which the probabilities are not greater than *PEXACT*.

Two-Tailed Significance Level

The following steps are used to calculate the two-tailed significance level:

- 1. If TOTAL = 0, set the two-tailed significance level p_2 equal to 1; otherwise, start searching backwards from $min(n_1 + n_2, n_1 + n_3)$ to $(n_1 + 1)$, and find the first point *x* with its point probability greater than *PEXACT*. (Notice that this backward search takes advantage of the unimodal property of the hypergeometric distribution.)
- 2. If such an x exists between $\min(n_1 + n_2, n_1 + n_3)$ and $(n_1 + 1)$, calculate the probability value obtained from CDF.HYPER with arguments x, SAMPLE, *HITS*, and *TOTAL*. Call this probability p_x .
- 3. The two-tailed significance level p_2 is obtained by finding the sum of p_1 and $(1-p_x)$. If no qualified *x* exists, the two-tailed significance level p_2 is equal to 1.