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ANACOR 

The ANACOR algorithm consists of three major parts: 

1. A singular value decomposition (SVD) 

2. Centering and rescaling of the data and various rescalings of the results 

3. Variance estimation by the delta method. 

Other names for SVD are “Eckart-Young decomposition” after Eckart and Young 
(1936), who introduced the technique in psychometrics, and “basic structure” 
(Horst, 1963). The rescalings and centering, including their rationale, are well 
explained in Benzécri (1969), Nishisato (1980), Gifi (1981), and Greenacre (1984). 
Those who are interested in the general framework of matrix approximation and 
reduction of dimensionality with positive definite row and column metrics are 
referred to Rao (1980). The delta method is a method that can be used for the 
derivation of asymptotic distributions and is particularly useful for the 
approximation of the variance of complex statistics. There are many versions of the 
delta method, differing in the assumptions made and in the strength of the 
approximation (Rao, 1973, ch. 6; Bishop et al., 1975, ch. 14; Wolter, 1985, ch. 6). 

Notation 
The following notation is used throughout this chapter unless otherwise stated: 

k1  Number of rows (row objects) 

k2  Number of columns (column objects) 

 p Number of dimensions 

Data-Related Quantities 

fij  Nonnegative data value for row i and column j: collected in table F 

fi+  Marginal total of row i, i k= 1 1, ,K  

f j+  Marginal total of column j, j k= 1 2, ,K  

 N Grand total of F 
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Scores and Statistics 

ris  Score of row object i on dimension s 

c js  Score of column object j on dimension s 

I Total inertia 

Basic Calculations 
One way to phrase the ANACOR objective (cf. Heiser, 1981) is to say that we wish 
to find row scores { }ris  and column scores { }c js  so that the function 

σ { };{ }r c f r cis js ij is js

sji

3 8 3 8= −∑∑∑ 2
 

is minimal, under the standardization restriction either that 

f r ri is it
st

i

+ =∑ δ  

or 

f c cj js jt
st

j

+ =∑ δ  

where δ st is Kronecker’s delta and t is an alternative index for dimensions. The 
trivial set of scores ({1},{1}) is excluded. 

The ANACOR algorithm can be subdivided into five steps, as explained below. 
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1. Data scaling and centering 

The first step is to form the auxiliary matrix Z with general element 

z
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2. Singular value decomposition 

Let the singular value decomposition of Z be denoted by 

Z K L= Λ ’  

with K K I’ = , L L I’ = , and Λ  diagonal. This decomposition is calculated by a 

routine based on Golub and Reinsch (1971). It involves Householder reduction to 

bidiagonal form and diagonalization by a QR procedure with shifts. The routine 

requires an array with more rows than columns, so when k k1 2<  the original table 

is transposed and the parameter transfer is permuted accordingly. 

3. Adjustment to the row and column metric 

The arrays of both the left-hand singular vectors and the right-hand singular vectors 
are adjusted row-wise to form scores that are standardized in the row and in the 
column marginal proportions, respectively: 

r k f N

c l f N
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js js j
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=

+

+

,

.

 

This way, both sets of scores satisfy the standardization restrictions simultaneously. 
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4. Determination of variances and covariances 

For the application of the delta method to the results of generalized eigenvalue 
methods under multinomial sampling, the reader is referred to Gifi (1981, ch. 12) 
and Israels&&  (1987, Appendix B). It is shown there that N time variance-covariance 

matrix of a function φ  of the observed cell proportions p p f Nij ij= => C  

asymptotically reaches the form 
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Here the quantities π ij  are the cell probabilities of the multinomial distribution, 

and ∂φ ∂pij  are the partial derivatives of φ  (which is either a generalized 

eigenvalue or a generalized eigenvector) with respect to the observed cell 

proportion. Expressions for these partial derivatives can also be found in the above-

mentioned references. 

5. Normalization of row and column scores 

Depending on the normalization option chosen, the scores are normalized, which 
implies a compensatory rescaling of the coordinate axes of the row scores and the 
column scores. The general formula for the weighted sum of squares that results 
from this rescaling is 

row scores:

column scores:

f r N q

f c N q
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The parameter q can be chosen freely or it can be specified according to the 
following designations: 

q =
−

%
&K
'K

0

1

1

,

,

,

canonical

row principal

column principal
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There is a fifth possibility, choosing the designation “principal,” that does not fit 

into this scheme. It implies that the weighted sum of squares of both sets of scores 

becomes equal to N sλ2 . The estimated variances and covariances are adjusted 

according to the type of normalization chosen. 

Diagnostics 
After printing the data, ANACOR optionally also prints a table of row profiles and 

column profiles, which are f fij i+> C  and f fij j+> C , respectively. 

Singular Values, Maximum Rank and Inertia 

All singular values λ s  defined in step 2 are printeopd up to a maximum of 

min ,k k1 21 1− −1 6 1 6< A . Small singular values and corresponding dimensions are 

suppressed when they don’t exceed the quantity k k1 2
1 2 7101 6 − ; in this case a 

warning message is issued. Dimensionwise inertia and total inertia are given by the 

relationships 

I
f r

Ns
i is

iss

= = +∑∑∑λ2
2

 

where the right-hand part of this equality is true only if the normalization is row 
principal (but for the other normalizations similar relationships are easily derived 
from step 5). The quantities “proportion explained” are equal to inertia divided by 

total inertia: λ s I2 . 

Scores and Contributions 

This output is given first for rows, then for columns, and always preceded by a 

column of marginal proportions (f Ni+  and f Nj+ , respectively). The table of 

scores is printed in p dimensions. The contribution to the inertia of each dimension 

is given by 
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The above formula is true only under the row principal normalization option. For 

the other normalizations, similar relationships are again easily derived from step 5. 
The contribution of dimensions to the inertia of each point is given by, for 
s t p, , ,= 1 K , 

σ
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Variances and Correlation Matrix of Singular Values and Scores 

The computation of variances and covariances is explained in step 4. Since the row 
and column scores are linear functions of the singular vectors, an adjustment is 
necessary depending on the normalization option chosen. From these adjusted 
variances and covariances the correlations are derived in the standard way. 

Permutations of the Input Table 

For each dimension s, let ρ i s2 7  be the permutation of the first k1  integers that 

would sort the sth column of ris; @  in ascending order. Similarly, let ρ j s2 7  be the 

permutation of the first k2  integers that would sort the sth column of c js> C  in 

ascending order. Then the permuted data matrix is given by f i s j sρ ρ2 7 2 7,
%&'

()* . 
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