2SLS

2SLS produces the two-stage least-squares estimation for a structure of simultaneous linear equations.

Notation

The following notation is used throughout this chapter unless otherwise stated:

р	Number of predictors
p_1	Number of endogenous variables among p predictors
p_2	Number of non-endogenous variables among p predictors
k	Number of instrument variables
n	Number of cases
У	$n \times 1$ vector which consists of a sample of the dependent variable
Z	$n \times p$ matrix which represents observed predictors
β	$p \times 1$ parameter vector
X	$n \times k$ matrix with element x_{ij} , which represents the observed value of the
	<i>j</i> th instrumental variable for case i
\mathbf{Z}_1	Submatrix of \mathbf{Z} with dimension $n \times p_1$, which represents observed endogenous variables
\mathbf{Z}_2	Submatrix of \mathbf{Z} with dimension $n \times p_2$, which represents observed non- endogenous variables
β_1	Subvector of $\boldsymbol{\beta}$ with parameters associated with \mathbf{Z}_1
β_2	Subvector of $\boldsymbol{\beta}$ with parameters associated with \boldsymbol{Z}_2

Model

The structure equations of interest are written in the form

$$\mathbf{y} = \mathbf{Z}\boldsymbol{\beta} = \begin{bmatrix} \mathbf{Z}_1, \mathbf{Z}_2 \end{bmatrix} \begin{bmatrix} \boldsymbol{\beta}_1 \\ \boldsymbol{\beta}_2 \end{bmatrix} + \boldsymbol{\varepsilon}$$

$$\mathbf{Z}_1 = \mathbf{X}\boldsymbol{\gamma} + \boldsymbol{\delta}$$
 (1)

where

$$\mathbf{Z} = \begin{bmatrix} \mathbf{Z}_1, \mathbf{Z}_2 \end{bmatrix}, \, \boldsymbol{\beta} = \begin{bmatrix} \boldsymbol{\beta}_1 \\ \boldsymbol{\beta}_2 \end{bmatrix}$$

and ε and δ are the disturbances with zero means and covariance matrices $\sigma^2 \mathbf{I}_n$ and $\varsigma^2 \mathbf{I}_n$, respectively.

Estimation

The estimation technique used was developed by Theil (1953, a, b). Let us first premultiply both sides of equation (1) by X' to obtain

$$\mathbf{X}'\mathbf{y} = \mathbf{X}'\mathbf{Z}\boldsymbol{\beta} + \mathbf{X}'\boldsymbol{\epsilon} \tag{2}$$

Since the disturbance vector has zero mean and covariance matrix $\sigma^2(\mathbf{X'X})$, it is easy to see that $(\mathbf{X'X})^{-\frac{1}{2}}\mathbf{X'}\varepsilon$ would have a covariance matrix $\sigma^2\mathbf{I}_n$. Thus, multiplying $(\mathbf{X'X})^{-\frac{1}{2}}$ to both sides of equation (2) results in a multiple linear regression model

$$\left(\mathbf{X}'\mathbf{X}\right)^{-\frac{1}{2}}\mathbf{X}'\mathbf{y} = \left(\mathbf{X}'\mathbf{X}\right)^{-\frac{1}{2}}\mathbf{X}'\mathbf{Z}\boldsymbol{\beta} + \left(\mathbf{X}'\mathbf{X}\right)^{-\frac{1}{2}}\mathbf{X}'\boldsymbol{\epsilon}$$
(3)

The ordinary least-square estimator $\hat{\beta}$ for β is

$$\hat{\boldsymbol{\beta}} = \left(\mathbf{Z}' \mathbf{X} (\mathbf{X}' \mathbf{X})^{-1} \mathbf{X}' \mathbf{Z} \right)^{-1} \mathbf{Z}' \mathbf{X} (\mathbf{X}' \mathbf{X})^{-1} \mathbf{X}' \mathbf{y}$$

Computation Details

• 2SLS constructs a matrix **R**,

$$\mathbf{R} = \begin{bmatrix} \mathbf{1} & \mathbf{V'} \\ \mathbf{V} & \mathbf{M} \end{bmatrix}$$

where

$$\mathbf{M} = \mathbf{C}_{zx} (\mathbf{C}_{xx})^{-1} \mathbf{C}'_{zx}$$
$$\mathbf{V} = \mathbf{C}_{zx} (\mathbf{C}_{xx})^{-1} \mathbf{C}'_{xy}$$

and C_{zx} is the correlation matrix between **Z** and **X**, and C_{xx} is the correlation matrix among instrumental variables.

- Sweep the matrix **R** to obtain regression coefficient estimate for β .
- Compute sum of the squares of residuals (SSE) by

$$y'y - uZ'y - y'Zu' + uZ'Zu'$$

where

$$\mathbf{u} = \mathbf{y'X}(\mathbf{X'X})^{-1}\mathbf{X'z} \left[\mathbf{z'X}(\mathbf{X'X})^{-1}\mathbf{X'z}\right]^{-1}$$

• Compute the statistics for the ANOVA table and for variables in the equation. Details can be found in REGRESSION.

References

Theil, H. 1953a. *Repeated least square applied to complete equation systems*. The Hague: Central Planning Bureau.

Theil, H. 1953b. *Estimation and simultaneous correlation in complete equation systems*. The Hague: Central Planning Bureau.