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2SLS 

2SLS produces the two-stage least-squares estimation for a structure of 
simultaneous linear equations. 

Notation 
The following notation is used throughout this chapter unless otherwise stated: 

 
p  Number of predictors 

p1  Number of endogenous variables among p  predictors 

p2  Number of non-endogenous variables among p  predictors 

k  Number of instrument variables 

n  Number of cases 
y  n �1 vector which consists of a sample of the dependent variable 

Z  n p�  matrix which represents observed predictors 

β  p �1 parameter vector 

X  n k�  matrix with element xij , which represents the observed value of the 

jth instrumental variable for case i  

Z1 Submatrix of Z  with dimension n p� 1 , which represents observed 

endogenous variables 

Z2  Submatrix of Z  with dimension n p� 2 , which represents observed non-

endogenous variables 

β1 Subvector of β  with parameters associated with Z1  

β2  Subvector of β  with parameters associated with Z2  
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Model 
The structure equations of interest are written in the form 
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and ε  and δ  are the disturbances with zero means and covariance matrices σ 2In  

and ς 2In , respectively. 

Estimation 
The estimation technique used was developed by Theil (1953, a, b). Let us first 
premultiply both sides of equation (1) by ′X  to obtain 

� = � + �X y X Z Xβ ε   (2) 

Since the disturbance vector has zero mean and covariance matrix σ 2 �X X1 6, it is 

easy to see that � �-X X X1 6 1
2 ε  would have a covariance matrix σ 2In . Thus, 

multiplying ′ −X X1 6 1
2  to both sides of equation (2) results in a multiple linear 

regression model 
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The ordinary least-square estimator $β  for β  is 
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$β = � � � � � �-
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-Z X X X X Z Z X X X X y1 64 9 1 61 1 1  

Computation Details 
• 2SLS constructs a matrix R, 

R
1 V

V M
=

′�
! 

"
$#  

where 

M C C C

V C C C

= ′

= ′

−

−
zx xx zx

zx xx xy

1 6
1 6

1

1
 

and Czx  is the correlation matrix between Z and X, and Cxx  is the correlation 

matrix among instrumental variables. 

• Sweep the matrix R to obtain regression coefficient estimate for β . 

• Compute sum of the squares of residuals (SSE) by 

′ − ′ − ′ ′ + ′ ′y y uZ y y Zu uZ Zu  

where 

u y X X X X z z X X X X z= ′ ′ ′ ′ ′ ′− − −1 6 1 61 1 1
 

• Compute the statistics for the ANOVA table and for variables in the equation. 
Details can be found in REGRESSION. 
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