2SLS produces the two-stage least-squares estimation for a structure of simultaneous linear equations.

Notation

The following notation is used throughout this chapter unless otherwise stated:

p	Number of predictors
p_{1}	Number of endogenous variables among p predictors
p_{2}	Number of non-endogenous variables among p predictors
k	Number of instrument variables
n	Number of cases
y	$n \times 1$ vector which consists of a sample of the dependent variable
Z	$n \times p$ matrix which represents observed predictors
β	$p \times 1$ parameter vector
X	$n \times k$ matrix with element $x_{i j}$, which represents the observed value of the j th instrumental variable for case i
\mathbf{Z}_{1}	Submatrix of \mathbf{Z} with dimension $n \times p_{1}$, which represents observed endogenous variables
\mathbf{Z}_{2}	Submatrix of \mathbf{Z} with dimension $n \times p_{2}$, which represents observed nonendogenous variables
β_{1}	Subvector of β with parameters associated with \mathbf{Z}_{1}
β_{2}	Subvector of β with parameters associated with \mathbf{Z}_{2}

Model

The structure equations of interest are written in the form

$$
\begin{align*}
& \mathbf{y}=\mathbf{Z} \beta=\left[\mathbf{Z}_{1}, \mathbf{Z}_{2}\right]\left[\begin{array}{l}
\beta_{1} \\
\beta_{2}
\end{array}\right]+\varepsilon \\
& \mathbf{Z}_{1}=\mathbf{X} \boldsymbol{\gamma}+\delta \tag{1}
\end{align*}
$$

where

$$
\mathbf{Z}=\left[\mathbf{Z}_{1}, \mathbf{Z}_{2}\right], \beta=\left[\begin{array}{l}
\beta_{1} \\
\beta_{2}
\end{array}\right]
$$

and ε and δ are the disturbances with zero means and covariance matrices $\sigma^{2} \mathbf{I}_{n}$ and $\varsigma^{2} \mathbf{I}_{n}$, respectively.

Estimation

The estimation technique used was developed by Theil (1953, a, b). Let us first premultiply both sides of equation (1) by \mathbf{X}^{\prime} to obtain

$$
\begin{equation*}
\mathbf{X}^{\prime} \mathbf{y}=\mathbf{X}^{\prime} \mathbf{Z} \beta+\mathbf{X}^{\prime} \varepsilon \tag{2}
\end{equation*}
$$

Since the disturbance vector has zero mean and covariance matrix $\sigma^{2}\left(\mathbf{X}^{\prime} \mathbf{X}\right)$, it is easy to see that $\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-\frac{1}{2}} \mathbf{X}^{\prime} \varepsilon$ would have a covariance matrix $\sigma^{2} \mathbf{I}_{n}$. Thus, multiplying $\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-\frac{1}{2}}$ to both sides of equation (2) results in a multiple linear regression model

$$
\begin{equation*}
\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-\frac{1}{2}} \mathbf{X}^{\prime} \mathbf{y}=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-\frac{1}{2}} \mathbf{X}^{\prime} \mathbf{Z} \beta+\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-\frac{1}{2}} \mathbf{X}^{\prime} \boldsymbol{\varepsilon} \tag{3}
\end{equation*}
$$

The ordinary least-square estimator $\hat{\beta}$ for β is
$\hat{\beta}=\left(\mathbf{Z}^{\prime} \mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{Z}\right)^{-1} \mathbf{Z} \mathbf{Z} \mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{y}$

Computation Details

- 2 SLS constructs a matrix \mathbf{R},
$R=\left[\begin{array}{ll}\mathbf{1} & \mathbf{V}^{\prime} \\ \mathbf{V} & \mathbf{M}\end{array}\right]$
where
$\mathbf{M}=\mathbf{C}_{z x}\left(\mathbf{C}_{x x}\right)^{-1} \mathbf{C}_{z x}^{\prime}$
$\mathbf{V}=\mathbf{C}_{z x}\left(\mathbf{C}_{x x}\right)^{-1} \mathbf{C}_{x y}^{\prime}$
and $\mathbf{C}_{z x}$ is the correlation matrix between \mathbf{Z} and \mathbf{X}, and $\mathbf{C}_{x x}$ is the correlation matrix among instrumental variables.
- Sweep the matrix \mathbf{R} to obtain regression coefficient estimate for β.
- Compute sum of the squares of residuals (SSE) by
$\mathbf{y}^{\prime} \mathbf{y}-\mathbf{u Z} \mathbf{\prime} \mathbf{y}-\mathbf{y}^{\prime} \mathbf{Z u}^{\prime}+\mathbf{u Z} \mathbf{Z}^{\prime} \mathbf{Z u} \mathbf{u}^{\prime}$
where
$\mathbf{u}=\mathbf{y}^{\prime} \mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{z}\left[\mathbf{Z}^{\prime} \mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{z}\right]^{-1}$
- Compute the statistics for the ANOVA table and for variables in the equation. Details can be found in REGRESSION.

References

Theil, H. 1953a. Repeated least square applied to complete equation systems. The Hague: Central Planning Bureau.

Theil, H. 1953b. Estimation and simultaneous correlation in complete equation systems. The Hague: Central Planning Bureau.

