
1

Universals
This part of the SPSS Base Syntax Reference Guide discusses general topics pertinent to us-
ing command syntax. The topics are divided into five sections:

• Commands explains command syntax, including command specification, command or-
der, and running commands in different modes. In this section, you will learn how to
read syntax charts, which summarize command syntax in diagrams and provide an easy
reference. Discussions of individual commands are found in an alphabetical reference in
the next part of this manual.

• Files discusses different types of files used by the program. Terms frequently mentioned
in this manual are defined. This section provides an overview of how files are handled.

• Variables contains important information on general rules and conventions concerning
variables and variable definition. In this section, you will find detailed information on
variable formats.

• Transformation Expressions describes expressions that can be used in data transforma-
tion. Functions and operators are defined and illustrated. In this section, you will find a
complete list of available functions and how to use them.

• Date and Time deals with functions and formats used with date and time expressions. In
this section, you will find ways to read and convert date and time, use them in analysis,
and display them in output.

Commands

Commands are the instructions that you give the program to initiate an action. For the pro-
gram to interpret your commands correctly, you must follow certain rules.

Syntax Diagrams

Each command described in this manual includes a syntax diagram that shows all the sub-
commands, keywords, and specifications allowed for that command. By recognizing sym-
bols and different type fonts, you can use the syntax diagram as a quick reference for any
command. Figure 1 is an example.

• Lines of text in italics indicate limitation or operation mode of the command.
• Elements shown in upper case are keywords defined by SPSS to identify commands,

subcommands, functions, operators, and other specifications. In Figure 1, T-TEST is the
command and GROUPS is a subcommand.

• Elements in lower case describe specifications you supply. For example, varlist indicates
that you need to supply a list of variables.

• Elements in bold are defaults. SPSS supports two types of defaults. When the default is
followed by **, as ANALYSIS** in Figure 1, the default (ANALYSIS) is in effect if the sub-

2 Commands

command (MISSING) is not specified. If a default is not followed by **, it is in effect when
the subcommand (or keyword) is specified by itself.

• Parentheses, apostrophes, and quotation marks are required where indicated.
• Elements enclosed in square brackets ([]) are optional. Wherever brackets would confuse

the format, they are omitted. The command description explains which specifications are
required and which are optional.

• Braces ({ }) indicate a choice between elements. You can specify any one of the elements
enclosed within the aligned braces.

• Ellipses indicates that you can repeat an element in the specification. The specification

T-TEST PAIRS=varlist [WITH varlist [(PAIRED)]] [/varlist ...]

means that you can specify multiple variable lists with optional WITH variables and key-
word PAIRED in parentheses.

• Most abbreviations are obvious; for example, varname stands for variable name and varlist
stands for a variable list.

• The command terminator is not shown in the syntax diagram.

Command Specification

The following rules apply to all commands:

• Commands begin with a keyword that is the name of the command and often have addi-
tional specifications, such as subcommands and user specifications. Refer to the discus-
sion of each command to see which subcommands and additional specifications are
required.

• Commands and any command specifications can be entered in upper and lower case.
Commands, subcommands, keywords, and variable names are translated to upper case

Figure 1 Syntax diagram

Independent samples:

T-TEST GROUPS=varname ({1,2** }) /VARIABLES=varlist
 {value }
 {value,value}

 [/MISSING={ANALYSIS**} [INCLUDE]]
 {LISTWISE }

 [/FORMAT={LABELS**}]
 {NOLABELS}

Paired samples:

T-TEST PAIRS=varlist [WITH varlist [(PAIRED)]] [/varlist ...]

 [/MISSING={ANALYSIS**} [INCLUDE]]
 {LISTWISE }

 [/FORMAT={LABELS**}]
 {NOLABELS}

**Default if the subcommand is omitted.

Default (in bold)

Keywords (in all capitals)

Alternatives (in aligned { })

Note

Repeatable elements (with ...)

Parentheses (cannot be omitted)

User specification (in lower case)

Subgrouping (in italics)

Optional specification (in [])

Commands 3

before processing. All user specifications, including labels and data values, preserve up-
per and lower case.

• Spaces can be added between specifications at any point where a single blank is allowed.
In addition, lines can be broken at any point where a single blank is allowed. There are
two exceptions: the END DATA command can have only one space between words, and
string specifications on commands such as TITLE, SUBTITLE, VARIABLE LABELS, and
VALUE LABELS can be broken across two lines only by specifying a + between string seg-
ments (see “String Values in Command Specifications” on p. 5).

• The first word of a command can be abbreviated to a minimum of three letters provided
no duplicates result. For example, AGGREGATE can be abbreviated to AGG, but
COMPUTE can only be abbreviated to COMP to avoid confusion with COMMENT. A very
small number of commands can duplicate an internal command when abbreviated to three
characters (for example, LIST) and at least four characters should be used. For internal
command structure, DATA LIST cannot be abbreviated.

• If the first word of a multiple-word command has a duplicate (for example, FILE LABEL
and FILE TYPE), the first word cannot be abbreviated.

• All keywords after the first command word can be abbreviated to three characters. For ex-
ample, ADD VAL LAB is a valid abbreviation for ADD VALUE LABELS, and EXA VAR=varlist
is valid for EXAMINE VARIABLES=varlist. END DATA is an exception: you must spell both
command keywords in full; END DAT is not a valid abbreviation for END DATA.

• Three-character truncation does not apply to INFO command specifications. Spell out all
keywords in full. For procedure names specified on INFO, spell out the first word in full
and subsequent words through at least the first three characters.

Running Commands

You can run commands in either batch (production) or interactive mode. In batch mode, com-
mands are read and acted upon as a batch, so the system knows that a command is complete
when it encounters a new command. In interactive mode, commands are executed immediately,
and you must use a command terminator to tell SPSS when a command is complete.

Interactive Mode

The following rules apply to command specifications in interactive mode:

• Each command ends with a command terminator. The default command terminator is a
period. It is best to omit the terminator on BEGIN DATA, however, so that inline data is
treated as one continuous specification.

• The command terminator must be the last nonblank character in a command.

• Commands can begin in any column of a command line and continue for as many lines
as needed. The exception is the END DATA command, which must begin in the first column
of the first line after the end of data.

• The maximum length of any command line is 80 characters, including the prompt and the
command terminator.

You should observe interactive rules when you:

4 Commands

• Submit commands from a syntax window or with an SPSS Manager, either one command
at a time or as a group.

• Enter commands at a command prompt on those systems that run prompted sessions.

See the SPSS Base User’s Guide for your version of SPSS for more information.

Batch (Production) Mode

The following rules apply to command specifications in batch or production mode:

• All commands in the command file must begin in column 1. You can use plus (+) or mi-
nus (−) signs in the first column if you want to indent the command specification to make
the command file more readable.

• If multiple lines are used for a command, column 1 of each continuation line must be
blank.

• Command terminators are optional.

• An asterisk (*) in the first column indicates a comment line (see the COMMENT command).

You should observe batch rules when you:

• Construct a command file for use with the Production Facility.
• Construct a command file that will be submitted to your operating system for execution.

• Construct a command file that will be included with the INCLUDE command. You can in-
clude a command file when you are working in interactive mode. The included command
file, however, must follow batch rules.

The way you submit a command file for execution varies from operating system to operating
system. Command files do not necessarily need to be submitted to a batch queue, although they
can be on operating systems that have a batch queue. In batch mode, the commands in the file
are executed one after the other, and output is displayed when all commands are executed.

The following is a sample command file:

GET FILE=BANK.SAV /KEEP ID TIME SEX JOBCAT SALBEG SALNOW
 /RENAME SALNOW = SAL90.

DO IF TIME LT 82.
+ COMPUTE RATE=0.05.
ELSE.
+ COMPUTE RATE=0.04.
END IF.

COMPUTE SALNOW=(1+RATE)*SAL90.

EXAMINE VARIABLES=SALNOW BY SEX /PLOT=NONE.

Subcommands

Many commands include additional specifications called subcommands for locating data,
handling data, and formatting the output.

Commands 5

• Subcommands begin with a keyword that is the name of the subcommand. Some subcom-
mands include additional specifications.

• A subcommand keyword is separated from its specifications, if any, by an equals sign. The
equals sign is usually optional but is required where ambiguity is possible in the specifica-
tion. To avoid ambiguity, it is best to use the equals signs as shown in the syntax diagrams
in this manual.

• Most subcommands can be named in any order. However, some commands require a spe-
cific subcommand order. The description of each command includes a section on sub-
command order.

• Subcommands are separated from each other by a slash. To avoid ambiguity, it is best to
use the slashes as shown in the syntax diagrams in this manual.

Keywords

Keywords identify commands, subcommands, functions, operators, and other specifications
in SPSS.
• Keywords, including commands and subcommands, can often be truncated to the first

three characters of each word. An exception is the keyword WITH, which must be spelled
in full. See “Command Specification” on p. 2 for additional rules for three-character trun-
cation of commands.

• Keywords identifying logical operators (AND, OR, and NOT), relational operators (EQ,
GE, GT, LE, LT, and NE), and ALL, BY, TO, and WITH are reserved words and cannot be
used as variable names.

Values in Command Specifications

Values specified in commands follow the following rules:

• A single lowercase character in the syntax diagram, for example, n, w, or d, indicates a
user-specified value.

• The value can be an integer or a real number within a restricted range, as required by the
specific command or subcommand. For exact restrictions, read the individual command
description.

• A number specified as an argument to a subcommand can be entered with or without lead-
ing zeros.

String Values in Command Specifications

• Each string specified in a command should be enclosed in a set of apostrophes or quota-
tion marks.

• To specify an apostrophe within a string, either use quotation marks to enclose the string
or specify double apostrophes. Both of the following specifications are valid:

’Client’’s Satisfaction’

"Client’s Satisfaction"

6 Commands

• To specify quotation marks within a string, use apostrophes to enclose the string:

’Categories Labeled "UNSTANDARD" in the Report’

• String specifications can be broken across command lines by specifying each string seg-
ment within apostrophes or quotes and using a + sign to join segments. For example,

’One, Two’

can be specified as

’One,’
+ ’ Two’

The plus sign can be specified on either the first or the second line of the broken string.
Any blanks separating the two segments must be enclosed within one or the other string
segment.

• Blanks within apostrophes or quotation marks are significant.

Delimiters

Delimiters are used to separate data values, keywords, arguments, and specifications.

• A blank is usually used to separate one specification from another, except when another
delimiter serves the same purpose or when a comma is required.

• Commas are required to separate arguments to functions. Otherwise, blanks are generally
valid substitutes for commas.

• Arithmetic operators (+, -, *, and /) serve as delimiters in expressions.

• Blanks can be used before and after operators or equals signs to improve readability, but
commas cannot.

• Special delimiters include parentheses, apostrophes, quotation marks, the slash, and the
equals sign. Blanks before and after special delimiters are optional.

• The slash is used primarily to separate subcommands and lists of variables. Although
slashes are sometimes optional, it is a good practice to enter them as shown in the syntax
diagrams.

• The equals sign is used between a subcommand and its specifications, as in STATISTICS=
MEAN, and to show equivalence, as in COMPUTE target variable=expression. Equals signs
following subcommands are frequently optional, but it is best to enter them for clarity.

Command Order

Command order is more often than not a matter of common sense and follows the following
logical sequence: variable definition, data transformation, and statistical analysis. For exam-
ple, you cannot label, transform, analyze, or use a variable in any way before it exists. The
following general rules apply:

• Commands that define variables for a session (DATA LIST, GET, MATRIX DATA, etc.) must
precede commands that assign labels or missing values to those variables; they must also
precede transformation and procedure commands that use those variables.

Commands 7

• Transformation commands (IF, COUNT, COMPUTE, etc.) that are used to create and mod-
ify variables must precede commands that assign labels or missing values to those vari-
ables, and they must also precede the procedures that use those variables.

• Generally, the logical outcome of command processing determines command order. For
example, a procedure that creates new variables in the working data file must precede a
procedure that uses those new variables.

• Some commands, such as REREAD and END CASE, can appear only in an input program
where the cases are created. Other commands, such as SELECT IF, can appear only in a
transformation program after cases have been created. Still other commands, such as
COMPUTE, can appear in an input or transformation program. For a discussion of these
program states and command order, see Appendix A.

In addition to observing the rules above, it is important to distinguish between commands
that cause the data to be read and those that do not. Table 1 shows the commands that cause
the data to be read. Most of the remaining commands (those that do not cause the data to be
read) do not take effect immediately; they are read but are not executed until a command that
causes the data to be read is encountered in the command sequence. This avoids unnecessary
passes through the data.

Transformation commands that alter the dictionary of the working data file, such as
MISSING VALUES, and commands that do not affect the working data, such as SET, SHOW,
and DISPLAY, take effect as soon as they are encountered in the command sequence, re-

Table 1 Commands that cause the data to be read*

* This table shows the procedures in the SPSS Base system and the Professional Statistics and
Advanced Statistics options; it does not show commands in other SPSS options, such as SPSS
Tables or SPSS Trends.

AGGREGATE FREQUENCIES PARTIAL CORR
ALSCAL GRAPH PLOT
ANOVA HILOGLINEAR PROBIT
AUTORECODE IMPORT PROXIMITIES
BEGIN DATA LIST QUICK CLUSTER
CLUSTER LOGISTIC REGRESSION RANK
CNLR LOGLINEAR REGRESSION
CORRELATIONS MANOVA RELIABILITY
CROSSTABS MATRIX REPORT
DESCRIPTIVES MCONVERT SAVE
DISCRIMINANT MEANS SAVE SCSS
EXAMINE MULTIPLE RESPONSE SAVE TRANSLATE
EXECUTE NLR SORT
EXPORT NONPAR CORR SURVIVAL
FACTOR NPAR TESTS T-TEST
FLIP ONEWAY

8 Commands

gardless of conditional statements that precede them. Table 2 lists all transformation
commands that take effect immediately.

Since these transformations take effect regardless of the conditional statements that precede
them, they cannot be applied selectively to individual cases, as shown in the following example:

DO IF AGE>69.
MISSING VALUES INCOME EXPENSES (0).
ELSE.
COMPUTE PROFIT=INCOME-EXPENSES.
END IF.
LIST.

The MISSING VALUES command is in effect when COMPUTE is executed, even if the condi-
tion defined on DO IF is false. To treat 0 income and expenses as missing only for those older
than 69, use RECODE in the DO IF—END IF structure to selectively recode 0 to a negative
number and declare the negative number as missing:

MISSING VALUES INCOME EXPENSES (-1).
DO IF (AGE>69).
RECODE INCOME EXPENSES (0=-1).
END IF.
COMPUTE PROFILE=INCOME-EXPENSES.
LIST.

In addition, the order of transformations that take effect immediately in the command se-
quence can be misleading. Consider the following:

COMPUTE PROFIT=INCOME-EXPENSES.
MISSING VALUES INCOME EXPENSES (0).
LIST.

• COMPUTE precedes MISSING VALUES and is processed first; however, execution is de-
layed until the data are being read.

• MISSING VALUES takes effect as soon as it is encountered.
• LIST causes the data to be read; thus, SPSS executes both COMPUTE and LIST during the

same data pass. Because MISSING VALUES is already in effect by this time, all cases with
the value 0 for either INCOME or EXPENSES return a missing value for PROFIT.

To prevent the MISSING VALUES command from taking effect before COMPUTE is execut-
ed, you must position MISSING VALUES after the LIST command. Alternatively, place an
EXECUTE command between COMPUTE and MISSING VALUES.

Table 2 Transformation commands that take effect immediately

ADD VALUE LABELS PRINT FORMATS
DOCUMENT SPLIT FILE
DROP DOCUMENTS STRING
FORMATS VALUE LABELS
LEAVE VARIABLE LABELS
MISSING VALUES VECTOR
N OF CASES WEIGHT
NUMERIC WRITE FORMATS

9

Files

SPSS reads, creates, and writes different types of files. This section provides an overview
of the types of files used in SPSS and discusses concepts and rules that apply to all files.
Conventions for naming, printing, deleting, or permanently saving files, and for submitting
command files for processing, differ from one computer and operating system to another.
For specific information, consult the SPSS Base User’s Guide for your version of SPSS.

Command File

Command files contain commands, sometimes with inline data. They can be created by a
text editor. Wherever SPSS allows you to paste commands, either in a syntax window or
with an SPSS manager, the resulting file is a command file. You can also edit a journal file
to produce a command file (see “Journal File” below). The following is an example of a
simple command file that contains both commands and inline data:

DATA LIST /ID 1-3 SEX 4 (A) AGE 5-6 OPINION1 TO OPINION5 7-11.
BEGIN DATA
001F2621221
002M5611122
003F3422212
329M2121212
END DATA.
LIST.

• Case does not matter for commands but is significant for inline data. If you specified f
for female and m for male in column 4 of the data line, the value of SEX would be f or
m, instead of F or M as it is now.

• Commands can be in upper or lower case. Uppercase characters are used for all com-
mands throughout this manual only to distinguish them from other text.

Journal File

SPSS keeps a journal file to record all commands either entered in the Syntax window or
generated from a dialog box during a session. You can retrieve this file with any text editor
and review it to learn how the session went. You can also edit the file to build a new com-
mand file and use it in another run. An edited and tested journal file can be saved and used
later for repeated tasks. The journal file also records any error or warning messages gener-
ated by commands. You can rerun these commands after making corrections and removing
the messages.

The default name for the journal file is SPSS.JNL on most operating systems. You can
turn off the journal or assign a different name to it (see SET). SPSS erases an existing jour-
nal file with the default name when it starts a new session. If you want to save a journal file
for future use, rename it before you start another session. On some operating systems, SPSS
allows you to overwrite or append to journals from a previous session. Consult the SPSS
Base User’s Guide for your version of SPSS for specific information. Figure 2 is a journal
file for a short session with a warning message.

10 Universals

• The warning message, marked by the > symbol, tells you that an invalid numeric field has
been found. Checking the last data line, you will notice that column 10 is L, which is prob-
ably a typographic error. You can correct the typo (for example, by changing the L to 1),
delete the warning message, and submit the file again.

Data Files

SPSS is capable of reading and writing a wide variety of data file formats, including raw
data files created by a data entry device or a text editor, formatted data files produced by a
data management program, data files generated by other software packages, and SPSS-for-
mat data files.

Raw Data File

Raw data files contain only data, either generated by a programming language, such as
COBOL, FORTRAN, and ASSEMBLER, or entered with a data entry device or a text
editor. SPSS can read raw data arranged in almost any format, including raw matrix mate-
rials and nonprintable codes. User-entered data can be imbedded within a command file as
inline data or saved on tape or disk as an external file. Nonprintable machine codes are usu-
ally stored in an external file.

Raw data must be defined before they can be used by procedures. Data definition com-
mands such as DATA LIST, KEYED DATA LIST, and MATRIX DATA can be used to read in raw
data. Appropriate input formats must be specified on these commands (see “Variable For-
mats” on p. 22). If for some reason you need to write a raw data file, use the WRITE command
or specify WRITE on a procedure with that subcommand. On most operating systems, the de-
fault extension of a raw data file produced by SPSS is .DAT.

Figure 2 Records from a journal file
DATA LIST /ID 1-3 SEX 4 (A) AGE 5-6 OPINION1 TO OPINION5 7-11.
BEGIN DATA
001F2621221
002M5611122
003F3422212
004F45112L2
>Warning # 1102
>An invalid numeric field has been found. The result has been set to the
>system-missing value.
END DATA.
LIST.

Files 11

Files from Other Software Applications

You can read files from a variety of other software applications, including dBASE, Lotus,
SYLK, and Excel. You can also read simple tab-delimited spreadsheet files. Use GET TRANS-
LATE with different TYPE specifications to read files from common spreadsheet and database
programs. To produce data files for these programs, use SAVE TRANSLATE.

Consult the SPSS Base User’s Guide for your version of SPSS for the types of files (if
any) that your system can read and write.

SPSS-Format Data File

An SPSS-format data file is a file specifically formatted for use by SPSS, containing both
data and the dictionary that defines the data. The dictionary contains names for the variables,
formats for reading and displaying values, and optional variable and value labels and miss-
ing-value specifications. SPSS-format data files are created by using a SAVE or XSAVE com-
mand during a session. The default extension of a saved SPSS-format data file is .SAV. An
SPSS-format data file can also be a matrix file created with the MATRIX=OUT subcommand
on procedures that write matrices.

To retrieve an SPSS-format data file, use GET. SPSS-format data files speed processing
and are required as input for combining files during a session. For a discussion of the struc-
ture of SPSS-format data files, see “SPSS Data File Structure” on p. 12.

SPSS Portable File

A portable file contains all of the data and dictionary information stored in the working data
file but is specially formatted for transporting files between installations with different ver-
sions of SPSS (such as the PRIME, VAX, or HONEYWELL GCOS computers) or for trans-
porting files between SPSS, SPSS/PC+, and other software using the same portable file
format. Use IMPORT to read a portable file and EXPORT to save the working data file as a
portable file. On most operating systems, the default extension of a saved portable file is
.POR. Since a portable file needs conversion, it is always simpler to transport a file as an
SPSS-format data file whenever possible.

Working Data File

The working data file is the data file you build to use in the current session. You can retrieve
an SPSS-format data file using GET, which in effect makes a working copy of the specified
file. You can also build a new file with DATA LIST or other data definition commands.

The working data file is not created until SPSS encounters a command (usually a proce-
dure) that causes it to read the data (see Table 1 on p. 7). At that point, SPSS executes all of
the preceding data definition and transformation commands and the command that causes the
data to be read. The working data file is then available for further transformations and pro-
cedures, and it remains available until replaced by a new working data file or until the end of
the session.

Some procedures can add variables to the working data file. Others, such as AGGREGATE
and procedures that write matrix materials, can replace the working data file.

12 Universals

Any transformations and statistical analyses you request during a session are performed
on the working data file. Transformations performed during a session apply to the working
data file only. Changes to the file are lost if the working data file is erased or replaced before
you have saved it. See SAVE and XSAVE.

SPSS Data File Structure

An SPSS-format data file is a self-documented file containing data and descriptive informa-
tion. The descriptive information is called the dictionary. It contains variable names and lo-
cations, variable and value labels, print and write formats, and missing-value indicators. To
use an SPSS-format data file, you must retrieve it with GET, which creates a working data
file from the SPSS-format data file. Only a few commands can use an SPSS-format data file
directly without first specifying GET; they include MATCH FILES, ADD FILES, and procedures
that can read SPSS matrix data files.

To view the contents of an SPSS-format data file, retrieve it with GET and then use LIST
to display the variables in the working data file. Figure 3 shows a partial listing of a working
file. The values are displayed using their print format, which is different from the way they
are internally stored.

The dictionary is created when an SPSS-format data file is built. You can display or modify
the dictionary of a working file. Use DISPLAY DICTIONARY to view the dictionary, and use
commands such as VARIABLE LABELS, VALUE LABELS, and MISSING VALUES to modify spe-
cific information contained in the dictionary. Figure 4 shows part of the displayed dictionary
information of the working data file displayed in Figure 3.

Figure 3 Part of a listed working data file
 ID SALBEG SEX TIME AGE SALNOW EDLEVEL WORK JOBCAT MINORITY SEXRACE

 628 8400 0 81 28.50 16080 16 .25 4 0 1.00
 630 24000 0 73 40.33 41400 16 12.50 5 0 1.00
 632 10200 0 83 31.08 21960 15 4.08 5 0 1.00
 633 8700 0 93 31.17 19200 16 1.83 4 0 1.00
 635 17400 0 83 41.92 28350 19 13.00 5 0 1.00
 637 12996 0 80 29.50 27250 18 2.42 4 0 1.00
 641 6900 0 79 28.00 16080 15 3.17 1 0 1.00
 649 5400 0 67 28.75 14100 15 .50 1 0 1.00
 650 5040 0 96 27.42 12420 15 1.17 1 0 1.00
 652 6300 0 77 52.92 12300 12 26.42 3 0 1.00
 653 6300 0 84 33.50 15720 15 6.00 1 0 1.00
 656 6000 0 88 54.33 8880 12 27.00 1 0 1.00
 657 10500 0 93 32.33 22000 17 2.67 4 0 1.00
 658 10800 0 98 41.17 22800 15 12.00 5 0 1.00

Files 13

SPSS Matrix Data Files

An SPSS matrix data file is similar to any SPSS-format data file. It is a self-documented file
containing data and descriptive information. The descriptive information, stored in the file
dictionary, includes variable names, variable print and write formats, and optional variable
and value labels. You can assign or change the names, labels, and formats of the variables in
a matrix data file, just as you can in any SPSS-format data file. Many procedures can read raw
matrix data and write a representative matrix of the data values to an SPSS matrix data file,
which can be used as input for subsequent analysis.

Table 3 shows the types of matrix materials written by SPSS procedures. The ROWTYPE_
values (discussed below) of each matrix are also included so you can see which procedure
matrices are readable by other procedures. If a procedure produces more than one type of
matrix, the subcommands required for each type of matrix are listed.

• All SPSS procedures that handle matrix materials use the MATRIX subcommand. The
MATRIX subcommand specifies the file from which the input matrix is read and/or the file
to which the output matrix is written.

• Matrix materials can be read from an external file as long as a working data file has been
created. The working file does not have to be the matrix data file.

• The procedures that read matrix materials cannot read every type of SPSS matrix data file.
For example, REGRESSION cannot read a matrix data file written by NONPAR CORR.

Figure 4 Displayed dictionary information
 List of variables on the active file

Name Position

ID Employee Code 1
 Print Format: F4
 Write Format: F4

SALBEG Beginning Salary 2
 Print Format: F5
 Write Format: F5
 Missing Values: 0

SEX Sex of Employee 3
 Print Format: F1
 Write Format: F1
 Missing Values: 9

 Value Label

 0 Males
 1 Females
TIME Job Seniority 4
 Print Format: F2
 Write Format: F2
 Missing Values: 0

14 Universals

Table 3 Types of matrices and their contents

Command Subcommands/Notes ROWTYPE_ values

ALSCAL PROX
CLUSTER PROX
CORRELATIONS MEAN

STDDEV
N
CORR

DISCRIMINANT

/CLASSIFY=POOLED

N (1 per cell)
COUNT (1 per cell)
MEAN (1 per cell)
STDDEV (pooled)
CORR (pooled)

/CLASSIFY=SEPARATE,
/STATISTICS=BOXM, or
/STATISTICS=GCOV

N (1 per cell)
COUNT (1 per cell)
MEAN (1 per cell)
STDDEV (1 per cell)
CORR (1 per cell)

FACTOR

/MATRIX=OUT(CORR=file)
/MATRIX=IN(CORR=file)

CORR

/MATRIX=OUT(FAC=file)
/MATRIX=IN(FAC=file)

FACTOR

MANOVA

N (cell and pooled)
MEAN (1 per cell)
STDDEV (pooled)
CORR (pooled)

NONPAR CORR

/PRINT=SPEARMAN

N
RHO

/PRINT=KENDALL

N
TAUB

ONEWAY

Separate variance
Can be input and output

MEAN (1 per cell)
STDDEV (1 per cell)
N (1 per cell)

Pooled variance
Can be input only

MEAN (1 per cell)
N (1 per cell)
MSE (pooled)
DFE (pooled)

PARTIAL CORR

N
CORR

PROXIMITIES PROX

Files 15

REGRESSION

MEAN
STDDEV
N
CORR

RELIABILITY

N
MEAN
STDDEV
CORR

Table 3 Types of matrices and their contents (Continued)

Command Subcommands/Notes ROWTYPE_ values

16 Universals

Figure 5 lists the structure of a matrix file and Figure 6 shows the dictionary information for
the same file.

Variable Order. The following variable order is standard for all SPSS matrix data files:

1. Split variables, if any. In Figure 5, the split variable is SEX.

2. ROWTYPE_ variable. The values of the ROWTYPE_ variable describe the contents of the
matrix data file, such as MEAN, STDDEV, N, and CORR.

3. Factor or grouping variables, if any.

4. VARNAME_ variable (or FACTOR_ variable for factor-loading matrices). The values of the
VARNAME variable are the names of the variable used to form the matrix.

5. Continuous variables used to form the matrix.

Figure 5 A matrix data file (LIST output)
FILE: MATRIX FILE
SEX: 1 FEMALE

SEX ROWTYPE_ VARNAME_ FOOD RENT PUBTRANS TEACHER COOK ENGINEER

 1 MEAN 73.3750000 134.500000 53.5000000 46.8000000 72.4375000 59.8125000
 1 STDDEV 15.4483009 115.534699 25.8173069 19.4209018 29.5746936 21.5196616
 1 N FOOD 16.0000000 16.0000000 16.0000000 15.0000000 16.0000000 16.0000000
 1 N RENT 16.0000000 16.0000000 16.0000000 15.0000000 16.0000000 16.0000000
 1 N PUBTRANS 16.0000000 16.0000000 16.0000000 15.0000000 16.0000000 16.0000000
 1 N TEACHER 15.0000000 15.0000000 15.0000000 15.0000000 15.0000000 15.0000000
 1 N COOK 16.0000000 16.0000000 16.0000000 15.0000000 16.0000000 16.0000000
 1 N ENGINEER 16.0000000 16.0000000 16.0000000 15.0000000 16.0000000 16.0000000
 1 CORR FOOD 1.0000000 .3658643 .5372333 .1733358 .1378010 .3778351
 1 CORR RENT .3658643 1.0000000 .1045105 -.0735708 .2026299 .1237062
 1 CORR PUBTRANS .5372333 .1045105 1.0000000 .6097397 .3877995 .6413121
 1 CORR TEACHER .1733358 -.0735708 .6097397 1.0000000 .4314755 .7312415
 1 CORR COOK .1378010 .2026299 .3877995 .4314755 1.0000000 .7807327
 1 CORR ENGINEER .3778351 .1237062 .6413121 .7312415 .7807327 1.0000000

NUMBER OF CASES READ = 14 NUMBER OF CASES LISTED = 14

FILE: MATRIX FILE
SEX: 2 MALE

SEX ROWTYPE_ VARNAME_ FOOD RENT PUBTRANS TEACHER COOK ENGINEER

 2 MEAN 68.8620690 112.137931 45.1379310 33.9310345 60.2142857 60.1785714
 2 STDDEV 20.4148478 81.3430672 24.1819356 26.9588722 30.2952840 28.8752792
 2 N FOOD 29.0000000 29.0000000 29.0000000 29.0000000 28.0000000 28.0000000
 2 N RENT 29.0000000 29.0000000 29.0000000 29.0000000 28.0000000 28.0000000
 2 N PUBTRANS 29.0000000 29.0000000 29.0000000 29.0000000 28.0000000 28.0000000
 2 N TEACHER 29.0000000 29.0000000 29.0000000 29.0000000 28.0000000 28.0000000
 2 N COOK 28.0000000 28.0000000 28.0000000 28.0000000 28.0000000 28.0000000
 2 N ENGINEER 28.0000000 28.0000000 28.0000000 28.0000000 28.0000000 28.0000000
 2 CORR FOOD 1.0000000 .2012077 .5977491 .6417034 .4898941 .5190702
 2 CORR RENT .2012077 1.0000000 -.1405952 -.0540657 .0727153 .3508598
 2 CORR PUBTRANS .5977491 -.1405952 1.0000000 .7172945 .7170419 .6580408
 2 CORR TEACHER .6417034 -.0540657 .7172945 1.0000000 .6711871 .6650047
 2 CORR COOK .4898941 .0727153 .7170419 .6711871 1.0000000 .7688210
 2 CORR ENGINEER .5190702 .3508598 .6580408 .6650047 .7688210 1.0000000

NUMBER OF CASES READ = 14 NUMBER OF CASES LISTED = 14

Files 17

Split Files. When split-file processing is in effect, a full set of matrix materials is written for
each split-file group defined by the split variables.

• A split variable cannot have the same variable name as any other variable written to the
matrix data file. Not all procedures allow split-file variables in their matrices.

• If split-file processing is in effect when a matrix is written, the same split file must be in
effect when that matrix is read by any procedure.

Additional Statistics. Some procedures include statistics with their matrix materials. For
example, CORRELATION matrices always include the mean, standard deviation, and number
of cases used to compute each coefficient, as shown in Figure 5. Other procedures, for
example PROXIMITIES and FACTOR, include no statistics with their matrices. See Table 3 for
a list of the statistics written by each procedure. Refer to the description of each command
for its requirements for a matrix input file.

Missing Values. The treatment of missing values in a procedure affects the matrix materials
written to the data file. With pairwise treatment of missing values, the matrix of N’s used to
compute each coefficient is included in the matrix. With any other missing-value treatment,
the single N used to calculate all coefficients in the matrix is included in the form of a vector.
Figure 5 includes the matrix of N’s written by CORRELATIONS when missing values are
excluded pairwise from the analysis. Figure 7 shows the single N written by CORRELATIONS
when missing values are excluded listwise.

The missing-value treatment that was in effect when the matrix was written must be
compatible with the missing-value treatment in effect when the matrix is read. For example,
REGRESSION can read a matrix written by CORRELATIONS but only if the missing-value
treatment of both procedures is consistent. Either both must refer to a matrix of N’s or both
must refer to a single N. For all procedures, pairwise treatment of missing values generates
a matrix of N’s; any other treatment of missing values generates a single vector of N’s.

Matrix File Dictionaries. As shown in Figure 6, print and write formats of A8 are assigned to
the matrix variables that SPSS creates (for example, ROWTYPE_, VARNAME_, and
FACTOR_). No labels are assigned to these variables. Print and write formats of F10.7 are as-
signed to all the continuous variables in the matrix analysis; the names and variable labels
defined for these variables in the original data file are retained, but their original values and
value labels are dropped because they do not apply to the matrix data file. When split-file
processing is in effect, the variable names, variable and value labels, and print and write for-
mats of the split-file variables are read from the dictionary of the original data file.

Procedures read and write matrices in which each row corresponds to a single case in the
matrix data file. For example, the matrix shown in Figure 7 has nine cases. The first three cases
with the ROWTYPE_ values of MEAN, STDDEV, and N have no values for VARNAME_ but do
have values for all the variables from FOOD to ENGINEER. The fourth case, CORR, in the ma-
trix generated for the first split-file group has a value of FOOD for VARNAME_, a value of
0.3652366 when correlated with variable RENT, a value of 0.5371597 when correlated with
variable PUBTRANS, and so forth.

For a more detailed discussion of SPSS matrix data files, see SPSS Advanced Statistics.

18 Universals

Figure 6 Dictionary of a matrix system file (DISPLAY output)
FILE: MATRIX FILE

 LIST OF VARIABLES ON THE ACTIVE FILE

NAME POSITION

SEX 1
 PRINT FORMAT: F2
 WRITE FORMAT: F2

 VALUE LABEL

 1 FEMALE
 2 MALE

ROWTYPE_ 2
 PRINT FORMAT: A8
 WRITE FORMAT: A8

VARNAME_ 3
 PRINT FORMAT: A8
 WRITE FORMAT: A8

FOOD AVG FOOD PRICES 4
 PRINT FORMAT: F10.7
 WRITE FORMAT: F10.7

RENT NORMAL RENT 5
 PRINT FORMAT: F10.7
 WRITE FORMAT: F10.7

PUBTRANS PRICE FOR PUBLIC TRANSPORT 6
 PRINT FORMAT: F10.7
 WRITE FORMAT: F10.7

TEACHER NET TEACHER’S SALARY 7
 PRINT FORMAT: F10.7
 WRITE FORMAT: F10.7

COOK NET COOK’S SALARY 8
 PRINT FORMAT: F10.7
 WRITE FORMAT: F10.7

ENGINEER NET ENGINEER’S SALARY 9
 PRINT FORMAT: F10.7
 WRITE FORMAT: F10.7

Files 19

Figure 7 Single N in the matrix system file
FILE: MATRIX FILE
SEX: 1 FEMALE

SEX ROWTYPE_ VARNAME_ FOOD RENT PUBTRANS TEACHER COOK ENGINEER

 1 MEAN 73.4666667 136.800000 54.0000000 46.8000000 73.8666667 60.0000000
 1 STDDEV 15.9860058 119.210019 26.6431444 19.4209018 30.0353760 22.2614337
 1 N 15.0000000 15.0000000 15.0000000 15.0000000 15.0000000 15.0000000
 1 CORR FOOD 1.0000000 .3652366 .5371597 .1733358 .1358120 .3773434
 1 CORR RENT .3652366 1.0000000 .0989524 -.0735708 .1914448 .1213899
 1 CORR PUBTRANS .5371597 .0989524 1.0000000 .6097397 .3811372 .6409265
 1 CORR TEACHER .1733358 -.0735708 .6097397 1.0000000 .4314755 .7312415
 1 CORR COOK .1358120 .1914448 .3811372 .4314755 1.0000000 .7893533
 1 CORR ENGINEER .3773434 .1213899 .6409265 .7312415 .7893533 1.0000000

NUMBER OF CASES READ = 9 NUMBER OF CASES LISTED = 9

 2

FILE: MATRIX FILE
SEX: 2 MALE

SEX ROWTYPE_ VARNAME_ FOOD RENT PUBTRANS TEACHER COOK ENGINEER

 2 MEAN 69.6428571 114.464286 46.1428571 33.7500000 60.2142857 60.1785714
 2 STDDEV 20.3437392 81.8474109 24.0011023 27.4356149 30.2952840 28.8752792
 2 N 28.0000000 28.0000000 28.0000000 28.0000000 28.0000000 28.0000000
 2 CORR FOOD 1.0000000 .1752920 .5784136 .6638084 .4898941 .5190702
 2 CORR RENT .1752920 1.0000000 -.1817862 -.0491139 .0727153 .3508598
 2 CORR PUBTRANS .5784136 -.1817862 1.0000000 .7447511 .7170419 .6580408
 2 CORR TEACHER .6638084 -.0491139 .7447511 1.0000000 .6711871 .6650047
 2 CORR COOK .4898941 .0727153 .7170419 .6711871 1.0000000 .7688210
 2 CORR ENGINEER .5190702 .3508598 .6580408 .6650047 .7688210 1.0000000

NUMBER OF CASES READ = 9 NUMBER OF CASES LISTED = 9

20

Variables

To prepare data for processing, you must define variables by assigning variable names and
formats. You can also specify variable labels, value labels, and missing values, but they are
optional. This section discusses the two essential components of variable definition: vari-
able names and formats.

Variable Names

Each variable must have a unique name. Variable names are stored in the dictionary of an
SPSS-format data file or working data file. Observe the following rules when establishing
variable names or referring to variables by their names on commands:

• Variable names can contain up to eight characters, the first of which must be a letter or
one of the characters @, #, or $.

• A # character in the first position of a variable name defines a scratch variable (see
“Scratch Variables” on p. 22).

• A $ sign in the first position indicates that the variable is a system variable (see “System
Variables” on p. 21). The $ sign is not allowed as the initial character of a user-defined
variable.

• The period, underscore, and the characters $, #, and @ can be used within variable
names. For example, A._$@#1 is a valid variable name.

• Variable names ending with a period should be avoided, since the period may be inter-
preted as a command terminator.

• Variable names ending in underscores should be avoided, since such names may conflict
with names of variables automatically created by a number of commands—for example,
YEAR_ and DATE_ created by the DATE command.

• Variable names can be established on the DATA LIST, KEYED DATA LIST, MATRIX DATA,
NUMERIC, STRING, COMPUTE, RECODE, and COUNT commands. They can be changed
with the RENAME VARIABLES command.

• Reserved keywords cannot be used as variable names. Reserved keywords are

Keyword TO

You can establish names for a set of variables or to refer to any number of consecutive vari-
ables by specifying the beginning and the ending variables joined by keyword TO.

To establish names for a set of variables with keyword TO, use a character prefix with a
numeric suffix:

• The prefix can be any valid name. Both the beginning and ending variable must use the
same prefix.

ALL AND BY EQ GE GT LE
LT NE NOT OR TO WITH

Variables 21

• The numeric suffix can be any integer, but the first number must be smaller than the sec-
ond. For example, ITEM1 TO ITEM5 establishes five variables named ITEM1, ITEM2,
ITEM3, ITEM4, and ITEM5.

• Each variable name, including the number, must not exceed eight characters.

• Leading zeros used in numeric suffixes are included in the variable name. For example,
V001 TO V100 establishes 100 variables, V001, V002, V003,...V100. V1 TO V100 establishes
100 variables, V1, V2, V3,...V100.

Keyword TO can also be used on procedures and other commands to refer to consecutive
variables on the working data file. For example, AVAR TO VARB refers to the variables AVAR
and all subsequent variables up to and including VARB.

• In most cases, the TO specification uses the variable order on the working data file. Use
the DISPLAY command to see the order of variables on the working data file.

• On some subcommands, the order in which variables are named on a previous subcom-
mand, usually the VARIABLES subcommand, is used to determine which variables are con-
secutive and therefore are implied by the TO specification. This is noted in the description
of individual commands.

System Variables

System variables are special variables created during a working session to keep system-re-
quired information, such as the number of cases read by the system, the system-missing val-
ue, and the current date. System variables can be used in data transformations.

• The names of system variables begin with a dollar sign ($).

• You cannot modify a system variable or alter its print or write format. Except for these
restrictions, you can use system variables anywhere a normal variable is used in the trans-
formation language.

• System variables are not available for procedures.

$CASENUM Permanent case sequence number. For each case, $CASENUM is the number
of permanent cases read up to and including that case. The format is F8.0.The
value of $CASENUM is not necessarily the row number in a Data Editor win-
dow (available in windowed environments).

$SYSMIS System-missing value. The system-missing value displays as a period (.) or
whatever is used as the decimal point.

$JDATE Current date in number of days from October 14, 1582 (day 1 of the Grego-
rian calendar). The format is F6.0.

$DATE Current date in international date format. The format is A9 in the form dd-
mmm-yy.

$TIME Current date and time. $TIME represents the number of seconds from mid-
night, October 14, 1582, to the date and time when the transformation com-
mand is executed. The format is F20.

$LENGTH The current page length. The format is F11.0. For more information, see SET.

$WIDTH The current page width. The format is F3.0. For more information, see SET.

22 Universals

Scratch Variables

Scratch variables are variables created for the sole purpose of facilitating operations during
a session.
• To create a scratch variable, specify a variable name that begins with the # character, for

example, #ID. Scratch variables can be either numeric or string.

• Scratch variables are initialized to 0 for numeric variables or blank for string variables.

• SPSS does not reinitialize scratch variables when reading a new case. Their values are al-
ways carried across cases. Therefore, a scratch variable is a good choice for a looping index.

• Do not use LEAVE with a scratch variable.
• Scratch variables cannot be used in procedures and cannot be saved in a data file.

• Scratch variables cannot be assigned missing values, variable labels, or value labels.

• Scratch variables can be created between procedures but are always discarded as the next
procedure begins.

• Scratch variables are discarded once a TEMPORARY command is specified.

• Keyword TO cannot refer to scratch variables and permanent variables at the same time.
• Scratch variables cannot be named on a WEIGHT command.

Variable Formats

SPSS accepts two variable types: numeric and string (also referred to as alphanumeric). Nu-
meric values are stored internally as double-precision floating-point numbers and string
values as codes listed in the SPSS character set (see Appendix B). Variable formats determine
how SPSS reads raw data into storage and how it displays and writes values out.

Input and Output Formats

Values are read according to their input format and displayed on your terminal or written to
a file according to their output format. The input and output formats differ in several ways.

• The input format is either specified or implied on the DATA LIST, KEYED DATA LIST, or
other data definition commands. It is in effect only when SPSS builds cases in a working
data file. Figure 8 shows the command printback for DATA LIST, which includes input for-
mat specifications.

Figure 8 Output showing input formats
 1 0 DATA LIST /ID 1-4 SCORE 6-9 (F,2).

This command will read 1 records from the command file

Variable Rec Start End Format

ID 1 1 4 F4.0
SCORE 1 6 9 F4.2

Variables 23

• DATA LIST or any other data definition command automatically generates an output format
from the input format and expands the output format to include punctuation characters
such as decimal points, commas, dollar signs, and percent signs. To see the current output
formats of variables in the working data file, use DISPLAY VARIABLES. The variables de-
fined by the above DATA LIST command are displayed in Figure 9. Note that the output
format for SCORE has been expanded one space to allow the display of the decimal point
(the F4.2 input format indicates a four-character variable with two implied decimal plac-
es; the F5.2 output format includes one space for the decimal point).

• The formats (specified or default) on NUMERIC, COMPUTE or other commands that create
new variables are output formats. You must specify adequate widths to accommodate all
punctuation characters.

• The output format is in effect during the entire working session (unless explicitly
changed) and is saved in the dictionary of an SPSS-format data file.

• Output formats for numeric variables can be changed with the FORMATS, PRINT FORMATS,
or WRITE FORMATS command.

• Output formats (widths) for string variables cannot be changed with command syntax.
However, you can use STRING to declare a new variable with the desired format and then
use COMPUTE to copy values from the existing string variable into the new variable.

• The format type cannot be changed from string to numeric, or vice versa, with command
syntax. However, you can use RECODE to recode values from one variable into another
variable of a different type.

See DATA LIST for information on specifying input data formats. See FORMATS, PRINT
FORMATS, and WRITE FORMATS for information on specifying output data formats. See
STRING for information on declaring new string variables.

Numeric Variable Formats

• The formats used in this manual use FORTRAN-like syntax, for example, Fw.d, where F
denotes the format type (numeric), w represents the variable width, and d represents the
number of decimal places.

• By default, the DATA LIST and KEYED DATA LIST commands assume that variables are nu-
meric with an F format type. The default width depends on whether the data are in fixed
or freefield format. For discussion of fixed data and freefield data, see DATA LIST.

• Numeric variables created by COMPUTE, COUNT, or other commands that create numeric
variables are assigned a format type F8.2 (or the default format defined on SET FORMAT).

List of variables on the active file

Name Pos Print Fmt Write Fmt Missing Values

ID 1 F4 F4
SCORE 2 F5.2 F5.2

Figure 9 Output showing output formats

24 Universals

• If a data value exceeds its width specification, SPSS makes an attempt to display some
value nevertheless. It first rounds the decimals, then takes out punctuation characters,
then tries scientific notation, and if there is still not enough space, produces asterisks
(***) indicating that a value is present but cannot be displayed in the assigned width.

• The output format does not affect the value stored in the file. A numeric value is always
stored in double precision.

F, N, and E Formats

Table 4 lists the formats most commonly used to read in and write out numeric data.

Table 4 Common numeric formats

Format
type Description Sample

format
Sample
input

Output for fixed input Output for freefield input

Format Value Format Value

Fw.d Standard
numeric

F5.0 1234 F5.0 1234 F5.0 1234

1.234 1 1*

* Only the display is truncated. The value is stored in full precision.

F5.2 1234 F6.2 12.34 F6.2 1234.0

1.234 1.23 1.23

Nw.d Restricted
numeric

N5.0 00123 F5.0 123 F5.0 123

1.234 . †

† System-missing value. In this case, the value entered contains an illegal decimal point.

1

N5.2 12345 F6.2 123.45 F6.2 12345

12.34 . 12.34

Ew.d Scientific
notation

E8.0 1234E3 E10.3 1.234E+06 E10.3 1.234E+06**

** Scientific notation is accepted in input data with F, COMMA, DOLLAR, DOT, and PCT formats.
The same rules apply as specified below.

1234 1.234E+03 1.234E+03

Variables 25

For fixed data:

• If a value has no coded decimal point but the input format specifies decimal positions, the
rightmost positions are interpreted as implied decimal digits. For example, if the input F
format specifies two decimal digits, the value 1234 is interpreted as 12.34; however, the
value 123.4 is still interpreted as 123.4.

• With N format, decimal places are always implied. Only unsigned integers are allowed.
Values not padded with leading zeroes to the specified width or those containing decimal
points are assigned the system-missing value. This format is useful for reading and check-
ing values that should be integers containing leading zeroes.

• The E format reads all forms of scientific notation. If the sign is omitted, + is assumed. If
the sign (+ or -) is specified before the exponent, the E or D can be omitted. A single space
is permitted after the E or D and/or after the sign. If both the sign and the letter E or D are
omitted, implied decimal places are assumed. For example, 1.234E3, 1.234+3, 1.234E+3,
1.234D3, 1.234D+3, 1.234E 3, and 1234 are all legitimate values. Only the last value can
imply decimal places.

• E format input values can be up to 40 characters wide and include up to 15 decimal positions.

• The default output width (w) for the E format is either the specified input width or the
number of specified decimal positions plus 7 (d+7), whichever is greater. The minimum
width is 10 and the minimum decimal places are 3.

For freefield data:

• F format w and d specifications do not affect how data are read. They only determine the
output formats (expanded, if necessary). 1234 is always read as 1234 in freefield data, but
a specified F5.2 format will be expanded to F6.2 and the value will be displayed as 1234.0
(the last decimal place rounded for lack of space).

• The N format, when used for freefield data, is treated as F format.

• The E format for freefield data follows the same rules as for fixed data except that no
blank space is permitted in the value. Thus, 1.234E3 and 1.234+3 are allowed, but the
value 1.234 3 will cause mistakes when the data are read.

• The default output E format and the width and decimal place limitations are the same as
with fixed data.

COMMA, DOT, DOLLAR, and PCT Formats

Table 5 lists the formats that read and write data with imbedded punctuation characters and
symbols, such as commas, dots, dollar and percent signs. The input data may or may not con-
tain such characters. The data values read in are stored as numbers but displayed using the
appropriate formats. Other formats that use punctuation characters and symbols are date and
time formats and currency formats. Date and time are discussed in “Date and Time” on p. 51.
Currency formats are output formats only. (See SET and FORMATS.)

26 Universals

Table 5 Numeric formats with punctuation and symbols

Format type Description Sample format Sample
input

Default output
format

Displayed
value

COMMAw.d Commas in
numbers

COMMA6.0 12345 COMMA7.0 12,345
12,345 12,345
123,45 12,345

COMMA6.3 12345 COMMA7.3 12.345
123,45 12.345
1.2345 1.234
1234.5 1234.50*

DOTw.d Dots in numbers DOT6.0 12345 DOT7.0 12.345
123.45 12.345
123.45 12.345

DOT6.3 12345 DOT7.3 12,345
123.45 12,345
1,2345 1,234
1234,5 1234,50*

DOLLARw.d Dollar sign and
comma in numbers

DOLLAR7.0 1234 DOLLAR10.0 $1,234
1,234 $1,234
$1234 $1,234

$1,234 $1,234
DOLLAR7.3 1234 DOLLAR10.3 $1.234

1,234 $1.234
$1,23.4 $123.400

12345.6 $12345.60
0*

PCTw.d Percent sign after
numbers

PCT7.0 1234 PCT8.0 1234%
12.34 12%

PCT7.2 1234 PCT9.3 1.234%
12.3 12.340%

1234 12.34%

* When the decimal point is coded in input, SPSS displays all specified decimal places whether
recorded in the data or note. When the width is inadequate, thousands separators are dropped
before decimal places.

Variables 27

• Formats listed in Table 5 cannot be used to read freefield data.

• Data values can appear anywhere within the column specification. Both leading and trail-
ing blanks are allowed.

• The sign (for example, “$” for DOLLAR format) or punctuation mark (for example, “.” for
DOT format) is ignored in the input data. Its position does not affect the value read into
storage.

• The default output format expands the width of the input format by the number of the
required signs or punctuation marks plus the decimal point if d is not 0. For example,
COMMA9.2 is expanded to COMMA12.2 to accommodate two possible commas and one
decimal point.

• DOT format is similar to COMMA format but reverses the symbols used for the thousands
separator and the decimal point. For example, in DOT format, 1.234 has the value of one
thousand, two hundred and thirty-four.

Binary and Hexadecimal Formats

SPSS is capable of reading and writing data in formats used by a number of programming
languages such as PL/1, COBOL, FORTRAN, and ASSEMBLER. The data can be binary,
hexadecimal, or zoned decimal. Formats described in this section can be used both as input
formats and output formats, but with fixed data only. The described formats are not available
on all systems. Consult the SPSS Base User’s Guide for your version of SPSS for details.

The default output format for all formats described in this section is an equivalent F for-
mat, allowing the maximum number of columns for values with symbols and punctuation.
To change the default, use FORMATS or WRITE FORMATS.

IBw.d (integer binary):

The IB format reads fields that contain fixed-point binary (integer) data. The data might be gen-
erated by COBOL using COMPUTATIONAL data items, by FORTRAN using INTEGER*2 or
INTEGER*4, or by ASSEMBLER using fullword and halfword items. The general format is a
signed binary number that is 16 or 32 bits in length.

The general syntax for IB format is IBw.d, where w is the field width in bytes (omitted for
column-style specifications) and d is the number of digits to the right of the decimal point.
Since the width is expressed in bytes and the number of decimal positions is expressed in dig-
its, d can be greater than w. For example, both of the following commands are valid:

DATA LIST FIXED /VAR1 (IB4.8).

DATA LIST FIXED /VAR1 1-4 (IB,8).

Widths of 2 and 4 represent standard 16-bit and 32-bit integers, respectively. Fields read with
IB format are treated as signed. For example, the one-byte binary value 11111111 would be
read as −1.

PIBw.d (positive integer binary):

The PIB format is essentially the same as IB except that negative numbers are not allowed.
This restriction allows one additional bit of magnitude. The same one-byte value 11111111
would be read as 255.

28 Universals

PIBHEXw (hexadecimal of PIB):

The PIBHEX format reads hexadecimal numbers as unsigned integers and writes positive in-
tegers as hexadecimal numbers. The general syntax for PIBHEX format is PIBHEXw, where w
indicates the total number of hexadecimal characters. The w specification must be an even
number, with a maximum of 16.

For input data, each hexadecimal number must consist of the exact number of characters.
No signs, decimal points, or leading and trailing blanks are allowed. For some operating sys-
tems (such as IBM CMS), hexadecimal characters must be uppercase. The following exam-
ple illustrates the kind of data PIBHEX format can read:

DATA LIST FIXED
 /VAR1 1-4 (PIBHEX) VAR2 6-9 (PIBHEX) VAR3 11-14 (PIBHEX).
BEGIN DATA
0001 0002 0003
0004 0005 0006
0007 0008 0009
000A 000B 000C
000D 000E 000F
00F0 0B2C FFFF
END DATA.
LIST.

The values for VAR1, VAR2, and VAR3 are listed in Figure 10. PIBHEX format can also be used
to write decimal values as hexadecimal numbers, which may be useful for programmers.

Zw.d (zoned decimal):

The Z format reads data values that contain zoned decimal data. Such numbers may be gen-
erated by COBOL systems using DISPLAY data items, by PL/1 systems using PICTURE
data items, or by ASSEMBLER using zoned decimal data items.

In zoned decimal format, one digit is represented by one byte, generally hexadecimal F1
representing 1, F2 representing 2, and so on. The last byte, however, combines the sign for
the number with the last digit. In the last byte, hexadecimal A, F, or C assigns +, and B, D,
or E assigns −. For example, hexadecimal D1 represents 1 for the last digit and assigns the
minus sign (−) to the number.

The general syntax of Z format is Zw.d, where w is the total number of bytes (which is the
same as columns) and d is the number of decimals. For input data, values can appear any-
where within the column specifications. Both leading and trailing blanks are allowed. Deci-
mals can be implied by the input format specification or explicitly coded in the data.
Explicitly coded decimals override the input format specifications.

Figure 10 Output displaying values read in PIBHEX format
 VAR1 VAR2 VAR3

 1 2 3
 4 5 6
 7 8 9
 10 11 12
 13 14 15
 240 2860 65535

Variables 29

The following example illustrates how Z format reads zoned decimals in their printed
forms on IBM mainframe and PC systems. The printed form for the sign zone (A to I for +1
to +9, and so on) may vary from system to system.

DATA LIST FIXED /VAR1 1-5 (Z) VAR2 7-11 (Z,2) VAR3 13-17 (Z)
 VAR4 19-23 (Z,2) VAR5 25-29 (Z) VAR6 31-35 (Z,2).
BEGIN DATA
1234A 1234A 1234B 1234B 1234C 1234C
1234D 1234D 1234E 1234E 1234F 1234F
1234G 1234G 1234H 1234H 1234I 1234I
1234J 1234J 1234K 1234K 1234L 1234L
1234M 1234M 1234N 1234N 1234O 1234O
1234P 1234P 1234Q 1234Q 1234R 1234R
1234{ 1234{ 1234} 1234} 1.23M 1.23M
END DATA.
LIST.

The values for VAR1 to VAR6 are listed in Figure 11.

The default output format for Z format is the equivalent F format, as shown in Figure 11. The
default output width is based on the input width specification plus one column for the sign
and one column for the implied decimal point (if specified). For example, an input format of
Z4.0 generates an output format of F5.0 and an input format of Z4.2 generates an output for-
mat of F6.2.

Pw.d (packed decimal):

The P format is used to read fields with packed decimal numbers. Such numbers are gener-
ated by COBOL using COMPUTATIONAL–3 data items, and by ASSEMBLER using
packed decimal data items. The general format of a packed decimal field is two four-bit digits
in each byte of the field except the last. The last byte contains a single digit in its four leftmost
bits and a four-bit sign in its rightmost bits. If the last four bits are 1111 (hexadecimal F), the
value is positive; if they are 1101 (hexadecimal D), the value is negative. One byte under P
format can represent numbers from −9 to 9.

The general syntax of P format is Pw.d, where w is the number of bytes (not digits) and d
is the number of digits to the right of the implied decimal point. The number of digits in a
field is (2*w–1).

PKw.d (unsigned packed decimal):

The PK format is essentially the same as P except that there is no sign. That is, even the right-
most byte contains two digits, and negative data cannot be represented. One byte under PK
format can represent numbers from 0 to 99. The number of digits in a field is 2*w.

Figure 11 Output displaying values read in Z format
VAR1 VAR2 VAR3 VAR4 VAR5 VAR6

 12341 123.41 12342 123.42 12343 123.43
 12344 123.44 12345 123.45 12346 123.46
 12347 123.47 12348 123.48 12349 123.49
-12341 -123.41 -12342 -123.42 -12343 -123.43
-12344 -123.44 -12345 -123.45 -12346 -123.46
-12347 -123.47 -12348 -123.48 -12349 -123.49
 12340 123.40 -12340 -123.40 -1 -1.23

30 Universals

RBw (real binary):

The RB format is used to read data values which contain internal format floating-point
numbers. Such numbers are generated by COBOL using COMPUTATIONAL–1 or
COMPUTATIONAL–2 data items, by PL/1 using FLOATING DECIMAL data items, by
FORTRAN using REAL or REAL*8 data items, or by ASSEMBLER using floating-point
data items.

The general syntax of RB format is RBw, where w is the total number of bytes. The width
specification must be an even number between 2 and 8. Normally, a width specification of 8 is
used to read double-precision values, and a width of 4 is used to read single-precision values.

RBHEXw (hexadecimal of RB):

The RBHEX format interprets a series of hexadecimal characters as a number that represents
a floating-point number. This representation is system-specific. If the field width is less than
twice the width of a floating-point number, the value is right-padded with binary zeros. For
some operating systems (for example, IBM CMS), letters in hexadecimal values must be up-
per case.

The general syntax of RBHEX format is RBHEXw, where w indicates the total number of
columns. The width must be an even number. The values are real (“floating point”) numbers.
Leading and trailing blanks are not allowed. Any data values shorter than the specified input
width must be padded with leading zeros.

String Variable Formats

• The values of string variables can contain numbers, letters, and special characters and can
be up to 255 characters long.

• SPSS differentiates between long strings and short strings. Long strings can be displayed
by some procedures and by the PRINT command, and they can be used as break variables
to define subgroups in REPORT. They cannot, however, be tabulated in procedures such
as CROSSTABS, and they cannot have user-missing values. Short strings, on the other
hand, can be tabulated and can have user-missing values. The maximum length of a short
string depends on the computer and operating system; it is typically 8 characters.

• System-missing values cannot be generated for string variables, since any character is a
legal string value.

• When a transformation command that creates or modifies a string variable yields a miss-
ing or undefined result, a null string is assigned. The variable displays as blanks and is
not treated as missing.

• String formats are used to read and write string variables. The input values can be alpha-
numeric characters (A format) or the hexadecimal representation of alphanumeric charac-
ters (AHEX format).

• For fixed data, the width can be explicitly specified on DATA LIST or KEYED DATA LIST or
implied if column-style specifications are used. For freefield data, the default width is 1;
if the input string may be longer, w must be explicitly specified. Input strings shorter than
the specified width are right-padded with blanks.

Variables 31

• The output format for a string variable is always A. The width is determined by the input
format or the format assigned on the STRING command. String formats can be displayed
with DISPLAY VARIABLES but cannot be changed.

Aw (Standard Characters)

The A format is used to read standard characters. Characters can include letters, numbers,
punctuation marks, blanks, and most other characters on your keyboard. Numbers entered as
values for string variables cannot be used in calculations unless you convert them to numeric
format with the NUMBER function (see “String Functions” on p. 41).

Fixed data:

With fixed-format input data, any punctuation—including leading, trailing, and imbedded
blanks—within the column specifications is included in the string value. For example, a
string value of “Mr. Ed” (with one imbedded blank) is distinguished from a value of
“Mr. Ed” (with two imbedded blanks). It is also distinguished from a string value of
“MR. ED” (all upper case), and all three are treated as separate values. These can be impor-
tant considerations for any procedures, transformations, or data selection commands involv-
ing string variables. Consider the following example:

DATA LIST FIXED /ALPHAVAR 1-10 (A).
BEGIN DATA
Mr. Ed
Mr. Ed
MR. ED
Mr. Ed
 Mr. Ed
END DATA.
AUTORECODE ALPHAVAR /INTO NUMVAR.
LIST.

AUTORECODE recodes the values into consecutive integers. Figure 12 shows the recoded
values.

Freefield data:

With freefield data, blanks and commas are treated as delimiters for A format variables unless
the value is enclosed in apostrophes or quotation marks. For example,

Ed, Mr.

Figure 12 Different string values illustrated
ALPHAVAR NUMVAR

Mr. Ed 4
Mr. Ed 4
MR. ED 2
Mr. Ed 3
 Mr. Ed 1

32 Universals

is read as two separate values (Ed and Mr.). To include blanks and/or commas in a string val-
ue, enclose the value in apostrophes or quotation marks. For example, the following com-
mand file will generate a list of values as shown in Figure 13:

DATA LIST FREE /ALPHAVAR (A10).
BEGIN DATA
Mr. Ed
Ed,Mr.
’Mr. Ed’
’Ed, Mr.’
END DATA.
LIST.

AHEXw (Hexadecimal Characters)

The AHEX format is used to read the hexadecimal representation of standard characters. Each
set of two hexadecimal characters represents one standard character. For codes used on dif-
ferent operating systems, see Appendix B.

• The w specification refers to columns of the hexadecimal representation and must be an
even number. Leading, trailing, and imbedded blanks are not allowed, and only valid
hexadecimal characters can be used in input values.

• For some operating systems (for example, IBM CMS), letters in hexadecimal values must
be upper case.

• The default output format for variables read with AHEX input format is A format. The de-
fault width is half the specified input width. For example, an input format of AHEX14 gen-
erates an output format of A7.

• Used as an output format, the AHEX format displays the printable characters in the hexa-
decimal characters specific to your system. The following commands run on a UNIX sys-
tem (where A=41 (decimal 65), a=61 (decimal 97), and so forth) produce the output
shown in Figure 14:

DATA LIST FIXED
 /A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z 1-26 (A).
FORMATS ALL (AHEX2).
BEGIN DATA
ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopqrstuvwxyz
END DATA.
LIST.

Figure 13 Blanks and commas in freefield string input
ALPHAVAR

Mr.
Ed
Ed
Mr.
Mr. Ed
Ed, Mr.

Variables 33

FORTRAN-like Format Specifications

You can use FORTRAN-like format specifications to define formats for a set of variables, as
in the following example:

DATA LIST FILE=HUBDATA RECORDS=3
 /MOHIRED, YRHIRED, DEPT1 TO DEPT4 (T12, 2F.0, 4(1X,F1.0)).

• The specification T12 in parentheses tabs to the 12th column. The first variable (MOHIRED)
will be read beginning from column 12.

• The specification 2F2.0 assigns the format F2.0 to two adjacent variables (MOHIRED and
YRHIRED).

• The next four variables (DEPT1 to DEPT4) are each assigned the format F1.0. The 4 in
4(1X,F1.0) distributes the same format to four consecutive variables. 1X skips one column
before each variable. (The column-skipping specification placed within the parentheses
is distributed to each variable.)

Figure 14 Display of hexadecimal representation of the character set with AHEX format
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F 50 51 52 53 54 55 56 57 58 59 5A
61 62 63 64 65 66 67 68 69 6A 6B 6C 6D 6E 6F 70 71 72 73 74 75 76 77 78 79 7A

34

Transformation Expressions

Transformation expressions are used in commands like COMPUTE, IF, DO IF, LOOP IF, and
SELECT IF. This section describes the three types of expressions: numeric, string, and
logical, as well as available operators. For date and time functions, see “Date and Time” on
p. 51.

Numeric Expressions

Numeric expressions can be used with the COMPUTE and IF command and as part of a
logical expression for commands such as IF, DO IF, LOOP IF, and SELECT IF. Arithmetic
expressions can also appear in the index portion of a LOOP command, on the REPEATING
DATA command, and on the PRINT SPACES command.

Arithmetic Operations

The following arithmetic operators are available:

+ Addition.

- Subtraction.

* Multiplication.

/ Division.

** Exponentiation.

• No two operators can appear consecutively.

• Arithmetic operators cannot be implied. For example, (VAR1)(VAR2) is not a legal spec-
ification; you must specify VAR1*VAR2.

• Arithmetic operators and parentheses serve as delimiters. To improve readability, blanks
(not commas) can be inserted before and after an operator.

• To form complex expressions, you can use variables, constants, and functions with
arithmetic operators.

• The order of execution is functions first, then exponentiation, then multiplication, divi-
sion, and unary −, and then addition and subtraction.

• Operators at the same level are executed from left to right.

• To override the order of operation, use parentheses. Execution begins with the innermost
set of parentheses and progresses out.

Numeric Constants

• Constants used in numeric expressions or as arguments to functions can be integer or
noninteger, depending on the application or function.

Transformation Expressions 35

• You can specify as many digits in a constant as needed, as long as you understand the
precision restrictions of your computer.

• Numeric constants can be signed (+ or −) but cannot contain any other special characters
such as the comma or dollar sign.

• Numeric constants can be expressed with scientific notation. Thus, the exponent for a
constant in scientific notation is limited to two digits. The range of values allowed for
exponents in scientific notation is from −99 to +99.

Complex Numeric Arguments

• Except where explicitly restricted, complex expressions can be formed by nesting func-
tions and arithmetic operators as arguments to functions.

• The order of execution for complex numeric arguments is functions first, then exponen-
tiation, then multiplication, division, and unary −, and then addition and subtraction.

• To control the order of execution in complex numeric arguments, use parentheses.

Numeric Functions

Numeric functions can be used in any numeric expression on IF, SELECT IF, DO IF, ELSE IF,
LOOP IF, END LOOP IF, and COMPUTE. Numeric functions always return numbers (or the sys-
tem-missing value whenever the result is indeterminate). The expression to be transformed by
a function is called the argument. Most functions have a variable or a list of variables as
arguments.

• In numeric functions with two or more arguments, each argument must be separated by
a comma. Blanks alone cannot be used to separate variable names, expressions, or con-
stants in transformation expressions.

• Arguments should be enclosed in parentheses, as in TRUNC(INCOME), where the TRUNC
function returns the integer portion of variable INCOME.

• Multiple arguments should be separated by commas, as in MEAN(Q1,Q2,Q3), where the
MEAN function returns the mean of variables Q1, Q2, and Q3.

Arithmetic Functions

• All arithmetic functions except MOD have single arguments; MOD has two. The arguments
to MOD must be separated by a comma.

• Arguments can be numeric expressions, as in RND(A**2/B).

ABS(arg) Absolute value. ABS(SCALE) is 4.7 when SCALE equals 4.7 or −4.7.

RND(arg) Round the absolute value to an integer and reaffix the sign. RND(SCALE) is
−5 when SCALE equals −4.7.

TRUNC(arg) Truncate to an integer. TRUNC(SCALE) is −4 when SCALE equals -4.7.

MOD(arg,arg) Remainder (modulo) of the first argument divided by the second. When
YEAR equals 1983, MOD(YEAR,100) is 83.

36 Universals

SQRT(arg) Square root. SQRT(SIBS) is 1.41 when SIBS equals 2.

EXP(arg) Exponential. e is raised to the power of the argument. EXP(VARA) is 7.39
when VARA equals 2.

LG10(arg) Base 10 logarithm. LG10(VARB) is 0.48 when VARB equals 3.

LN(arg) Natural or Naperian logarithm (base e). LN(VARC) is 2.30 when VARC
equals 10.

ARSIN(arg) Arc sine. (Alias ASIN.) The result is given in radians. ARSIN(ANG) is 1.57
when ANG equals 1.

ARTAN(arg) Arc tangent. (Alias ATAN.) The result is given in radians. ARTAN(ANG2) is
0.79 when ANG2 equals 1.

SIN(arg) Sine. The argument must be specified in radians. SIN(VARD) is 0.84 when
VARD equals 1.

COS(arg) Cosine. The argument must be specified in radians. COS(VARE) is 0.54 when
VARE equals 1.

Statistical Functions

• Each argument to a statistical function (expression, variable name, or constant) must be
separated by a comma.

• The .n suffix can be used with all statistical functions to specify the number of valid ar-
guments. For example, MEAN.2(A,B,C,D) returns the mean of the valid values for variables
A, B, C, and D only if at least two of the variables have valid values. The default for n is
2 for SD, VARIANCE, and CFVAR, and 1 for other statistical functions.

• Keyword TO can be used to refer to a set of variables in the argument list.

SUM(arg list) Sum of the nonmissing values across the argument list.

MEAN(arg list) Mean of the nonmissing values across the argument list.

SD(arg list) Standard deviation of the nonmissing values across the argument list.

VARIANCE(arg list) Variance of the nonmissing values across the argument list.

CFVAR(arg list) Coefficient of variation of the nonmissing values across the argument
list. The coefficient of variation is the standard deviation divided by
the mean.

MIN(arg list) Minimum nonmissing value across the argument list.

MAX(arg list) Maximum nonmissing value across the argument list.

Random Variable and Distribution Functions

• Random variable and distribution functions take both constants and variables for arguments.

Transformation Expressions 37

• A function argument, if required, must come first and is denoted by q (quantile) for
cumulative distribution functions and p (probability) for inverse distribution functions.

• All random variable and distribution functions must specify distribution parameters,
denoted by a, b, and/or c, according to the number required.

• All arguments are real numbers.

• Cumulative distribution functions take the prefix CDF. A cumulative distribution function
CDF.d_spec(q,a,...) returns a probability (p) that a variate with the specified distribution
(d_spec) falls below q for continuous functions and at or below q for discrete functions.

• Inverse distribution functions take the prefix IDF. Inverse distribution functions are not
available for discrete distributions. An inverse distribution function IDF.d_spec(p,a,...)
returns a value q such that CDF.d_spec(q,a,...)=p with the specified distribution (d_spec).

• Random number generation functions take the prefix RV. A random number generation
function RV.d_spec(a,...) generates an independent observation with the specified distribu-
tion (d_spec).

• Non-central cumulative distribution functions take the prefix NCDF. A non-central
distribution function NCDF.d_spec(q,a,b,...) returns a probability (p) that a variate with the
specified non-central distribution falls below q. It is available only for beta, chi-square,
F, and Student’s t.

• Restrictions to distribution parameters a, b, and c apply to all functions for that distribu-
tion. Restrictions for the function parameter p or q apply to that particular distribution
function. The program issues a warning and returns system missing when it encounters
an out-of-range value for an argument.

The following are continuous distributions:

BETA Beta distribution. The beta distribution takes two shape parameters a and b;
both must be positive. The functions are CDF.BETA(q, a, b), IDF.BETA(p,a,b),
and RV.BETA(a,b), where both q and p must be between 0 and 1 inclusive. The
non-central beta distribution takes an extra noncentrality parameter c, which
must be greater than or equal to 0. The non-central cumulative distribution
function is NCDF.BETA(q,a,b,c). The beta distribution is used in Bayesian
analyses as a conjugate to the binomial distribution.

CAUCHY Cauchy distribution. The Cauchy distribution takes one location parame-
ter (a) and one scale parameter (b); b must be positive. The functions are
CDF.CAUCHY(q,a,b), IDF.CAUCHY(p,a,b), and RV.CAUCHY(a,b), where
0<p<1. The Cauchy distribution is symmetric about the location parameter
a and has slowly decaying tails that the expectation does not exist. The
harmonic mean of variates that have positive density at 0 is typically dis-
tributed as Cauchy.

CHI-SQUARE Chi-square distribution. The chi-square distribution takes one shape param-
eter (a), which is the degrees of freedom and must be positive. The functions
are CDF.CHISQ(q,a), IDF.CHISQ(p,a), and RV.CHISQ(a), where q≥0 and 0≤p<1.
The non-central chi-square distribution takes an extra noncentrality parameter
c, which must be greater than or equal to 0. The non-central cumulative
distribution function is NCDF.CHISQ(q,a,c). Chi-square is a special case of the

38 Universals

gamma distribution and is commonly used to test quadratic forms under the
Gaussian assumption.

EXPONENTIAL Exponential distribution. The exponential distribution takes one scale pa-
rameter (a), which can represent the rate of decay and must be positive. The
functions are CDF.EXP(q,a), IDF.EXP(p,a), and RV.EXP(a), where q≥0 and
0≤p<1. The exponential distribution is a special case of the gamma distribu-
tion. A major use of this distribution is life testing.

F F distribution. The F distribution takes two shape parameters a and b, which
are the degrees of freedom and must be positive. The F distribution func-
tions are CDF.F(q,a,b), IDF.F(p,a,b), and RV.F(a,b), where q≥0 and 0≤p<1. The
non-central F distribution takes an extra noncentrality parameter c, which
must be greater than or equal to 0. The non-central cumulative distribution
function is NCDF.F(q,a,b,c). The F distribution is commonly used to test
hypotheses under the Gaussian assumption.

GAMMA Gamma distribution. The gamma distribution takes one shape parameter (a)
and one scale parameter (b). Both parameters must be positive. The
functions are CDF.GAMMA(q,a,b), IDF.GAMMA(p,a,b), and RV.GAMMA(a,b),
where q≥0 and 0≤p<1. The gamma distribution is commonly used in queu-
ing theory, inventory control, and precipitation processes. If a is an integer
and b=1, it is the Erlang distribution.

LAPLACE Laplace or double exponential distribution. The Laplace distribution takes one
location parameter (a) and one scale parameter (b). Parameter b must be posi-
tive. The Laplace functions are CDF.LAPLACE(q,a,b), IDF.LAPLACE(p,a,b), and
RV.LAPLACE(a,b), where 0<p<1. The Laplace distribution is symmetric about
0 and has exponentially decaying tails on both ends.

LOGISTIC Logistic distribution. The logistic distribution takes one location parameter (a)
and one scale parameter (b). Parameter b must be positive. The logistic func-
tions are CDF.LOGISTIC(q,a,b), IDF.LOGISTIC(p,a,b), and RV.LOGISTIC(a,b),
where 0<p<1. The logistic distribution is a unimodal, symmetric distribution
with tails that are longer than the Gaussian distribution. It is used to model
growth curves.

LOGNORMAL Lognormal distribution. This distribution takes two parameters a and b. Both
parameters must be positive. The functions are CDF.LOGNORMAL(q,a,b),
IDF.LOGNORMAL(p,a,b), and RV.LOGNORMAL(a,b), where q≥0 and 0≤p<1.
Lognormal is used in the distribution of particle sizes in aggregates, flood
flows, concentrations of air contaminants, and failure time.

NORMAL Normal distribution. The normal distribution takes one location parameter
(a) and one scale parameter (b). Parameter b must be positive. The normal
functions are CDF.NORMAL(q,a,b), IDF.NORMAL(p,a,b), and RV.NORMAL(a,b),
where 0<p<1. Three functions in SPSS releases earlier than 6.0 are special
cases of the normal distribution functions:
CDFNORM(arg)=CDF.NORMAL(q,0,1)
where arg is q;
PROBIT(srg)=IDF.NORMAL(p,0,1)

Transformation Expressions 39

where arg is p; and
NORMAL(arg)=RV.NORMAL(0,b)
where arg is b. The normal or Gaussian distribution is symmetric about the
mean and is the most widely used in statistics.

PARETO Pareto distribution. The Pareto distribution takes a threshold parameter (a)
and a shape parameter (b). Both parameters must be positive. The functions
are CDF.PARETO(q,a,b), IDF.PARETO(p,a,b), and RV.PARETO(a,b), where q≥a
and 0≤p<1. Pareto is commonly used in economics as a model for a density
function with a slowly decaying tail.

STUDENT T Student t distribution. The Student t distribution takes one shape parameter
(a), which is the degrees of freedom and must be positive. The functions are
CDF.T(q,a), IDF.T(p,a), and RV.T(a), where 0<p<1. The Student t distribution
is symmetric about 0 and approaches the Gaussian distribution as a
approaches infinity. The non-central Student t distribution takes an extra
noncentrality parameter b. The non-central cumulative distribution function
is NCDF.T(q,a,b). The major use of the Student t distribution is to test hypoth-
eses and construct confidence intervals for means of Gaussian data.

UNIFORM Uniform distribution. The uniform distribution takes two parameters a and
b. The first parameter a must be less than or equal to the second parameter
b. The functions are CDF.UNIFORM(q,a,b), IDF.UNIFORM(p,a,b), and
RV.UNIFORM(a,b), where a≤q≤b and 0≤p≤1. The uniform random number
function in SPSS releases earlier than 6.0 is a special case:
UNIFORM(arg)=RV.UNIFORM(0,b)
where arg is parameter b. Among other uses, the uniform distribution com-
monly models the round-off error.

WEIBULL Weibull distribution. The Weibull distribution takes two parameters a and
b, both of which must be positive. The functions are CDF.WEIBULL(q,a,b),
IDF.WEIBULL(p,a,b), and RV.WEIBULL(a,b), where q≥0 and 0≤p<1. The
Weibull distribution is commonly used in survival analysis.

The following are discrete distributions:

BERNOULLI Bernoulli distribution. The Bernoulli distribution takes one probability
parameter a, which must be between 0 and 1 inclusive. The functions
are CDF.BERNOULLI(q,a) and RV.BERNOULLI(a), where a is the proba-
bility of obtaining a success. The Bernoulli distribution is a special case
of the Binomial distribution and is used in simple success-failure
experiments.

BINOMIAL Binomial distribution. The binomial distribution takes one trial param-
eter (a) and one probability parameter (b). Parameter a must be a
positive integer and parameter b must be between 0 and 1 inclusive.
The functions are CDF.BINOM(q,a,b) and RV.BINOM(a,b), where a is the
number of trials, b is the probability of obtaining a success in any single
trial, and q is the number of successes in a trials. When a=1, it is the
Bernoulli distribution. The binomial distribution is used in indepen-
dently replicated success-failure experiments.

40 Universals

GEOMETRIC Geometric distribution. The geometric distribution takes one proba-
bility parameter (a), which must be greater than 0 and less than or
equal to 1. The functions are CDF.GEOM(q,a) and RV.GEOM(a), where
q is the number of trials needed (including the last trial) before a
success is observed and a is the probability of obtaining a success in
a single trial.

HYPERGEOMETRIC Hypergeometric distribution. The hypergeometric distribution takes
three parameters a, b, and c. All three parameters are positive integers
and both b and c must be less than or equal to a. The functions are
CDF.HYPER(q,a,b,c) and RV.HYPER(a,b,c), where a is the total number
of objects in an urn model, b is the number of objects randomly drawn
without replacement from the urn, c is the number of objects with dis-
tinct characteristics, and q is the number of objects with these distinct
characteristics observed out of the withdrawn objects.

NEGATIVE BINOMIAL Negative binomial distribution. The negative binomial distribution
takes one threshold parameter (a) and one probability parameter (b).
Parameter a must be an integer and parameter b must be greater than 0
and less than or equal to 1. The functions are CDF.NEGBIN(q,a,b) and
RV.NEGBIN(a,b), where q is the number of trials needed (including the
last trial) before a successes are observed and b is the probability of
obtaining a success in a single trial. If a=1, it is a geometric distribution.

POISSON Poisson distribution. The Poisson distribution takes one rate or
mean parameter (a). Parameter a must be positive. The functions are
CDF.POISSON(q,a) and RV.POISSON(a). The Poisson distribution is
used in modeling the distribution of counts, such as traffic counts
and insect counts.

Missing Values in Numeric Expressions

• Most numeric expressions receive the system-missing value when any one of the values
in the expression is missing.

• Some arithmetic operations involving 0 can be evaluated even when the variables have
missing values. These operations are:

• The .n suffix can be used with the statistical functions SUM, MEAN, MIN, MAX, SD,
VARIANCE, and CFVAR to specify the number of valid arguments you consider accept-
able. The default of n is 2 for SD, VARIANCE, and CFVAR, and 1 for other statistical
functions. For example,

COMPUTE FACTOR = SUM.2(SCORE1 TO SCORE3).

Expression Result

0 * missing 0
0 / missing 0
MOD(0,missing) 0

Transformation Expressions 41

computes variable FACTOR only if a case has valid information for at least two scores.
FACTOR is assigned the system-missing value if a case has valid values for fewer than
two scores.

Domain Errors

Domain errors occur when numeric expressions are mathematically undefined or cannot be
represented numerically on the computer for reasons other than missing data. Two common
examples are division by zero and the square root of a negative number. When SPSS detects
a domain error, it issues a warning and assigns the system-missing value to the expression.
For example, the command COMPUTE TESTVAR = TRUNC(SQRT(X/Y) * .5) returns sys-
tem-missing if X /Y is negative or if Y is 0.

The following are domain errors in numeric expressions:

** A negative number to a noninteger power.

/ A divisor of 0.

MOD A divisor of 0.

SQRT A negative argument.

EXP An argument that produces a result too large to be represented on the computer.

LG10 A negative or 0 argument.

LN A negative or 0 argument.

ARSIN An argument whose absolute value exceeds 1.

NORMAL A negative or 0 argument.

PROBIT A negative or 0 argument, or an argument 1 or greater.

String Expressions

Expressions involving string variables can be used on COMPUTE and IF commands and in
logical expressions on commands such as IF, DO IF, LOOP IF, and SELECT IF.

• A string expression can be a constant enclosed in apostrophes (for example, ‘IL’), a string
function (see “String Functions” below), or a string variable.

• An expression must return a string if the target variable is a string.

• The string returned by a string expression does not have to be the same length as the tar-
get variable; no warning messages are issued if the lengths are not the same. If the target
variable produced by a COMPUTE command is shorter, the result is right-trimmed. If the
target variable is longer, the result is right-padded.

String Functions

• The target variable for each string function must be a string and must have already been
declared (see STRING).

42 Universals

• Multiple arguments in a list must be separated by commas.

• When two strings are compared, the case in which they are entered is significant. The
LOWER and UPCASE functions are useful for making comparisons of strings regardless
of case.

• For certain functions (for example, MIN, MAX, ANY, and RANGE), the outcome will be
affected by case and by whether the string includes numbers or special characters. The
character set in use varies by system. With the ASCII character set, lower case follows
upper case in the sort order. Therefore, if NAME1 is in upper case and NAME2 is in lower
case, MIN(NAME1,NAME2) will return NAME1 as the minimum. The reverse is true with
the EBCDIC character set, which sorts lower before upper case.

CONCAT(arg list) Concatenate the arguments into a string. String variables and strings can
be intermixed as arguments. For example, CONCAT(A,’**’) creates the
string ABCD** for a case with value ABCD for the string variable A.

LOWER(arg) Convert upper case to lower case. All other characters remain un-
changed. The argument can be a string variable or value. For example,
LOWER(NAME1) returns charles if the value of NAME1 is CHARLES.

LPAD(a1, a2, a3) Left-pad. Variable a1 is left-padded up to the length specified by a2
using the optional single character a3 as the pad character. a2 must be
a positive integer from 1 to 255. The default pad character is a blank.
For example, LPAD(ALPHA1,10) adds four leading blanks to the target
variable if ALPHA1 has an A6 format. a3 can be any character enclosed
in apostrophes or any expression that yields a single character.

LTRIM(a1, a2) Left-trim. The character a2 is trimmed from the beginning of a1. For ex-
ample, LTRIM(ALPHA2,’0’) trims leading zeros from variable ALPHA2. a2
can be any character enclosed in apostrophes or any expression that
yields a single character. The default for a2 is a blank.

RPAD(a1, a2, a3) Right-pad. Variable a1 is right-padded up to the length of a2 using the
optional single character a3 as the pad character. a2 must be a positive
integer from 1 to 255. The default pad character is a blank. For exam-
ple, RPAD(ALPHA3,8,’*’) adds two trailing asterisks to the target vari-
able if ALPHA3 has an A6 format. a3 can be any character enclosed in
apostrophes or any expression that yields a single character.

RTRIM(a1, a2) Right-trim. The character a2 is trimmed from the end of a1. For exam-
ple, RTRIM(ALPHA4,’*’) trims trailing asterisks from variable ALPHA4.
a2 can be any character enclosed in apostrophes or any expression that
yields a single character. The default for a2 is a blank.

SUBSTR(a1, a2, a3) Substring. This function returns the substring within a1 beginning with
the position specified by a2 and optionally for a length of a3. a2 can be
a positive integer from 1 to the length of a1. a3, when added to a2, should
not exceed the length of a1. If a3 is not specified, the substring is re-
turned up to the end of a1. For example, if variable ALPHA5 has an A6
format, SUBSTR(ALPHA5,3) returns the last four characters of ALPHA5.
SUBSTR (ALPHA5,3,1) returns the third character of ALPHA5.

Transformation Expressions 43

When used on the left side of an equals sign, the substring is replaced by
the string specified on the right side of the equals sign. The rest of the
original string remains intact. For example, SUBSTR(ALPHA6,3,1)=’*’
changes the third character of all values for ALPHA6 to *. If the replace-
ment string is longer or shorter than the substring, the replacement is
truncated or padded with blanks on the right to an equal length.

UPCASE(arg) Convert lower case to upper case. The argument can be a string vari-
able or a string. For example, UPCASE(NAME1) returns CHARLES if
the value of NAME1 is Charles.

MBLEN.BYTE(arg,a1) Return the number of bytes in the character at the specified position.
The argument is a string expression and a1 indicates the beginning
byte of the character in the specified string.

Search Functions

• The values returned by INDEX and/or RINDEX can be used as arguments to SUBSTR to pull
out substrings with the same beginning or ending character but with varying position and
length.

INDEX(a1, a2, a3) Return a number that indicates the position of the first occurrence of
a2 in a1. a1 is the string that is searched. a2 is the string variable or
string that is used in the search. If a3 is not specified, all of a2 is used.
For example, INDEX(ALPHA8,’**X*’) returns 2 for a case with value
X**X**X* for variable ALPHA8. The optional a3 is the number of
characters used to divide a2 into separate strings. Each substring is
used for searching and the function returns the first occurrence of any
of the substrings. With the same value X**X**X* for ALPHA8, both
INDEX(ALPHA8, ’**X*’, 2) and INDEX(ALPHA8, ’**X*’, 1) return 1. a3 must
be a positive integer and must divide evenly into the length of a2. The
target variable must be numeric. If a2 is not found within a1, the value
0 is returned.

LENGTH(arg) Return the length of the specified string. The argument can be a string
variable or a string. For example, LENGTH(LNAME) always returns 6 if
LNAME has an A6 format. The target variable must be numeric.

MAX(arg list) Return the maximum value across the argument list. For example,
MAX(LNAME,FNAME) selects the name that comes last in the sort order,
the first or the last name. MAX is also available as a numeric function.

MIN(arg list) Return the minimum value across the argument list. For example,
MIN(LNAME,FNAME) selects the name that comes first in the sort order,
the first or the last name. MIN is also available as a numeric function.

RINDEX(a1,a2,a3) Return a number indicating the position of the last occurrence of a2 in
a1. a1 is the string that is searched. a2 is the string variable or string
that is used in the search. If a3 is not specified, all of a2 is used. For
example, RINDEX(ALPHA8,’**X*’) returns 5 for a case with value
X**X**X* for variable ALPHA8. The optional a3 is the number of

44 Universals

characters used to divide a2 into separate strings. Each substring is
used for searching and the function returns the last occurrence of any
of the substrings. With same value X**X**X* for ALPHA8, RINDEX
(ALPHA8, ’**X*’, 2) returns 7, and RINDEX (ALPHA8, ’**X*’, 1) returns 8.
a3 must be a positive integer and must divide evenly into the length of
a2. The target variable must be numeric. If a2 is not found within a1,
the value 0 is returned.

Conversion Functions

NUMBER(arg,format) Convert the argument into a number using the specified format. The
argument is string, the format is a numeric format, and the result is nu-
meric. The string is essentially reread using the format and returned as
a number. For example, NUMBER (XALPHA,F3.1) converts all values
for XALPHA to numbers using the F3.1 format. The function returns the
system-missing value if the conversion is invalid.

STRING(arg,format) Converts the argument into a string using the specified format. The ar-
gument is numeric, the format is a numeric format, and the result is a
string. The number is converted from internal representation according
to the format and then stored as a string. For example, STRING (INCOME,
DOLLAR8) converts the numeric values for INCOME to the dollar format
and returns it as a string value. If the result is shorter than the string vari-
able that receives the values, it is right-justified. If the result is longer, it
is right-trimmed.

Missing Values in String Expressions

• If the numeric argument (which can be an expression) for functions LPAD and RPAD is
illegal or missing, the result is a null string. If the padding or trimming is the only opera-
tion, the string is then padded to its entire length with blanks. If the operation is nested,
the null string is passed to the next nested level.

• If a numeric argument to SUBSTR is illegal or missing, the result is a null string. If SUBSTR
is the only operation, the string is blank. If the operation is nested, the null string is passed
to the next nested level.

• If a numeric argument to INDEX or RINDEX is illegal or missing, the result is system-missing.

Logical Expressions

Logical expressions can appear on the IF, SELECT IF, DO IF, ELSE IF, LOOP IF, and END LOOP
IF commands. SPSS evaluates a logical expression as true or false, or as missing if it is in-
determinate. A logical expression returns 1 if the expression is true, 0 if it is false, or system-
missing if it is missing. Thus, logical expressions can be any expressions that yield this three-
value logic.

• The simplest logical expression is a logical variable. A logical variable is any numeric
variable that has values 1, 0, or system-missing. Logical variables cannot be strings.

Transformation Expressions 45

• Logical expressions can be simple logical variables or relations, or they can be complex
logical tests involving variables, constants, functions, relational operators, logical opera-
tors, and parentheses to control the order of evaluation.

• On an IF command, a logical expression that is true causes the assignment expression to
be executed. A logical expression that returns missing has the same effect as one that is
false: the assignment expression is not executed and the value of the target variable is not
altered.

• On a DO IF command, a logical expression that is true causes SPSS to execute the com-
mands immediately following the DO IF, up to the next ELSE IF, ELSE, or END IF. If it is
false, SPSS looks for the next ELSE IF or ELSE command. If the logical expression returns
missing for each of these, the entire structure is skipped..

• On a SELECT IF command, a logical expression that is true causes the case to be selected.
A logical expression that returns missing has the same effect as one that is false: the case
is not selected.

• On a LOOP IF command, a logical expression that is true causes looping to begin (or con-
tinue). A logical expression that returns missing has the same effect as one that is false:
the structure is skipped.

• On an END LOOP IF command, a logical expression that is false returns control to the
LOOP command for that structure and looping continues. If it is true, looping stops and
the structure is terminated. A logical expression that returns a missing value has the same
effect as one that is true: the structure is terminated.

String Variables in Logical Expressions

String variables, like numeric variables, can be tested in logical expressions.
• String variables must be declared before they can be used in a string expression.

• String variables cannot be compared to numeric variables.

• If strings of different lengths are compared, the shorter string is right-padded with blanks
to equal the length of the longer.

• The magnitude of strings can be compared using LT, GT, and so forth, but the outcome
depends on the sorting sequence of the computer. Use with caution.

Logical Functions

• Each argument to a logical function (expression, variable name, or constant) must be sep-
arated by a comma.

• The target variable for a logical function must be numeric.

• Functions RANGE and ANY can be useful shortcuts to more complicated specifications on
the IF, DO IF, and other conditional commands. For example, the command

SELECT IF ANY(REGION,’NW’,’NE’,’SE’).

is equivalent to

SELECT IF (REGION EQ ’NW’ OR REGION EQ ’NE’ OR REGION EQ
’SE’).

46 Universals

RANGE(arg,arg list) Return 1 or true if the value of the first argument is in the inclusive
ranges; return 0 or false if not. The first argument is usually a vari-
able, and the second argument is a list of one or more pairs of values.
The variable can be either numeric or string. For example, RANGE
(AGE,1,17,62,99) returns 1 for ages 1 through 17 and 62 through 99,
inclusive, and 0 for any other ages. RANGE (LNAME,’A’,’MZZZZZZ’)
returns 1 for last names that begin with a letter between A and M,
inclusive, and 0 for last names beginning with other letters.

ANY(arg,arg list) Return 1 or true if the value of the first argument matches one of the
arguments in the list; return 0 or false if not. The first argument is usu-
ally a variable, either numeric or string. For example,
ANY(PROJECT,3,4,7,9) returns 1 if the value for variable PROJECT is
3, 4, 7, or 9, and 0 for other values of PROJECT. Similarly, ANY
(LNAME,’MARTIN’,’JONES’,’EVANS’) returns 1 for people whose last
names are MARTIN, JONES, or EVANS, and 0 for all other last
names.

Relational Operators

A relation is a logical expression that compares two values using a relational operator. In
the command

IF (X EQ 0) Y=1

variable X and 0 are expressions that yield the values to be compared by the EQ relational
operator. Relational operators are

EQ or = Equal to.

NE or ~= ¬ = or <> Not equal to.

LT or < Less than.

LE or <= Less than or equal to.

GT or > Greater than.

GE or >= Greater than or equal to.

• The symbols representing NE (~= or ¬=) are system dependent (see “NOT Logical Oper-
ator” below).

• The expressions in a relation can be variables, constants, or more complicated arithmetic
expressions.

• Blanks (not commas) must be used to separate the relational operator from the expres-
sions. To make the command more readable, use extra blanks or parentheses.

NOT Logical Operator

The NOT logical operator reverses the true/false outcome of the expression that immediately
follows.

Transformation Expressions 47

• The NOT operator affects only the expression that immediately follows, unless a more
complex logical expression is enclosed in parentheses.

• The valid substitute for NOT varies from operating system to operating system. In gen-
eral, the tilde (~) is valid for ASCII systems while ¬ (or the symbol over number 6 on
the keyboard) is valid for IBM EBCDIC systems. See the SPSS Base User’s Guide for
your version of SPSS.

• NOT can be used to check whether a numeric variable has the value 0, 1, or any other val-
ue. For example, all scratch variables are initialized to 0. Therefore, NOT (#ID) returns
false or missing when #ID has been assigned a value other than 0.

AND and OR Logical Operators

Two or more relations can be logically joined using the logical operators AND and OR. Log-
ical operators combine relations according to the following rules:

• The ampersand (&) symbol is a valid substitute for the logical operator AND. The vertical
bar (|) is a valid substitute for the logical operator OR.

• Only one logical operator can be used to combine two relations. However, multiple rela-
tions can be combined into a complex logical expression.

• Regardless of the number of relations and logical operators used to build a logical expres-
sion, the result is either true, false, or indeterminate because of missing values.

• Operators or expressions cannot be implied. For example, X EQ 1 OR 2 is illegal; you must
specify X EQ 1 OR X EQ 2.

• The ANY and RANGE functions can be used to simplify complex expressions.

AND Both relations must be true for the complex expression to be true.

OR If either relation is true, the complex expression is true.

Table 6 lists the outcome for AND and OR combinations.

Table 6 Outcome for AND and OR combinations

Expression Outcome Expression Outcome

true AND true = true true OR true = true
true AND false = false true OR false = true
false AND false = false false OR false = false
true AND missing = missing true OR missing = true*

* Expressions where SPSS can evaluate the outcome with incomplete information. See “Missing Val-
ues in Logical Expressions” on p. 48.

missing AND missing = missing missing OR missing = missing
false AND missing = false* false OR missing = missing

48 Universals

Order of Evaluation

• When arithmetic operators and functions are used in a logical expression, the order of
operations is functions and arithmetic operations first, then relational operators, and then
logical operators.

• When more than one logical operator is used, NOT is evaluated first, then AND, and then OR.

• To change the order of evaluation, use parentheses.

Missing Values in Logical Expressions

In a simple relation, the logic is indeterminate if the expression on either side of the relational
operator is missing. When two or more relations are joined by logical operators AND and OR,
SPSS always returns a missing value if all of the relations in the expression are missing.
However, if any one of the relations can be determined, SPSS tries to return true or false
according to the logical outcomes shown in Table 6.

• When two relations are joined with the AND operator, the logical expression can never be
true if one of the relations is indeterminate. The expression can, however, be false.

• When two relations are joined with the OR operator, the logical expression can never be
false if one relation returns missing. The expression, however, can be true.

Other Functions

SPSS also includes a lag function and several missing-value functions.

LAG Function

LAG(arg,n) The value of the variable n cases before. The first argument is a variable. The
second argument, if specified, is a constant and must be a positive integer;
the default is 1. For example, PREV4=LAG(GNP,4) returns the value of GNP
for the fourth case before the current one. The first four cases have system-
missing values for PREV4.

• The result is of the same type (numeric or string) as the variable specified as the first
argument.

• The first n cases for string variables are set to blanks. For example, if PREV2=LAG
(LNAME,2) is specified, blanks will be assigned to the first two cases for PREV2.

• When LAG is used with commands that select cases (for example, SELECT IF and SAMPLE),
LAG counts cases after case selection, even if specified before these commands (see
“Command Order” on p. 6).

Missing-Value Functions

• Each argument to a missing-value function (expression, variable name, or constant) must
be separated by a comma.

Transformation Expressions 49

• Only numeric values can be used as arguments in missing-value functions.

• Keyword TO can be used to refer to a set of variables in the argument list for functions
NMISS and NVALID.

• Functions MISSING and SYSMIS are logical functions and can be useful shortcuts to more
complicated specifications on the IF, DO IF, and other conditional commands.

VALUE(arg) Ignore user-defined missing values. The value is treated as is. The
argument must be a variable name.

MISSING(arg) True or 1 if the value is user-missing or system-missing; false or 0
otherwise.

SYSMIS(arg) True or 1 if the value is system-missing; false or 0 otherwise.

NMISS(arg list) Number of system-missing values in the argument list.

NVALID(arg list) Number of valid values in the argument list.

Treatment of Missing Values in Arguments

If the logic of an expression is indeterminate because of missing values, the expression
returns a missing value, and the command is not executed. Table 7 summarizes how missing
values are handled in arguments to various functions.

Table 7 Missing values in arguments

Function Returns system-missing if

MOD (x1,x2) x1 is missing, or x2 is missing and x1 is not 0

MAX.n (x1,x2,...xk) fewer than n arguments are valid; the default n is 1
MEAN.n (x1,x2,...xk)
MIN.n (x1,x2,...x1)
SUM.n (x1,x2,...xk)

CFVAR.n (x1,x2,...xk) fewer than n arguments are valid; the default n is 2
SD.n (x1,x2,...xk)
VARIANCE.n (x1,x2,...xk)

LPAD(x1,x2,x3) x1 or x2 is illegal or missing
LTRIM(x1,x2)

RTRIM(x1,x2)

RPAD(x1,x2,x3)

SUBSTR(x1,x2,x3) x2 or x3 is illegal or missing

50 Universals

• Any function that is not listed in Table 7 returns the system-missing value when the
argument is missing.

• The system-missing value is a displayed as a period (.) for numeric variables.

• String variables do not have system-missing values. An invalid string expression nested
within a complex transformation yields a null string, which is passed to the next level of
operation and treated as missing. However, an invalid string expression that is not nested
is displayed as a blank string and is not treated as missing.

NUMBER(x,format) the conversion is invalid
STRING(x,format)

INDEX(x1,x2,x3) x3 is invalid or missing
RINDEX(x1,x2,x3)

LAG (x,n) x is missing n cases previously (and always for the first n cases);
the default n is 1

ANY (x,x1,x2,...xk) x or all of x1, x2, ... xk are missing
RANGE (x,x1,x2,...xk)

VALUE (x) x is system-missing

MISSING (x) never
NMISS (x1,x2,...xk)
NVALID (x1,x2,...xk)
SYSMIS (x)

Table 7 Missing values in arguments (Continued)

Function Returns system-missing if

51

Date and Time

SPSS reads and writes date and time in many different formats but stores them as floating-
point numbers. You can perform arithmetic operations on them, use them in statistical
procedures, and display or print them in a format of your choice. This section discusses the
input and output formats for date and time, arithmetic operations using date and time
variables, and date and time functions.

Date and Time Formats

Date and time formats are both input and output formats. They can be used on DATA LIST and
other variable definition commands to read in values representing dates or times or date-time
combinations. Like numeric formats, each input format generates a default output format,
automatically expanded (if necessary) to accommodate display width. In addition, you can
assign or modify output formats using FORMATS, WRITE FORMATS, and PRINT FORMATS
commands. The output formats are effective only with LIST, REPORT, and TABLES procedures
and the PRINT and WRITE transformation commands. Other procedures use the F format and
display the values as numbers.

• All date and time formats have a minimum input width and some have a different mini-
mum output. Wherever the input minimum width is less than the output minimum, SPSS
expands the width automatically when displaying or printing values. However, when
you specify output formats, you must allow enough space for displaying the date and
time in the format you choose.

• Input data shorter than the specified width are correctly evaluated as long as all the
necessary elements are present. For example, with the TIME format, 1:2, 01 2, and 01:02
are all correctly evaluated even though the minimum width is 5. However, if only one
element (hours or minutes) is present, you must use a time function to aggregate or con-
vert the data (see “Date and Time Functions” on p. 58).

• If a date or time value cannot be completely displayed in the specified width, values are
truncated in the output. For example, an input time value of 1:20:59 (1 hour, 20 minutes,
59 seconds) displayed with a width of 5 will generate an output value of 01:20, not
01:21. The truncation of output does not affect the numeric value stored in the working
file.

Table 8 shows all available date and time formats, where w indicates the total number of
columns and d (if present) the number of decimal places for fractional seconds. The exam-
ple shows the output format with the minimum width and default decimal positions (if ap-
plicable). The format allowed in the input data is much less restrictive (see “Input Data
Specification” on p. 53).

52 Universals

Table 8 Date and time formats

Format type Description Min w Max w Max d General form Example

In Out

DATEw International
date

8 9 40 dd-mmm-yy 28-OCT-90

 10 11 dd-mmm-yyyy 28-OCT-1990

ADATEw American
date

8 8 40 mm/dd/yy 10/28/90

 10 10 mm/dd/yyyy 10/28/1990

EDATEw European
date

8 8 40 dd.mm.yy 28.10.90

10 10 dd.mm.yyyy 28.10.1990

JDATEw Julian date 5 5 40 yyddd 90301

 7 7 yyyyddd 1990301

SDATEw Sortable
date*

8 8 40 yy/mm/dd 90/10/28

10 10 yyyy/mm/dd 1990/10/28

QYRw Quarter and
year

4 6 40 q Q yy 4 Q 90

 6 8 q Q yyyy 4 Q 1990

MOYRw Month and
year

6 6 40 mmm yy OCT 90

 8 8 mmm yyyy OCT 1990

WKYRw Week and
year

6 8 40 ww WK yy 43 WK 90

 8 10 ww WK yyyy 43 WK 1990

WKDAYw Day of the
week

2 2 40 (name of the day) SU

MONTHw Month 3 3 40 (name of the month) JAN

TIMEw Time 5 5 40 hh:mm 01:02

TIMEw.d 10 10 40 16 hh:mm:ss.s 01:02:34.75

DTIMEw Days and
time

8 8 40 dd hh:mm 20 08:03

DTIMEw.d 13 13 40 16 dd hh:mm:ss.s 20 08:03:00

DATETIMEw Date and
time

17 17 40 dd-mmm-yyyy hh:mm 20-JUN-1990
08:03

DATETIMEw.d 22 22 40 16 dd-mmm-yyyy
hh:mm:ss.s

20-JUN-1990
08:03:00

* All date and time formats produce sortable data. SDATE, a date format used in a number of Asian countries,
can be sorted in its character form and is used as a sortable format by many programmers.

Date and Time 53

Input Data Specification

The following general rules apply to date and time input formats:

• Input data must be fixed. Data can appear anywhere within the specified columns. Lead-
ing and trailing blanks are allowed. If column-style specifications are used, the width
specification can be omitted (see DATA LIST). For example,

DATA LIST /BIRTHDAY 1-8 (DATE).

is equivalent to

DATA LIST /BIRTHDAY (DATE8).

• You cannot use date and time formats to read freefield data.
• The century value for 2-digit years is defined by the SET EPOCH value. By default, the

century range begins 69 years prior to the current year and end 30 years after the current
year. Whether all four digits or only two digits are displayed in output depends on the
width specification on the format.

• Dashes, periods, commas, slashes, or blanks can be used as delimiters in the date-month-
year input. For example, with DATE format, the following input forms are all acceptable:

28-10-90 28/10/1990 28.OCT.90 October 28, 1990

The displayed values, however, will be the same: 28-OCT-90 or 28-OCT-1990, depending
on whether the specified width allows 11 characters in output.

• The JDATE format does not allow internal delimiters and requires leading zeros for day
values less than 100 and two-digit year values less than 10. For example, for January 1,
1990, the following two specifications are acceptable:

90001 1990001

However, neither of the following is acceptable:

90 1 90/1

• Months can be represented in digits, Roman numerals, or three-character abbreviations,
and they can be fully spelled out. For example, all of the following specifications are
acceptable for October:

10 X OCT October

• The quarter in QYR format is expressed as 1, 2, 3, or 4. It must be separated from the year
by the letter Q. Blanks can be used as additional delimiters. For example, for the fourth
quarter of 1990, all the following specifications are acceptable:

4Q90 4Q1990 4 Q 90 4 Q 1990

On some operating systems, such as IBM CMS, Q must be upper case. The displayed out-
put is 4 Q 90 or 4 Q 1990, depending on whether the width specified allows all four digits
of the year.

• The week in the WKYR format is expressed as a number from 1 to 53. Week 1 begins on
January 1, week 2 on January 8, and so forth. The value may be different from the number
of the calendar week. The week and year must be separated by the string WK. Blanks can

54 Universals

be used as additional delimiters. For example, for the 43rd week of 1990, all the following
specifications are acceptable:

43WK90 43WK1990 43 WK 90 43 WK 1990

On some operating systems, such as IBM CMS, WK must be upper case. The displayed
output is 43 WK 90 or 43 WK 1990, depending on whether the specified width allows
enough space for all four digits of the year.

• In time specifications, colons can be used as delimiters between hours, minutes, and sec-
onds. Hours and minutes are required but seconds are optional. A period is required to
separate seconds from fractional seconds. Hours can be of unlimited magnitude, but the
maximum value for minutes is 59 and for seconds 59.999. . . .

• Data values can contain a sign (+ or −) in TIME and DTIME formats to represent time
intervals before or after a point in time.

Example
DATA LIST FIXED
 /VAR1 1-17 (DATE) VAR2 21-37 (ADATE) VAR3 41-47 (JDATE).
BEGIN DATA
28-10-90 10/28/90 90301
28.OCT.1990 X 28 1990 1990301
28 October, 2001 Oct. 28, 2001 2001301
END DATA.
LIST.

• Internally, all date format variables are stored as the number of seconds from 0 hours, 0
minutes, and 0 seconds of Oct. 14, 1582.

The LIST output from these commands is shown in Figure 15.

Example
DATA LIST FIXED /VAR1 1-10 (QYR) VAR2 12-25 (MOYR) VAR3 28-37 (WKYR).
BEGIN DATA
4Q90 10/90 43WK90
4 Q 90 Oct-1990 43 WK 1990
4 Q 2001 October, 2001 43 WK 2001
END DATA.
LIST.

• Internally, the value of a QYR variable is stored as midnight of the first day of the first
month of the specified quarter, the value of a MOYR variable is stored as midnight of the
first day of the specified month, and the value of a WKYR format variable is stored as mid-
night of the first day of the specified week. Thus, 4Q90 and 10/90 are both equivalent to
October 1, 1990, and 43WK90 is equivalent to October 22, 1990.

Figure 15 Output illustrating DATE, ADATE, and JDATE formats
 VAR1 VAR2 VAR3

28-OCT-1990 10/28/1990 1990301
28-OCT-1990 10/28/1990 1990301
28-OCT-2001 10/28/2001 2001301

Date and Time 55

The LIST output from these commands is shown in Figure 16.

Example
DATA LIST FIXED
 /VAR1 1-11 (TIME,2) VAR2 13-21 (TIME) VAR3 23-28 (TIME).
BEGIN DATA
1:2:34.75 1:2:34.75 1:2:34
END DATA.
LIST.

• TIME reads and writes time of the day or a time interval.

• Internally, the TIME values are stored as the number of seconds from midnight of the day
or of the time interval.

The LIST output from these commands is shown in Figure 17.

Example
DATA LIST FIXED
 /VAR1 1-9 (WKDAY) VAR2 10-18 (WKDAY)
 VAR3 20-29 (MONTH) VAR4 30-32 (MONTH) VAR5 35-37 (MONTH).
BEGIN DATA
Sunday Sunday January 1 Jan
Monday Monday February 2 Feb
Tues Tues March 3 Mar
Wed Wed April 4 Apr
Th Th Oct 10 Oct
Fr Fr Nov 11 Nov
Sa Sa Dec 12 Dec
END DATA.
FORMATS VAR2 VAR5 (F2).
LIST.

• WKDAY reads and writes the day of the week; MONTH reads and writes the month of the
year.

• Values for WKDAY are entered as strings but stored as numbers. They can be used in
arithmetic operations but not in string functions.

• Values for MONTH can be entered either as strings or as numbers, but are stored as
numbers. They can be used in arithmetic operations but not in string functions.

• To display the values as numbers, assign an F format to the variable, as was done for VAR2
and VAR5 in the above example.

Figure 16 Output illustrating QYR, MOYR, and WKYR formats
 VAR1 VAR2 VAR3

4 Q 1990 OCT 1990 43 WK 1990
4 Q 1990 OCT 1990 43 WK 1990
4 Q 2001 OCT 2001 43 WK 2001

Figure 17 Output illustrating TIME format
 VAR1 VAR2 VAR3

 1:02:34.75 1:02:34 1:02

56 Universals

The LIST output from these commands is shown in Figure 18.

Example
DATA LIST FIXED /VAR1 1-14 (DTIME) VAR2 18-42 (DATETIME).
BEGIN DATA
20 8:3 20-6-90 8:3
20:8:03:46 20/JUN/1990 8:03:46
20 08 03 46.75 20 June, 2001 08 03 46.75
END DATA.
LIST.

• DTIME and DATETIME read and write time intervals.

• The decimal point explicitly coded in the input data for fractional seconds.

• The DTIME format allows a − or + sign in the data value to indicate a time interval before
or after a point in time.

• Internally, values for a DTIME variable are stored as the number of seconds of the time
interval while those for a DATETIME variable are stored as the number of seconds from 0
hours, 0 minutes, and 0 seconds of Oct. 14, 1582.

The LIST output from these commands is shown in Figure 19.

Arithmetic Operations with Date and Time Variables

Most date and time variables are stored internally as the number of seconds from a particular
date or as a time interval and therefore can be used in arithmetic operations:

• A date is a floating-point number representing the number of seconds from midnight, Oc-
tober 14, 1582. Dates, which represent a particular point in time, are stored as the number
of seconds to that date. For example, November 8, 1957, is stored as 1.2E+10.

• A date includes the time of day, which is the time interval past midnight. When time of
day is not given, it is taken as 00:00 and the date is an even multiple of 86,400 (the number
of seconds in a day).

Figure 18 Output illustrating WKDAY and MONTH formats
 VAR1 VAR2 VAR3 VAR4 VAR5

SUNDAY 1 JANUARY JAN 1
MONDAY 2 FEBRUARY FEB 2
TUESDAY 3 MARCH MAR 3
WEDNESDAY 4 APRIL APR 4
THURSDAY 5 OCTOBER OCT 10
FRIDAY 6 NOVEMBER NOV 11
SATURDAY 7 DECEMBER DEC 12

Figure 19 Output illustrating DTIME and DATETIME formats
 VAR1 VAR2

 20 08:03:00 20-JUN-1990 08:03:00
 20 08:03:46 20-JUN-1990 08:03:46
 20 08:03:46 20-JUN-2001 08:03:46

Date and Time 57

• A time interval is a floating-point number representing the number of seconds in a time
period, for example, an hour, minute, or day. For example, the value representing 5.5 days
is 475,200; the value representing the time interval 14:08:17 is 50,897.

• QYR, MOYR, and WKYR variables are stored as midnight of the first day of the respective
quarter, month, and week of the year. Therefore, 1 Q 90, 1/90, and 1 WK 90 are all equiv-
alents of January 1, 1990 0:0:00. See “Date and Time Functions” on p. 58 for information
on how to determine the quarter, month, or week of a year for a certain date.

• WKDAY variables are stored as 1 to 7, and MONTH variables as 1 to 12. For information
on how to determine the day of the week or the month of the year for a certain date, see
“Date and Time Functions” on p. 58.

• Both dates and time intervals can be used in arithmetic expressions. The results are stored
as the number of seconds or days (see Table 9).

• Do not mix time variables (TIME and DTIME) with date variables (DATE, ADATE, EDATE,
and so forth) in computations. Since date variables have an implicit time value of
00:00:00, calculations involving time values that are not multiples of a whole day (e.g, 24
hours, 0 minutes, 0 seconds) will yield unreliable results.

• Mixing a DATETIME variable with a date variable may yield an unreliable results.
Operations involving date variables are accurate only to the days. To avoid possible
misinterpretation, use the DTIME format and ignore the hours and minutes portion of the
resulting value.

You can perform virtually any arithmetic operation with them. Of course, not all of these
operations are particularly useful. You can calculate the number of days between two dates
by subtracting one date from the other—but adding two dates does not produce a very mean-
ingful result.

By default, any new numeric variables you compute are displayed in F format. In the case
of calculations involving time and date variables, this means the default output is expressed
as a number of seconds or days. Use the FORMATS (or PRINT FORMATS) command to specify
an appropriate format for the computed variable. Table 9 shows the recommended output for-
mats for some of the calculations possible with date and time variables.

Table 9 Recommended output formats for date and time calculations

Arithmetic operation Result Recommended output format

time ± time*

* Including TIME and DTIME formats.

time TIME, DTIME
date - date †

† Including DATE, ADATE, EDATE, JDATE, and SDATE formats.

time DTIME
DATETIME - DATETIME time TIME, DTIME
DATETIME ± time date DATETIME

58 Universals

Example
DATA LIST RECORDS=2
 /TIME 1-8 (TIME) DTIME 10-19 (DTIME) DATE 21-29 (DATE)
 ADATE 31-38 (ADATE)
 /DATTIME1 1-18 (DATETIME) DATTIME2 20-37 (DATETIME).
BEGIN DATA
1:10:15 1 0:25:10 13-8-90 10/21/90
28-OCT-90 9:15:17 29/OCT/90 10:30:22
END DATA.
COMPUTE ADDTIME=TIME+DTIME.
COMPUTE DATEDIF1=ADATE-DATE.
COMPUTE DATEDIF2=DATTIME2-DATTIME1.
COMPUTE DATETIME=DATTIME2+DTIME.
LIST VARIABLES=ADDTIME DATEDIF1 DATEDIF2 DATETIME.
FORMATS ADDTIME DATEDIF2 (TIME15) DATEDIF1 (DTIME15)
 DATETIME (DATETIME25).
LIST VARIABLES=ADDTIME DATEDIF1 DATEDIF2 DATETIME.

The results of these commands are shown in Figure 20.

Date and Time Functions

Date and time functions provide aggregation, conversion, and extraction routines for dates
and time intervals. Each function transforms an expression consisting of one or more argu-
ments. Arguments can be complex expressions, variable names, or constants. Date and time
expressions and variables are legitimate arguments.

All date functions that accept the argument of day—for example, DATE.DMY(d,m,y),
DATE.MDY(m,d,y), and DATE.YRDAY(y,d)—check the validity of the argument. The value for
day must be an integer between 1 and 31. If an invalid value is encountered, a warning is
displayed and the value is set to system-missing. However, if the day value is invalid for a
particular month—for example, 31 in September, April, June, and November or 29 through
31 for February in non-leap years—the resulting date is placed in the next month, for exam-
ple, if you enter 2 for MONTH, 31 for DAY, and 91 for YEAR, the result becomes 03/02/91.

Figure 20 Results of arithmetic operations with date and time variables

 ADDTIME DATEDIF1 DATEDIF2 DATETIME

 25:35:25 69 00:00:00 25:15:05 30-OCT-1990 10:55:32

Date and Time 59

Aggregation Functions

Aggregation functions generate dates and time intervals from values that were not read by
date and time input formats.

• All aggregation functions begin with DATE or TIME, depending on whether a date or a time
interval is requested. This is followed by a subfunction that corresponds to the type of
values found in the data.

• The subfunctions are separated from the function by a period (.) and are followed by an
argument list specified in parentheses.

• The arguments to the DATE and TIME functions must be separated by commas and must
contain integer values.

DATE.DMY(d,m,y) Combine day, month, and year. The value of the argument for day
must be expressed as an integer between 1 and 31. The value of the
argument for month must be expressed as an integer between 1 and 13
(13 returns January of the following year). Years should be expressed
in four digits. By default the For example, the command

COMPUTE BIRTHDAY=DATE.DMY(DAY,MONTH,YEAR).

stores the value of approximately 1.184E+10 in BIRTHDAY when DAY
is 8, MONTH is 11, and YEAR is 57. This value can be displayed with
a DATE9 format as 08-NOV-57.

DATE.MDY(m,d,y) Combine month, day, and year. This function follows the same rules
as DATE.DMY, except for the order of the arguments. For example, the
command

COMPUTE BIRTHDAY=DATE.MDY(MONTH,DAY,YEAR).

stores the same value as the previous example in BIRTHDAY for the
same values of MONTH, DAY, and YEAR. The value can be displayed
as 11/08/57 with an ADATE8 format.

DATE.YRDAY(y,d) Combine year and day of the year. The year can be expressed as either
two or four digits. Years should be expressed in four digits. The day
can be expressed as any integer between and including 1 and 366. For
example, the command

COMPUTE BIRTHDAY=DATE.YRDAY(1688,301).

when combined with a DATE11 print format produces the date 27-
OCT-1688 for BIRTHDAY.

DATE.QYR(q,y) Combine quarter and year. The quarter must be expressed as a single
digit between and including 1 and 4. The year can contain two or four
digits. Years should be expressed in four digits. For example, the com-
mand

COMPUTE QUART=DATE.QYR(QTR,YEAR).

with a QDATE6 print format produces a value of 4 Q 57 for QUART
when QTR is 4 and YEAR is 57. Since each quarter is assumed to begin

60 Universals

on the first day of the first month of the quarter, a DATE9 print format
for the same value is displayed as 01-OCT-57.

DATE.MOYR(m,y) Combine month and year. The value of the month must be expressed
as an integer between and including 1 and 12. The year can be
expressed as two or four digits. For example, the command

COMPUTE START=DATE.MOYR(MONTH,YEAR).

displays NOV 57 for START when MONTH is 11 and YEAR is 57 and
the print format is MOYR.

DATE.WKYR(w,y) Combine week and year. The week must be an integer between and
including 1 and 53. The year can be represented by two or four digits.
For example, the command

COMPUTE WEEK=DATE.WKYR(WK,YEAR).

displays 26-NOV-57 for WEEK when WK is 48 and YEAR is 57 and the
print format is DATE9. The number of the week in the WKYR format is
calculated beginning with the first day of the year. It may be different
from the number of calendar week.

TIME.HMS(h,m,s) Combine hour, minute, and second into a time interval. For example,
the command

COMPUTE PERIOD1= TIME.HMS (HR,MIN,SEC).

produces an interval of 45,030 seconds for PERIOD1 when HR equals
12, MIN equals 30, and SEC equals 30. The value can be displayed as
12:30:30 with a TIME8 print format.

You can supply one, two, or three arguments. Trailing arguments can be
omitted and default to 0. The value of the first nonzero argument can
spill over into the next higher argument. For example, the command.

COMPUTE PERIOD2=TIME.HMS(HR,MIN).

produces an interval of 5400 seconds for PERIOD2 when HR is 0 and MIN
is 90. The value can be displayed as 01:30 with a TIME5 print format.

You can have a noninteger value for the last argument. For example,
the command

COMPUTE PERIOD3=TIME.HMS(HR).

produces an interval of 5400 seconds for PERIOD3 when HR equals 1.5
and is displayed as 01:30 with a TIME5 format. When you supply a
nonzero argument to a function, each of the lower-level units must be
within the range of −60 to +60.

TIME.DAYS(d) Aggregate days into a time interval. The argument can be expressed
as any numeric value. For example, the command

COMPUTE NDAYS=TIME.DAYS(SPELL).

with a value of 2.5 for SPELL generates a value for NDAYS that is dis-
played as 2 12:00 with a DTIME7 format.

Date and Time 61

Conversion Functions

The conversion functions convert time intervals from one unit of time to another. Time inter-
vals are stored as the number of seconds in the interval; the conversion functions provide a
means for calculating more appropriate units, for example, converting seconds to days.

Each conversion function consists of the CTIME function followed by a period (.), the
target time unit, and an argument. The argument can consist of expressions, variable names,
or constants. The argument must already be a time interval (see “Aggregation Functions” on
p. 59). Time conversions produce noninteger results with a default format of F8.2.

Since time and dates are stored internally as seconds, a function that converts to seconds
is not necessary.

CTIME.DAYS(arg) Convert a time interval to the number of days. For example, the
command

COMPUTE NDAYS=CTIME.DAYS(TIME.HMS(HR,MIN,SEC)).

with 12 for HR, 30 for MIN, and 30 for SEC yields a value of 0.52 for
NDAYS. CTIME.DAYS(45030)yields the same result.

CTIME.HOURS(arg) Convert a time interval to the number of hours. For example, the
command

COMPUTE NHOURS=CTIME.HOURS(TIME.HMS(HR,MIN,SEC)).

using the same values as the previous example produces a value of
12.51 for NHOURS.

CTIME.MINUTES(arg) Convert a time interval to the number of minutes. Using the same
values as the previous example for HR, MIN, and, SEC, the command

COMPUTE NMINS=CTIME.MINUTES(TIME.HMS(HR,MIN,SEC)).

converts the interval to minutes and produces a value of 750.50 for
NMINS.

YRMODA Function

YRMODA(arg list) Convert year, month, and day to a day number. The number returned
is the number of days since October 14, 1582 (day 0 of the Gregorian
calendar).

• Arguments for YRMODA can be variables, constants, or any other type of numeric expres-
sion but must yield integers.

• Year, month, and day must be specified in that order.

• The first argument can be any year between 0 and 99, or between 1582 to 47516.

• If the first argument yields a number between 00 and 99, 1900 through 1999 is assumed.

• The month can range from 1 through 13. Month 13 with day 0 yields the last day of the
year. For example, YRMODA(1990,13,0) produces the day number for December 31, 1990.
Month 13 with any other day yields the day of the first month of the coming year, for
example, YRMODA(1990,13,1) produces the day number for January 1, 1991.

62 Universals

• The day can range from 0 through 31. Day 0 is the last day of the previous month regard-
less of whether it is 28, 29, 30, or 31. For example, YRMODA(1990,3,0) yields 148791.00,
the day number for February 28, 1990.

• The function returns the system-missing value if any of the three arguments is missing or
if the arguments do not form a valid date after October 14, 1582.

• Since YRMODA yields the number of days instead of seconds, you can not display it in
date format unless you convert it to the number of seconds.

Extraction Functions

The extraction functions extract subfields from dates or time intervals, targeting the day or a
time from a date value. This permits you to classify events by day of the week, season, shift,
and so forth.

• Each extraction function begins with XDATE, followed by a period, the subfunction name
(what you want to extract), and an argument.

• The argument can be an expression, a variable name, or a constant, provided the argument
is already in date form.

• In the following examples, the value for variable BIRTHDAY is 05-DEC-1954 5:30:15,
read with a DATE20 input format.

XDATE.MDAY(arg) Return day number in a month from a date. The result is an integer be-
tween 1 and 31. The date must have occurred after October 14, 1582.
For example, you can extract the day number from BIRTHDAY, as in

COMPUTE DAYNUM=XDATE.MDAY(BIRTHDAY).

When the value for BIRTHDAY is 05-DEC-1954 5:30:15, DAYNUM is 5.

XDATE.MONTH(arg) Return month number from a date. The result is an integer between 1
and 12. The date must have occurred after October 14, 1582. For
example, you can extract the month number from BIRTHDAY, as in

COMPUTE MONTHNUM=XDATE.MONTH(BIRTHDAY).

When the value for BIRTHDAY is 05-DEC-1954 5:30:15, this com-
mand yields 12 for MONTHNUM. If you provide a print format of
MONTH12, as in

PRINT FORMAT MONTHNUM(MONTH12).

the value would be displayed as DECEMBER.

XDATE.YEAR(arg) Return a four-digit year from a date. The date must have occurred
after October 14, 1582. For example, you can extract the year from
BIRTHDAY, as in

COMPUTE YEAR=XDATE.YEAR(BIRTHDAY).

When the value for BIRTHDAY is 05-DEC-1954 5:30:15, this command
returns 1954 for YEAR.

Date and Time 63

XDATE.HOUR(arg) Return the hour from a date or time of day. The result is an integer be-
tween 0 and 23. For example, you can extract the hour from BIRTHDAY,
as in

COMPUTE HOUR=XDATE.HOUR(BIRTHDAY).

When the value for BIRTHDAY is 05-DEC-1954 5:30:15, this command
returns 5 for HOUR.

XDATE.MINUTE(arg) Return the minute of the hour from a date or time of day. The result is
an integer from 0 through 59. For example, you can extract the minute
of the hour from BIRTHDAY, as in

COMPUTE MIN=XDATE.MINUTE(BIRTHDAY).

When the value for BIRTHDAY is 05-DEC-1954 5:30:15, this command
returns 30 for MIN.

XDATE.SECOND(arg) Return the second of the minute from a date or time of day. The result is
an integer or, if there are fractional seconds, a value with decimals. For
example, you can extract the second of the minute from BIRTHDAY, as in

COMPUTE SEC=XDATE.SECOND(BIRTHDAY).

When the value for BIRTHDAY is 05-DEC-1954 5:30:15, this command
returns a value of 15.00 for SEC.

XDATE.WKDAY(arg) Return the day within a week from a date. The result is an integer be-
tween and including 1 and 7, with Sunday being 1 and Saturday being
7. The date must have occurred after October 14, 1582. For example,
you can extract the day of the week from BIRTHDAY, as in

COMPUTE DAYNAME=XDATE.WKDAY(BIRTHDAY).

When the value for BIRTHDAY is 05-DEC-1954 5:30:15, this command
returns the value 1 for DAYNAME. If you provide an output format of
WKDAY, as in

PRINT FORMAT DAYNAME (WKDAY9).

the value for DAYNAME would display as SUNDAY.

XDATE.JDAY(arg) Return the day of the year from the date. The result is an integer
between 1 and 366 inclusive. The date must have occurred after Oc-
tober 14, 1582. For example, you can extract the day of the year from
BIRTHDAY, as in

COMPUTE DAYNUM=XDATE.JDAY(BIRTHDAY).

When the value for BIRTHDAY is 05-DEC-1954 5:30:15, this command
returns the value 339 for DAYNUM.

XDATE.QUARTER(arg) Return quarter number within a year for a date. The result is 1, 2, 3,
or 4. The date must have occurred after October 14, 1582. To extract
the quarter in which BIRTHDAY occurred, use the command

COMPUTE Q=XDATE.QUARTER(BIRTHDAY).

When BIRTHDAY equals 5-DEC-1954 05:30:15, the value of Q is 4.

64 Universals

XDATE.WEEK(arg) Return the week number of a date. The result is an integer between 1
and 53. The date must have occurred after October 14, 1582. For ex-
ample, you can extract the week number from BIRTHDAY, as in

COMPUTE WEEKNUM=XDATE.WEEK(BIRTHDAY).

When the value for BIRTHDAY is 5-DEC-1954 05:30:15, this command
returns the value 49 for WEEKNUM.

XDATE.TDAY(arg) Return number of days in a time interval or from October 14, 1582.
The value returned is an integer (the fractional portion of a day is ig-
nored). For example, the command

COMPUTE NDAYS=XDATE.TDAY(BIRTHDAY).

returns the value 135922 when the value for BIRTHDAY is 05-DEC-1954
5:30:15, indicating the number of days between October 14, 1582 and
December 5, 1954. The hours, minutes, and seconds are ignored.

XDATE.TIME(arg) Return time of day from a date. The result is expressed as the number
of elapsed seconds since midnight of that date. For example, when the
value for BIRTHDAY is 05-DEC-1954 5:30:15, the command

COMPUTE ELSEC=XDATE.TIME(BIRTHDAY).

returns the value 19815 for ELSEC. If you provide a TIME print format,
as in

PRINT FORMAT ELSEC(TIME8).

the value is displayed as 5:30:15.

XDATE.DATE(arg) Return the date portion of a date. The result is the integral date portion
of a date, which is the number of elapsed seconds between midnight
October 14, 1582 and midnight of the date in question. The date must
have occurred after October 14, 1582. To extract the date from vari-
able BIRTHDAY, use

COMPUTE BRTHDATE=XDATE.DATE(BIRTHDAY).

The value for BIRTHDATE can then be displayed as 12/05/54 using
ADATE8 format.

Precautions with Date and Time Variables

Dates and times are represented internally as seconds. The numbers for dates are very large,
and arithmetic overflows can result. For instance, dates in the 20th century are on the order
of 10 to the 10th power (11 digits). For that reason, a few precautions are in order:

• Some machine environments cannot accommodate the computation of higher powers of
date and time variables. For example, computations higher than the sixth power may
cause overflows on some machines.

• The magnitude of the values may cause inaccuracies in some statistical procedures. It is
advisable to subtract a fixed date if you want to keep seconds as the unit, or to convert

Date and Time 65

days using the XDATE.TDAYS function. REGRESSION, CORRELATIONS, ANOVA, and
ONEWAY use an adaptive centering method, so their accuracy will not be affected.

• LIST, REPORT, and TABLES are the only procedures that display values in date and time for-
mats. The PRINT and WRITE transformation commands can also display and write date and
time formats. However, some summary variables in REPORT and calculated variables in
TABLES display in F format, regardless of the print formats of variables used as arguments.

• All other procedures use F format in all cases. The default width and number of decimal
places is taken from the print format, but the format type is ignored. For example, in a
frequency table, the date 1/09/57 with a print format of DATE9 will be displayed as
11830147200, not 01-SEP-57.

• Changing the print format in no way alters the values that are stored. For example, if you
assign a print format of DATE9 for a variable read with DATETIME format, the time of day
will not display but continues to be part of the value. This means that seemingly identical
values can be displayed as separate entries within procedures.

66 Universals

67

Commands

ACF

ACF [VARIABLES=] series names

 [/DIFF={1}]
 {n}

 [/SDIFF={1}]
 {n}

 [/PERIOD=n]

 [/{NOLOG**}]
 {LN }

 [/SEASONAL]

 [/MXAUTO={16**}]
 {n }

 [/SERROR={IND**}]
 {MA }

 [/PACF]

 [/APPLY [=’model name’]]

**Default if the subcommand is omitted and there is no corresponding specification on the TSET command.

Example:
ACF TICKETS
 /LN
 /DIFF=1
 /SDIFF=1
 /PER=12
 /MXAUTO=50.

Overview

ACF displays and plots the sample autocorrelation function of one or more time series. You
can also display and plot the autocorrelations of transformed series by requesting natural
log and differencing transformations within the procedure.

Options

Modifying the Series. You can request a natural log transformation of the series using the LN
subcommand and seasonal and nonseasonal differencing to any degree using the SDIFF

68 ACF

and DIFF subcommands. With seasonal differencing, you can specify the periodicity on the
PERIOD subcommand.

Statistical Output. With the MXAUTO subcommand you can specify the number of lags for
which you want autocorrelations displayed and plotted, overriding the maximum specified
on TSET. You can also display and plot values only at periodic lags using the SEASONAL sub-
command. In addition to autocorrelations, you can display and plot partial autocorrelations
using the PACF subcommand.

Method of Calculating Standard Errors. You can specify one of two methods of calculating the
standard errors for the autocorrelations on the SERROR subcommand.

Basic Specification

The basic specification is one or more series names.

• For each series specified, ACF automatically displays the autocorrelation value, standard
error, Box-Ljung statistic, and probability for each lag.

• ACF plots the autocorrelations and marks the bounds of two standard errors on the plot.
By default, ACF displays and plots autocorrelations for up to 16 lags or the number of lags
specified on TSET.

• If a method has not been specified on TSET, the default method of calculating the standard
error (IND) assumes the process is white noise.

Subcommand Order

• Subcommands can be specified in any order.

Syntax Rules

• VARIABLES can be specified only once.
• Other subcommands can be specified more than once, but only the last specification of

each one is executed.

Operations

• Subcommand specifications apply to all series named on the ACF command.

• If the LN subcommand is specified, any differencing requested on that ACF command is
done on the log-transformed series.

• Confidence limits are displayed in the plot, marking the bounds of two standard errors at
each lag.

ACF 69

Limitations

• Maximum 1 VARIABLES subcommand. There is no limit on the number of series named
on the list.

Example

ACF TICKETS
 /LN
 /DIFF=1
 /SDIFF=1
 /PER=12
 /MXAUTO=50.

• This example produces a plot of the autocorrelation function for the series TICKETS after
a natural log transformation, differencing, and seasonal differencing have been applied.
Along with the plot, the autocorrelation value, standard error, Box-Ljung statistic, and
probability are displayed for each lag.

• LN transforms the data using the natural logarithm (base e) of the series.

• DIFF differences the series once.
• SDIFF and PERIOD apply one degree of seasonal differencing with a period of 12.

• MXAUTO specifies that the maximum number of lags for which output is to be produced
is 50.

VARIABLES Subcommand

VARIABLES specifies the series names and is the only required subcommand. The actual key-
word VARIABLES can be omitted.

DIFF Subcommand

DIFF specifies the degree of differencing used to convert a nonstationary series to a stationary
one with a constant mean and variance before the autocorrelations are computed.

• You can specify any positive integer on DIFF.
• If DIFF is specified without a value, the default is 1.

• The number of values used in the calculations decreases by 1 for each degree-1 of differencing.

Example
ACF SALES
 /DIFF=1.

• In this example, the series SALES will be differenced once before the autocorrelations are
computed and plotted.

70 ACF

SDIFF Subcommand

If the series exhibits a seasonal or periodic pattern, you can use the SDIFF subcommand to
seasonally difference the series before obtaining autocorrelations.

• The specification on SDIFF indicates the degree of seasonal differencing and can be any
positive integer.

• If SDIFF is specified without a value, the degree of seasonal differencing defaults to 1.
• The number of seasons used in the calculations decreases by 1 for each degree of seasonal

differencing.

• The length of the period used by SDIFF is specified on the PERIOD subcommand. If the
PERIOD subcommand is not specified, the periodicity established on the TSET or DATE
command is used (see the PERIOD subcommand below).

PERIOD Subcommand

PERIOD indicates the length of the period to be used by the SDIFF or SEASONAL subcommands.

• The specification on PERIOD indicates how many observations are in one period or sea-
son and can be any positive integer.

• The PERIOD subcommand is ignored if it is used without the SDIFF or SEASONAL sub-
commands.

• If PERIOD is not specified, the periodicity established on TSET PERIOD is in effect. If
TSET PERIOD is not specified, the periodicity established on the DATE command is used.
If periodicity was not established anywhere, the SDIFF and SEASONAL subcommands
will not be executed.

Example
ACF SALES
 /SDIFF=1M
 /PERIOD=12.

• This command applies one degree of seasonal differencing with a periodicity (season) of
12 to the series SALES before autocorrelations are computed.

LN and NOLOG Subcommands

LN transforms the data using the natural logarithm (base e) of the series and is used to remove
varying amplitude over time. NOLOG indicates that the data should not be log transformed.
NOLOG is the default.

• If you specify LN on an ACF command, any differencing requested on that command will
be done on the log-transformed series.

• There are no additional specifications on LN or NOLOG.

• Only the last LN or NOLOG subcommand on an ACF command is executed.

ACF 71

• If a natural log transformation is requested when there are values in the series that are less
than or equal to zero, the ACF will not be produced for that series because nonpositive values
cannot be log transformed.

• NOLOG is generally used with an APPLY subcommand to turn off a previous LN specification.

Example
ACF SALES
 /LN.

• This command transforms the series SALES using the natural log transformation and then
computes and plots autocorrelations.

SEASONAL Subcommand

Use the SEASONAL subcommand to focus attention on the seasonal component by displaying
and plotting autocorrelations only at periodic lags.
• There are no additional specifications on SEASONAL.

• If SEASONAL is specified, values are displayed and plotted at the periodic lags indicated
on the PERIOD subcommand. If PERIOD is not specified, the periodicity established on
the TSET or DATE command is used (see the PERIOD subcommand on p. 70).

• If SEASONAL is not specified, autocorrelations for all lags up to the maximum are dis-
played and plotted.

Example
ACF SALES
 /SEASONAL
 /PERIOD=12.

• In this example, autocorrelations are displayed only at every 12th lag.

MXAUTO Subcommand

MXAUTO specifies the maximum number of lags for a series.

• The specification on MXAUTO must be a positive integer.

• If MXAUTO is not specified, the default number of lags is the value set on TSET MXAUTO.
If TSET MXAUTO is not specified, the default is 16.

• The value on MXAUTO overrides the value set on TSET MXAUTO.

Example
ACF SALES
 /MXAUTO=14.

• This command sets the maximum number of autocorrelations to be displayed for series
SALES to 14.

72 ACF

SERROR Subcommand

SERROR specifies the method of calculating the standard errors for the autocorrelations.

• You must specify either keyword IND or MA on SERROR.

• The method on SERROR overrides the method specified on the TSET ACFSE command.

• If SERROR is not specified, the method indicated on TSET ACFSE is used. If TSET ACFSE
is not specified, the default is IND.

IND Independence model. The method of calculating the standard errors assumes the
underlying process is white noise.

MA MA model. The method of calculating the standard errors is based on Bartlett’s ap-
proximation. With this method, appropriate where the true MA order of the process
is k−1, standard errors grow at increased lags (Pankratz, 1983).

Example
ACF SALES
 /SERROR=MA.

• In this example, the standard errors of the autocorrelations are computed using the MA
method.

PACF Subcommand

Use the PACF subcommand to display and plot sample partial autocorrelations as well as au-
tocorrelations for each series named on the ACF command.

• There are no additional specifications on PACF.

• PACF also displays the standard errors of the partial autocorrelations and indicates the
bounds of two standard errors on the plot.

• With the exception of SERROR, all other subcommands specified on that ACF command
apply to both the partial autocorrelations and the autocorrelations.

Example
ACF SALES
 /DIFFERENCE=1
 /PACF.

• This command requests both autocorrelations and partial autocorrelations for the series
SALES after it has been differenced once.

APPLY Subcommand

APPLY allows you to use a previously defined ACF model without having to repeat the
specifications.

• The only specification on APPLY is the name of a previous model in quotes. If a model
name is not specified, the model specified on the previous ACF command is used.

ACF 73

• To change one or more model specifications, specify the subcommands of only those por-
tions you want to change after the APPLY subcommand.

• If no series are specified on the ACF command, the series that were originally specified
with the model being reapplied are used.

• To change the series used with the model, enter new series names before or after the APPLY
subcommand.

Example
ACF TICKETS
 /LN
 /DIFF=1
 /SDIFF=1
 /PERIOD=12
 /MXAUTO=50.
ACF ROUNDTRP
 /APPLY.
ACF APPLY
 /NOLOG.
ACF APPLY ’MOD_2’
 /PERIOD=6.

• The first command requests a maximum of 50 autocorrelations for the series TICKETS af-
ter it has been natural log transformed, differenced once, and had one degree of seasonal
differencing with a periodicity of 12 applied to it. This model is assigned the default name
MOD_1.

• The second command displays and plots the autocorrelation function for the series
ROUNDTRP using the same model that was used for the series TICKETS. This model is
assigned the name MOD_2.

• The third command requests another autocorrelation function of the series ROUNDTRP
using the same model but without the natural log transformation. Note that when APPLY
is the first specification after the ACF command, the slash (/) before it is not necessary.
This model is assigned the name MOD_3.

• The fourth command reapplies MOD_2, autocorrelations for the series ROUNDTRP with
the natural log and differencing specifications, but this time with a periodicity of 6. This
model is assigned the name MOD_4. It differs from MOD_2 only in the periodicity.

References

Box, G. E. P., and G. M. Jenkins. 1976. Time series analysis: Forecasting and control. San Fran-
cisco: Holden-Day.

Pankratz, A. 1983. Forecasting with univariate Box-Jenkins models: Concepts and cases. New
York: John Wiley and Sons

74

ADD FILES

ADD FILES FILE={file}
 {* }

 [/RENAME=(old varnames=new varnames)...]

 [/IN=varname]

 /FILE=... [/RENAME=...] [/IN=...]

 [/BY varlist]

 [/MAP]

 [/KEEP={ALL** }] [/DROP=varlist]
 {varlist}

 [/FIRST=varname] [/LAST=varname]

**Default if the subcommand is omitted.

Example:
ADD FILES FILE=SCHOOL1 /FILE=SCHOOL2.

Overview

ADD FILES combines cases from 2 up to 50 SPSS-format data files by concatenating or in-
terleaving cases. When cases are concatenated, all cases from one file are added to the end
of all cases from another file. When cases are interleaved, cases in the resulting file are or-
dered according to the values of one or more key variables.

The files specified on ADD FILES can be SPSS-format data files created by the SAVE or
XSAVE commands or the working data file. The combined file becomes the new working
file. Statistical procedures following ADD FILES use this combined file unless you replace
it by building another working file. You must use the SAVE or XSAVE commands if you
want to save the combined file as an SPSS-format data file.

In general, ADD FILES is used to combine files containing the same variables but differ-
ent cases. To combine files containing the same cases but different variables, use MATCH
FILES. To update existing SPSS-format data files, use UPDATE. ADD FILES cannot concat-
enate raw data files. To concatenate raw data files, use DATA LIST within an INPUT PRO-
GRAM structure (see p. 208 for an example). Alternatively, convert the raw data files to
SPSS-format data files with the SAVE or XSAVE commands and then use ADD FILES to com-
bine them.

Options

Variable Selection. You can specify which variables from each input file are included in the
new working file using the DROP and KEEP subcommands.

ADD FILES 75

Variable Names. You can rename variables in each input file before combining the files using
the RENAME subcommand. This permits you to combine variables that are the same but
whose names differ in different input files, or to separate variables that are different but have
the same name.

Variable Flag. You can create a variable that indicates whether a case came from a particular
input file using IN. When interleaving cases, you can use the FIRST or LAST subcommands
to create a variable that flags the first or last case of a group of cases with the same value for
the key variable.

Variable Map. You can request a map showing all variables in the new working file, their or-
der, and the input files from which they came using the MAP subcommand.

Basic Specification

• The basic specification is two or more FILE subcommands, each of which specifies a file
to be combined. If cases are to be interleaved, the BY subcommand specifying the key
variables is also required.

• All variables from all input files are included in the new working file unless DROP or
KEEP is specified.

Subcommand Order

• RENAME and IN must immediately follow the FILE subcommand to which they apply.

• BY, FIRST, and LAST must follow all FILE subcommands and their associated RENAME
and IN subcommands.

Syntax Rules

• RENAME can be repeated after each FILE subcommand. RENAME applies only to variables
in the file named on the FILE subcommand immediately preceding it.

• BY can be specified only once. However, multiple key variables can be specified on BY.
When BY is used, all files must be sorted in ascending order by the key variables (see
SORT CASES).

• FIRST and LAST can be used only when files are interleaved (when BY is used).

• MAP can be repeated as often as desired.

Operations

• ADD FILES reads all input files named on FILE and builds a new working data file that re-
places any working file created earlier in the session. ADD FILES is executed when the
data are read by one of the procedure commands or the EXECUTE, SAVE, or SORT CASES
commands.

76 ADD FILES

• The resulting file contains complete dictionary information from the input files, including
variable names, labels, print and write formats, and missing-value indicators. It also con-
tains the documents from each input file. See DROP DOCUMENTS for information on de-
leting documents.

• Variables are copied in order from the first file specified, then from the second file spec-
ified, and so on. Variables that are not contained in all files receive the system-missing
value for cases that do not have values for those variables.

• If the same variable name exists in more than one file but the format type (numeric or
string) does not match, the command is not executed.

• If a numeric variable has the same name but different formats (for example, F8.0 and F8.2)
in different input files, the format of the variable in the first-named file is used.

• If a string variable has the same name but different formats (for example, A24 and A16)
in different input files, the command is not executed.

• If the working file is named as an input file, any N and SAMPLE commands that have been
specified are applied to the working file before files are combined.

• If only one of the files is weighted, the program turns weighting off when combining cas-
es from the two files. To weight the cases, use the WEIGHT command again.

Limitations

• Maximum 50 files can be combined on one ADD FILES command.

• The TEMPORARY command cannot be in effect if the working data file is used as an
input file.

Examples

ADD FILES FILE=SCHOOL1 /FILE=SCHOOL2.

• ADD FILES concatenates cases from the SPSS-format data files SCHOOL1 and SCHOOL2.
All cases from SCHOOL1 precede all cases from SCHOOL2 in the resulting file.

SORT CASES BY LOCATN DEPT.
ADD FILES FILE=SOURCE /FILE=* /BY LOCATN DEPT
/KEEP AVGHOUR AVGRAISE LOCATN DEPT SEX HOURLY RAISE /MAP.
SAVE OUTFILE=PRSNNL.

• SORT CASES sorts cases in the working file in ascending order of their values for LOCATION
and DEPT.

• ADD FILES combines two files: the SPSS-format data file SOURCE and the sorted work-
ing file. The file SOURCE must also be sorted by LOCATN and DEPT.

• BY indicates that the keys for interleaving cases are LOCATN and DEPT, the same vari-
ables used on SORT CASES.

• KEEP specifies the variables to be retained in the resulting file.

• MAP produces a list of variables in the resulting file and the two input files.

• SAVE saves the resulting file as a new SPSS-format data file named PRSNNL.

ADD FILES 77

FILE Subcommand

FILE identifies the files to be combined. A separate FILE subcommand must be used for each
input file.

• An asterisk may be specified on FILE to indicate the working data file.

• The order in which files are named determines the order of cases in the resulting file.

Raw Data Files

To add cases from a raw data file, you must first define the file as the working data file using
the DATA LIST command. ADD FILES can then combine the working file with an SPSS-format
data file.

Example
DATA LIST FILE=GASDATA/1 OZONE 10-12 CO 20-22 SULFUR 30-32.
ADD FILES FILE=PARTICLE /FILE=*.
SAVE OUTFILE=POLLUTE.

• The GASDATA file is a raw data file and is defined on the DATA LIST command.

• The PARTICLE file is a previously saved SPSS-format data file.

• FILE=* on ADD FILES specifies the working data file, which contains the gas data.
FILE=PARTICLE specifies the SPSS-format data file PARTICLE.

• SAVE saves the resulting file as an SPSS-format data file with the filename POLLUTE.
Cases from the GASDATA file follow cases from the PARTICLE file.

RENAME Subcommand

RENAME renames variables in input files before they are processed by ADD FILES. RENAME
follows the FILE subcommand that specifies the file containing the variables to be renamed.

• RENAME applies only to the FILE subcommand immediately preceding it. To rename vari-
ables from more than one input file, enter a RENAME subcommand after each FILE sub-
command that specifies a file with variables to be renamed.

• Specifications for RENAME consist of a left parenthesis, a list of old variable names, an
equals sign, a list of new variable names, and a right parenthesis. The two variable lists
must name or imply the same number of variables. If only one variable is renamed, the
parentheses are optional.

• More than one such specification can be entered on a single RENAME subcommand, each
enclosed in parentheses.

• The TO keyword can be used to refer to consecutive variables in the file and to generate
new variable names (see “Keyword TO” on p. 20).

• RENAME takes effect immediately. KEEP and DROP subcommands entered prior to RENAME
must use the old names, while those entered after RENAME must use the new names.

• All specifications within a single set of parentheses take effect simultaneously. For exam-
ple, the specification RENAME (A,B = B,A) swaps the names of the two variables.

• Variables cannot be renamed to scratch variables.

78 ADD FILES

• Input data files are not changed on disk; only the copy of the file being combined is affected.

Example
ADD FILES FILE=CLIENTS /RENAME=(TEL_NO, ID_NO = PHONE, ID)
/FILE=MASTER /BY ID.

• ADD FILES adds new client cases from the file CLIENTS to existing client cases in the file
MASTER.

• Two variables on CLIENTS are renamed prior to the match. TEL_NO is renamed PHONE
to match the name used for phone numbers in the master file. ID_NO is renamed ID so that
it will have the same name as the identification variable in the master file and can be used
on the BY subcommand.

• The BY subcommand orders the resulting file according to client ID number.

BY Subcommand

BY specifies one or more key variables that determine the order of cases in the resulting file.
When BY is specified, cases from the input files are interleaved according to their values for
the key variables.

• BY must follow the FILE subcommands and any associated RENAME and IN subcom-
mands.

• The key variables specified on BY must be present and have the same names in all input files.

• Key variables can be long or short string variables or numerics.

• All input files must be sorted in ascending order of the key variables. If necessary, use
SORT CASES before ADD FILES.

• Cases in the resulting file are ordered by the values of the key variables. All cases from
the first file with the first value for the key variable are first, followed by all cases from
the second file with the same value, followed by all cases from the third file with the same
value, and so forth. These cases are followed by all cases from the first file with the next
value for the key variable, and so on.

• Cases with system-missing values are first in the resulting file. User-missing values are
interleaved with other values.

DROP and KEEP Subcommands

DROP and KEEP are used to include only a subset of variables in the resulting file. DROP
specifies a set of variables to exclude and KEEP specifies a set of variables to retain.

• DROP and KEEP do not affect the input files on disk.

• DROP and KEEP must follow all FILE and RENAME subcommands.

• DROP and KEEP must specify one or more variables. If RENAME is used to rename vari-
ables, specify the new names on DROP and KEEP.

• DROP and KEEP take effect immediately. If a variable specified on DROP or KEEP does
not exist in the input files, was dropped by a previous DROP subcommand, or was not re-

ADD FILES 79

tained by a previous KEEP subcommand, the program displays an error message and does
not execute the ADD FILES command.

• DROP cannot be used with variables created by the IN, FIRST, or LAST subcommands.

• KEEP can be used to change the order of variables in the resulting file. With KEEP, vari-
ables are kept in the order they are listed on the subcommand. If a variable is named more
than once on KEEP, only the first mention of the variable is in effect; all subsequent ref-
erences to that variable name are ignored.

• The keyword ALL can be specified on KEEP. ALL must be the last specification on KEEP,
and it refers to all variables not previously named on that subcommand. It is useful when
you want to arrange the first few variables in a specific order.

Example
ADD FILES FILE=PARTICLE /RENAME=(PARTIC=POLLUTE1)
/FILE=GAS /RENAME=(OZONE TO SULFUR=POLLUTE2 TO POLLUTE4)
/KEEP=POLLUTE1 POLLUTE2 POLLUTE3 POLLUTE4.

• The renamed variables are retained in the resulting file. KEEP is specified after all the FILE
and RENAME subcommands, and it refers to the variables by their new names.

IN Subcommand

IN creates a new variable in the resulting file that indicates whether a case came from the in-
put file named on the preceding FILE subcommand. IN applies only to the file specified on
the immediately preceding FILE subcommand.

• IN has only one specification, the name of the flag variable.

• The variable created by IN has value 1 for every case that came from the associated input
file and value 0 for every case that came from a different input file.

• Variables created by IN are automatically attached to the end of the resulting file and can-
not be dropped. If FIRST or LAST are used, the variable created by IN precedes the variables
created by FIRST or LAST.

Example
ADD FILES FILE=WEEK10 /FILE=WEEK11 /IN=INWEEK11 /BY=EMPID.

• IN creates the variable INWEEK11, which has value 1 for all cases in the resulting file that
came from the input file WEEK11 and value 0 for those cases that were not in the file
WEEK11.

Example
ADD FILES FILE=WEEK10 /FILE=WEEK11 /IN=INWEEK11 /BY=EMPID.
IF (NOT INWEEK11) SALARY1=0.

• The variable created by IN is used to screen partially missing cases for subsequent analyses.

• Since IN variables have either value 1 or 0, they can be used as logical expressions, where
1=true and 0=false. The IF command sets variable SALARY1 equal to 0 for all cases that
came from the file INWEEK11.

80 ADD FILES

FIRST and LAST Subcommands

FIRST and LAST create logical variables that flag the first or last case of a group of cases with
the same value on the BY variables. FIRST and LAST must follow all FILE subcommands and
their associated RENAME and IN subcommands.

• FIRST and LAST have only one specification, the name of the flag variable.

• FIRST creates a variable with value 1 for the first case of each group and value 0 for all
other cases.

• LAST creates a variable with value 1 for the last case of each group and value 0 for all
other cases.

• Variables created by FIRST and LAST are automatically attached to the end of the result-
ing file and cannot be dropped.

Example
ADD FILES FILE=SCHOOL1 /FILE=SCHOOL2
/BY=GRADE /FIRST=HISCORE.

• The variable HISCORE contains value 1 for the first case in each grade in the resulting file
and value 0 for all other cases.

MAP Subcommand

MAP produces a list of the variables included in the new working file and the file or files from
which they came. Variables are listed in the order in which they exist in the resulting file.
MAP has no specifications and must follow after all FILE and RENAME subcommands.

• Multiple MAP subcommands can be used. Each MAP subcommand shows the current status
of the working file and reflects only the subcommands that precede the MAP subcommand.

• To obtain a map of the working data file in its final state, specify MAP last.

• If a variable is renamed, its original and new names are listed. Variables created by IN,
FIRST, and LAST are not included in the map, since they are automatically attached to the
end of the file and cannot be dropped.

• MAP can be used with the EDIT command to obtain a listing of the variables in the result-
ing file without actually reading the data and combining the files.

81

ADD VALUE LABELS

ADD VALUE LABELS varlist value ’label’ value ’label’...[/varlist...]

Example:
ADD VALUE LABELS JOBGRADE ’P’ ’Parttime Employee’
 ’C’ ’Customer Support’.

Overview

ADD VALUE LABELS adds or alters value labels without affecting other value labels already
defined for that variable. In contrast, VALUE LABELS adds or alters value labels but deletes
all existing value labels for that variable when it does so.

Basic Specification

The basic specification is a variable name and individual values with associated labels.

Syntax Rules

• Labels can be assigned to values of any previously defined variable. It is not necessary
to enter value labels for all of a variable’s values.

• Each value label must be enclosed in apostrophes or quotation marks.

• When an apostrophe occurs as part of a label, enclose the label in quotation marks or en-
ter the internal apostrophe twice with no intervening space.

• Value labels can contain any characters, including blanks.
• The same labels can be assigned to the same values of different variables by specifying

a list of variable names. For string variables, the variables on the list must have the same
defined width (for example, A8).

• Multiple sets of variable names and value labels can be specified on one ADD VALUE
LABELS command as long as each set is separated from the previous one by a slash.

• To continue a label from one command line to the next, specify a plus sign (+) before
the continuation of the label and enclose each segment of the label, including the blank
between them, in apostrophes or quotes.

Operations

• Unlike most transformations, ADD VALUE LABELS takes effect as soon as it is encoun-
tered in the command sequence. Thus, special attention should be paid to its position
among commands. See “Command Order” on p. 6 for more information.

82 ADD VALUE LABELS

• The added value labels are stored in the working file dictionary.

• ADD VALUE LABELS can be used for variables that have no previously assigned value labels.

• Adding labels to some values does not affect labels previously assigned to other values.

Limitations

• Value labels cannot exceed 60 characters. Most procedures display only 20 characters.

• Value labels cannot be assigned to long string variables.

Example

ADD VALUE LABELS V1 TO V3 1 ’Officials & Managers’
 6 ’Service Workers’

/V4 ’N’ ’New Employee’.

• Labels are assigned to the values 1 and 6 of the variables between and including V1 and
V3 in the working data file.

• Following the required slash, a label for value N for variable V4 is specified. N is a string
value and must be enclosed in apostrophes or quotation marks.

• If labels already exist for these values, they are changed in the dictionary. If labels do not
exist for these values, new labels are added to the dictionary.

• Existing labels for other values for these variables are not affected.

Example

ADD VALUE LABELS OFFICE88 1 "EMPLOYEE’S OFFICE ASSIGNMENT PRIOR"
+ " TO 1988".

• The label for value 1 for OFFICE88 is specified on two command lines. The plus sign con-
catenates the two string segments and a blank is included at the beginning of the second
string in order to maintain correct spacing in the label.

Value Labels for String Variables

• For short string variables, the values and the labels must be enclosed in apostrophes or
quotation marks.

• If a specified value is longer than the defined width of the variable, the program displays
a warning and truncates the value. The added label will be associated with the truncated
value.

• If a specified value is shorter than the defined width of the variable, the program adds
blanks to right-pad the value without warning. The added label will be associated with the
padded value.

• If a single set of labels is to be assigned to a list of string variables, the variables must
have the same defined width (for example, A8).

ADD VALUE LABELS 83

Example
ADD VALUE LABELS STATE ’TEX’ ’TEXAS’ ’TEN’ ’TENNESSEE’

 ’MIN’ ’MINNESOTA’.

• ADD VALUE LABELS assigns labels to three values of the variable STATE. Each value and
each label is specified in apostrophes.

• Assuming that the variable STATE is defined as three characters wide, the labels TEXAS,
TENNESSEE, and MINNESOTA will be appropriately associated with values TEX, TEN,
and MIN. However, if STATE were defined as two characters wide, the program would
truncate the specified values to two characters and would not be able to associate the labels
correctly. Both TEX and TEN would be truncated to TE and would first be assigned the
label TEXAS, which would then be changed to TENNESSEE by the second specification.

Example
ADD VALUE LABELS=STATE REGION "U" "UNKNOWN".

• The label UNKNOWN is assigned to value U for both STATE and REGION.
• STATE and REGION must have the same defined width. If they do not, a separate specifi-

cation must be made for each, as in the following:

ADD VALUE LABELS STATE "U" "UNKNOWN" / REGION "U" "UNKNOWN".

84

AGGREGATE

AGGREGATE OUTFILE={file} [/MISSING=COLUMNWISE] [/DOCUMENT]
 {* }

 [/PRESORTED] /BREAK=varlist[({A})][varlist...]
 {D}

 /aggvar[’label’]aggvar[’label’]...=function(arguments)

 [/aggvar ...]

Available functions:

Example:
AGGREGATE OUTFILE=AGGEMP /BREAK=LOCATN DEPT /COUNT=N

/AVGSAL AVGRAISE = MEAN(SALARY RAISE)
/SUMSAL SUMRAISE = SUM(SALARY RAISE)
/BLACKPCT ’Percentage Black’ = PIN(RACE,1,1)
/WHITEPCT ’Percentage White’ = PIN(RACE,5,5).

Overview

AGGREGATE aggregates groups of cases in the working data file into single cases and cre-
ates a new, aggregated file. The values of one or more variables in the working file define
the case groups. These variables are called break variables. A set of cases with identical
values for each break variable is called a break group. A series of aggregate functions are
applied to source variables in the working file to create new, aggregated variables that have
one value for each break group.

AGGREGATE is often used with MATCH FILES to add variables with summary measures
(sum, mean, etc.) to a file. Transformations performed on the combined file can create com-
posite summary measures. With the REPORT procedure, the composite variables can be
used to write reports with nested composite information.

SUM Sum MEAN Mean
SD Standard deviation MAX Maximum
MIN Minimum PGT % of cases greater than value
PLT % of cases less than value PIN % of cases between values
POUT % of cases not in range FGT Fraction greater than value
FLT Fraction less than value FIN Fraction between values
FOUT Fraction not in range N Weighted number of cases
NU Unweighted number of cases NMISS Weighted number of missing cases
NUMISS Unweighted number of missing cases FIRST First nonmissing value
LAST Last nonmissing value

AGGREGATE 85

Options

Aggregated File. You can produce either an SPSS-format data file or a new working file.

Documentary Text. You can copy documentary text from the original file into the aggregated
file using the DOCUMENT subcommand. By default, documentary text is dropped.

Sorting. By default, cases in the aggregated file are sorted in ascending order of the values of
each break variable. Alternatively, you can specify descending order. If the working file is
already sorted by the break variables, you can skip this final sorting pass through the file us-
ing the PRESORTED subcommand.

Aggregated Variables. You can create aggregated variables using any of 19 aggregate func-
tions. The functions SUM, MEAN, and SD can aggregate only numeric variables. All other
functions can use both numeric and string variables.

Labels and Formats. You can specify variable labels for the aggregated variables. Variables
created with the functions MAX, MIN, FIRST, and LAST assume the formats and value labels
of their source variables. All other variables assume the default formats described under “Ag-
gregate Functions” on p. 88.

Basic Specification

The basic specification is OUTFILE, BREAK, and at least one aggregate function and source
variable. OUTFILE specifies a name for the aggregated file. BREAK names the case grouping
(break) variables. The aggregate function creates a new aggregated variable.

Subcommand Order

• OUTFILE must be specified first.
• If specified, DOCUMENT and PRESORTED must precede BREAK. No other subcommand

can be specified between these two subcommands.

• MISSING, if specified, must immediately follow OUTFILE.

• The aggregate functions must be specified last.

Operations

• When AGGREGATE produces an SPSS-format data file, the working file remains un-
changed and is still available for analysis. When AGGREGATE creates a new working file,
it replaces the old working file. Only the new working file is available for analysis.

• The aggregated file contains the break variables plus the variables created by the aggre-
gate functions.

• AGGREGATE excludes cases with missing values from all aggregate calculations except
those involving functions N, NU, NMISS, and NUMISS.

• Unless otherwise specified, AGGREGATE sorts cases in the aggregated file in ascending
order of the values of the grouping variables.

86 AGGREGATE

• If PRESORTED is specified, a new aggregate case is created each time a different value
or combination of values is encountered on variables named on the BREAK subcommand.

• AGGREGATE ignores split-file processing. To achieve the same effect, name the vari-
able or variables used to split the file as break variables before any other break vari-
ables. AGGREGATE produces one file, but the aggregated cases are in the same order as
the split files.

Example

AGGREGATE OUTFILE=AGGEMP /BREAK=LOCATN DEPT
/COUNT=N
/AVGSAL AVGRAISE = MEAN(SALARY RAISE)
/SUMSAL SUMRAISE = SUM(SALARY RAISE)
/BLACKPCT ’Percentage Black’ = PIN(RACE,1,1)
/WHITEPCT ’Percentage White’ = PIN(RACE,5,5).

• AGGREGATE creates a new SPSS-format data file AGGEMP. AGGEMP contains two break
variables (LOCATN and DEPT) and all the new aggregate variables (COUNT, AVGSAL,
AVGRAISE, SUMSAL, SUMRAISE, BLACKPCT, and WHITEPCT).

• BREAK specifies LOCATN and DEPT as the break variables. In the aggregated file, cases
are sorted in ascending order of LOCATN and in ascending order of DEPT within LOCATN.
The working data file remains unsorted.

• Variable COUNT is created as the weighted number of cases in each break group. AVGSAL
is the mean of SALARY and AVGRAISE is the mean of RAISE. SUMSAL is the sum of SALARY
and SUMRAISE is the sum of RAISE. BLACKPCT is the percentage of cases with value 1 for
RACE. WHITEPCT is the percentage of cases with value 5 for RACE.

Example

GET FILE=HUBEMPL /KEEP=LOCATN DEPT HOURLY RAISE SEX.
AGGREGATE OUTFILE=AGGFILE /BREAK=LOCATN DEPT
/AVGHOUR AVGRAISE=MEAN(HOURLY RAISE).
SORT CASES BY LOCATN DEPT.
MATCH FILES TABLE=AGGFILE /FILE=* /BY LOCATN DEPT
/KEEP AVGHOUR AVGRAISE LOCATN DEPT SEX HOURLY RAISE /MAP.

COMPUTE HOURDIF=HOURLY/AVGHOUR.
COMPUTE RAISEDIF=RAISE/AVGRAISE.
LIST.

• GET reads the SPSS-format data file HUBEMPL and keeps a subset of variables.

• AGGREGATE creates a file aggregated by LOCATN and DEPT with the two new variables
AVGHOUR and AVGRAISE, containing the means by location and department for HOURLY
and RAISE. The aggregated file is saved as an SPSS-format data file named AGGFILE.
Only the aggregated data file AGGFILE is sorted by LOCATN and DEPT; the working data
file remains unchanged.

• SORT CASES sorts the working data file in ascending order of LOCATN and DEPT, the
same variables used as AGGREGATE break variables.

AGGREGATE 87

• MATCH FILES specifies a table lookup match with AGGFILE as the table file and the sorted
working data file as the case file.

• BY indicates that the keys for the match are LOCATN and DEPT.

• KEEP specifies the subset and order of variables to be retained in the resulting file.

• MAP provides a listing of the variables in the resulting file and the two input files.

• The COMPUTE commands calculate the ratios of each employee’s hourly wage and raise
to the department averages for wage and raise. The results are stored in the variables
HOURDIF and RAISEDIF.

• LIST displays the resulting file.

OUTFILE Subcommand

OUTFILE specifies a name for the file created by AGGREGATE. If an asterisk is specified on
OUTFILE, the aggregated file replaces the working file. OUTFILE must be the first subcom-
mand specified on AGGREGATE.

• If the aggregated file replaces the working file, the file is not automatically saved on disk.
To save the file, use the SAVE command.

Example
AGGREGATE OUTFILE=AGGEMP
/BREAK=LOCATN
/AVGSAL = MEAN(SALARY).

• OUTFILE creates an SPSS-format data file named AGGEMP. The working file remains un-
changed and is available for further analysis.

• The file AGGEMP contains two variables, LOCATN and AVGSAL.

BREAK Subcommand

BREAK lists the grouping variables, also called break variables. Each unique combination of
values of the break variables defines one break group.

• The variables named on BREAK can be any combination of variables in the working data
file.

• Unless PRESORTED is specified, AGGREGATE sorts cases after aggregating. By default,
cases are sorted in ascending order of the values of the break variables. AGGREGATE sorts
first on the first break variable, then on the second break variable within the groups cre-
ated by the first, and so on.

• Sort order can be controlled by specifying an A (for ascending) or D (for descending) in
parentheses after any break variables.

• The designations A and D apply to all preceding undesignated variables.

• The subcommand PRESORTED overrides all sorting specifications.

88 AGGREGATE

Example
AGGREGATE OUTFILE=AGGEMP
/BREAK=LOCATN DEPT (A) TENURE (D)
 /AVGSAL = MEAN(SALARY).

• BREAK names the variables LOCATN, DEPT, and TENURE as the break variables.

• Cases in the aggregated file are sorted in ascending order of LOCATN, in ascending order
of DEPT within LOCATN, and in descending order of TENURE within LOCATN and DEPT.
For each group defined by these variables, AVGSAL is computed as the mean of salary.

DOCUMENT Subcommand

DOCUMENT copies documentation from the original file into the aggregated file. By default,
documents are dropped from the aggregated file, whether the file is the working file or an
SPSS-format data file. DOCUMENT must appear after OUTFILE but before BREAK.

PRESORTED Subcommand

PRESORTED indicates that cases in the working data file are sorted according to the values
of the break variables. This prevents AGGREGATE from sorting cases that have already been
sorted and can save a considerable amount of processing time.

• If specified, PRESORTED must precede BREAK. The only specification is the keyword
PRESORTED. PRESORTED has no additional specifications.

• When PRESORTED is specified, the program forms an aggregate case out of each group
of adjacent cases with the same values for the break variables.

• If the working file is not sorted by the break variables in ascending order and PRESORT-
ED is specified, a warning message is generated but the procedure is executed. Each group
of adjacent cases with the same values for break variables forms a case in the aggregated
file, which may produce multiple cases with the same values for the break variables.

Example
AGGREGATE OUTFILE=AGGEMP
/PRESORTED
/BREAK=LOCATN DEPT
/AVGSAL = MEAN(SALARY).

• PRESORTED indicates that cases are already sorted by the variables LOCATN and DEPT.

• AGGREGATE does not make an extra data pass to sort the cases.

Aggregate Functions

An aggregated variable is created by applying an aggregate function to a variable in the
working file. The variable in the working file is called the source variable, and the new ag-
gregated variable is the target variable.

• The aggregate functions must be specified last on AGGREGATE.

AGGREGATE 89

• The simplest specification is a target variable list, followed by an equals sign, a function
name, and a list of source variables.

• The number of target variables named must match the number of source variables.

• When several aggregate variables are defined at once, the first-named target variable is
based on the first-named source variable, the second-named target is based on the second-
named source, and so on.

• Only the functions MAX, MIN, FIRST, and LAST copy complete dictionary information
from the source variable. For all other functions, new variables do not have labels and are
assigned default dictionary print and write formats. The default format for a variable de-
pends on the function used to create it (see the list of available functions below).

• You can provide a variable label for a new variable by specifying the label in apostro-
phes immediately following the new variable name. Value labels cannot be assigned in
AGGREGATE.

• To change formats or add value labels to a working data file created by AGGREGATE, use
the PRINT FORMATS, WRITE FORMATS, FORMATS, or VALUE LABELS commands. If the
aggregate file is written to disk, first retrieve the file using GET, specify the new labels
and formats, and resave the file.

The following is a list of available functions:

SUM(varlist) Sum across cases. Default formats are F8.2.

MEAN(varlist) Mean across cases. Default formats are F8.2.

SD(varlist) Standard deviation across cases. Default formats are F8.2.

MAX(varlist) Maximum value across cases. Complete dictionary information is
copied from the source variables to the target variables.

MIN(varlist) Minimum value across cases. Complete dictionary information is
copied from the source variables to the target variables.

PGT(varlist,value) Percentage of cases greater than the specified value. Default for-
mats are F5.1.

PLT(varlist,value) Percentage of cases less than the specified value. Default formats
are F5.1.

PIN(varlist,value1,value2) Percentage of cases between value1 and value2, inclusive. De-
fault formats are F5.1.

POUT(varlist,value1,value2) Percentage of cases not between value1 and value2. Cases where
the source variable equals value1 or value2 are not counted. De-
fault formats are F5.1.

FGT(varlist,value) Fraction of cases greater than the specified value. Default for-
mats are F5.3.

FLT(varlist,value) Fraction of cases less than the specified value. Default formats
are F5.3.

90 AGGREGATE

FIN(varlist,value1,value2) Fraction of cases between value1 and value2, inclusive. Default
formats are F5.3.

FOUT(varlist,value1,value2) Fraction of cases not between value1 and value2. Cases where
the source variable equals value1 or value2 are not counted.
Default formats are F5.3.

N(varlist) Weighted number of cases in break group. Default formats are
F7.0 for unweighted files and F8.2 for weighted files.

NU(varlist) Unweighted number of cases in break group. Default formats
are F7.0.

NMISS(varlist) Weighted number of missing cases. Default formats are F7.0 for
unweighted files and F8.2 for weighted files.

NUMISS(varlist) Unweighted number of missing cases. Default formats are F7.0.

FIRST(varlist) First nonmissing observed value in break group. Complete
dictionary information is copied from the source variables to the
target variables.

LAST(varlist) Last nonmissing observed value in break group. Complete
dictionary information is copied from the source variables to the
target variables.

• The functions SUM, MEAN, and SD can be applied only to numeric source variables. All
other functions can use short and long string variables as well as numeric ones.

• The N and NU functions do not require arguments. Without arguments, they return the num-
ber of weighted and unweighted valid cases in a break group. If you supply a variable list,
they return the number of weighted and unweighted valid cases for the variables specified.

• For several functions, the argument includes values as well as a source variable designa-
tion. Either blanks or commas can be used to separate the components of an argument list.

• For PIN, POUT, FIN, and FOUT, the first value should be less than or equal to the second.
If the first is greater, AGGREGATE automatically reverses them and prints a warning mes-
sage. If the two values are equal, PIN and FIN calculate the percentages and fractions of
values equal to the argument. POUT and FOUT calculate the percentages and fractions of
values not equal to the argument.

• String values specified in an argument should be enclosed in apostrophes. They are eval-
uated in alphabetical order.

Example
AGGREGATE OUTFILE=AGGEMP /BREAK=LOCATN
/AVGSAL ’Average Salary’ AVGRAISE = MEAN(SALARY RAISE).

• AGGREGATE defines two aggregate variables, AVGSAL and AVGRAISE.

• AVGSAL is the mean of SALARY for each break group and AVGRAISE is the mean of
RAISE.

• The label Average Salary is assigned to AVGSAL.

AGGREGATE 91

Example
AGGREGATE OUTFILE=* /BREAK=DEPT
/LOWVAC,LOWSICK = PLT (VACDAY SICKDAY,10).

• AGGREGATE creates two aggregated variables: LOWVAC and LOWSICK. LOWVAC is the
percentage of cases with values less than 10 for VACDAY and LOWSICK is the percentage
of cases with values less than 10 for SICKDAY.

Example
AGGREGATE OUTFILE=GROUPS /BREAK=OCCGROUP
/COLLEGE = FIN(EDUC,13,16).

• AGGREGATE creates the variable COLLEGE, which is the fraction of cases with 13 to 16
years of education (variable EDUC).

Example
AGGREGATE OUTFILE=* /BREAK=CLASS
/LOCAL = PIN(STATE,’IL’,’IO’).

• AGGREGATE creates the variable LOCAL, which is the percentage of cases in each break
group whose two-letter state code represents Illinois, Indiana, or Iowa. (The abbreviation
for Indiana, IN, is between IL and IO in an alphabetical sort sequence.)

MISSING Subcommand

By default, AGGREGATE uses all nonmissing values of the source variable to calculate
aggregated variables. An aggregated variable will have a missing value only if the source
variable is missing for every case in the break group. You can alter the default missing-value
treatment by using the MISSING subcommand. You can also specify the inclusion of user-
missing values on any function.

• MISSING must immediately follow OUTFILE.

• COLUMNWISE is the only specification available for MISSING.

• If COLUMNWISE is specified, the value of an aggregated variable is missing for a break
group if the source variable is missing for any case in the group.

• COLUMNWISE does not affect the calculation of the N, NU, NMISS, or NUMISS functions.

• COLUMNWISE does not apply to break variables. If a break variable has a missing value,
cases in that group are processed and the break variable is saved in the file with the miss-
ing value. Use SELECT IF if you want to eliminate cases with missing values for the break
variables.

Including Missing Values

You can force a function to include user-missing values in its calculations by specifying a
period after the function name.

• AGGREGATE ignores periods used with functions N, NU, NMISS, and NUMISS if these
functions have no argument.

92 AGGREGATE

• User-missing values are treated as valid when these four functions are followed by a period
and have a variable as an argument. NMISS.(AGE) treats user-missing values as valid and
thus gives the number of cases for which AGE has the system-missing value only.

The effect of specifying a period with N, NU, NMISS, and NUMISS is illustrated by the following:

• The function N (the same as N. with no argument) yields a value for each break group that
equals the number of cases with valid values (N(AGE)) plus the number of cases with user-
or system-missing values (NMISS(AGE)).

• This in turn equals the number of cases with either valid or user-missing values (N.(AGE))
plus the number with system-missing values (NMISS.(AGE)).

• The same identities hold for the NU, NMISS, and NUMISS functions.

Example
AGGREGATE OUTFILE=AGGEMP /MISSING=COLUMNWISE /BREAK=LOCATN
/AVGSAL = MEAN(SALARY).

• AVGSAL is missing for an aggregated case if SALARY is missing for any case in the break
group.

Example
AGGREGATE OUTFILE=* /BREAK=DEPT
/LOVAC = PLT.(VACDAY,10).

• LOVAC is the percentage of cases within each break group with values less than 10 for
VACDAY, even if some of those values are defined as user missing.

Example
AGGREGATE OUTFILE=CLASS /BREAK=GRADE

/FIRSTAGE = FIRST.(AGE).

• The first value of AGE in each break group is assigned to the variable FIRSTAGE.

• If the first value of AGE in a break group is user missing, that value will be assigned to
FIRSTAGE. However, the value will retain its missing-value status, since variables created
with FIRST take dictionary information from their source variables.

Comparing Missing-Value Treatments

Table 1 demonstrates the effects of specifying the MISSING subcommand and a period after
the function name. Each entry in the table is the number of cases used to compute the spec-
ified function for the variable EDUC, which has 10 nonmissing cases, 5 user-missing cases,
and 2 system-missing cases for the group. Note that columnwise treatment produces the
same results as the default for every function except the MEAN function.

N N. N(AGE) NMISS(AGE)+ N.(AGE) NMISS.(AGE)+= = =

NU NU. NU(AGE) NUMISS(AGE)+ NU.(AGE) NUMISS.(AGE)+= = =

AGGREGATE 93

Table 1 Default versus columnwise missing-value treatments

Function Default Columnwise

N 17 17
N. 17 17
N(EDUC) 10 10
N.(EDUC) 15 15
MEAN(EDUC) 10 0
MEAN.(EDUC) 15 0
NMISS(EDUC) 7 7
NMISS.(EDUC) 2 2

94

ANOVA

ANOVA [VARIABLES=] varlist BY varlist(min,max)...varlist(min,max)
 [WITH varlist] [/VARIABLES=...]

 [/COVARIATES={FIRST**}]
 {WITH }
 {AFTER }

 [/MAXORDERS={ALL** }]
 {n }
 {NONE }

 [/METHOD={UNIQUE** }]
 {EXPERIMENTAL}
 {HIERARCHICAL}

 [/STATISTICS=[MCA] [REG†] [MEAN] [ALL] [NONE]]

 [/MISSING={ EXCLUDE**}]
 {INCLUDE }

**Default if the subcommand is omitted.
 †REG (table of regression coefficients) is displayed only if the design is relevant.

Example:
ANOVA VARIABLES=PRESTIGE BY REGION(1,9) SEX,RACE(1,2)
/MAXORDERS=2
/STATISTICS=MEAN.

Overview

ANOVA performs analysis of variance for factorial designs. The default is the full factorial
model if there are five or fewer factors. Analysis of variance tests the hypothesis that the
group means of the dependent variable are equal. The dependent variable is interval level,
and one or more categorical variables define the groups. These categorical variables are
termed factors. ANOVA also allows you to include continuous explanatory variables,
termed covariates. Other procedures that perform analysis of variance are ONEWAY, SUM-
MARIZE, and GLM. To perform a comparison of two means, use TTEST.

Options

Specifying Covariates. You can introduce covariates into the model using the WITH keyword
on the VARIABLES subcommand.

Order of Entry of Covariates. By default, covariates are processed before main effects for fac-
tors. You can process covariates with or after main effects for factors using the COVARIATES
subcommand.

Suppressing Interaction Effects. You can suppress the effects of various orders of interaction
using the MAXORDERS subcommand.

ANOVA 95

Methods for Decomposing Sums of Squares. By default, the regression approach (keyword
UNIQUE) is used. You can request the classic experimental or hierarchical approach using the
METHOD subcommand.

Statistical Display. Using the STATISTICS subcommand, you can request means and counts for
each dependent variable for groups defined by each factor and each combination of factors up
to the fifth level. You also can request unstandardized regression coefficients for covariates
and multiple classification analysis (MCA) results, which include the MCA table, the Factor
Summary table, and the Model Goodness of Fit table. The MCA table shows treatment
effects as deviations from the grand mean and includes a listing of unadjusted category effects
for each factor, category effects adjusted for other factors, and category effects adjusted for all
factors and covariates. The Factor Summary table displays eta and beta values. The Goodness
of Fit table shows R and R2 for each model.

Basic Specification

• The basic specification is a single VARIABLES subcommand with an analysis list. The
minimum analysis list specifies a list of dependent variables, the keyword BY, a list of fac-
tor variables, and the minimum and maximum integer values of the factors in parentheses.

• By default, the model includes all interaction terms up to five-way interactions. The sums
of squares are decomposed using the regression approach, in which all effects are as-
sessed simultaneously, with each effect adjusted for all other effects in the model. A case
that has a missing value for any variable in an analysis list is omitted from the analysis.

Subcommand Order

• The analysis list must be first if the keyword VARIABLES is omitted from the specification.
• The remaining subcommands can be named in any order.

Operations

A separate analysis of variance is performed for each dependent variable in an analysis list,
using the same factors and covariates.

Limitations

• Maximum 5 analysis lists.

• Maximum 5 dependent variables per analysis list.

• Maximum 10 factor variables per analysis list.

• Maximum 10 covariates per analysis list.

• Maximum 5 interaction levels.

• Maximum 25 value labels per variable displayed in the MCA table.
• The combined number of categories for all factors in an analysis list plus the number of

covariates must be less than the sample size.

96 ANOVA

Example

ANOVA VARIABLES=PRESTIGE BY REGION(1,9) SEX, RACE(1,2)
/MAXORDERS=2
/STATISTICS=MEAN.

• VARIABLES specifies a three-way analysis of variance—PRESTIGE by REGION, SEX, and
RACE.

• The variables SEX and RACE each have two categories, with values 1 and 2 included in
the analysis. REGION has nine categories, valued 1 through 9.

• MAXORDERS examines interaction effects up to and including the second order. All
three-way interaction terms are pooled into the error sum of squares.

• STATISTICS requests a table of means of PRESTIGE within the combined categories of
REGION, SEX, and RACE.

Example

ANOVA VARIABLES=PRESTIGE BY REGION(1,9) SEX,RACE(1,2)
/RINCOME BY SEX,RACE(1,2).

• ANOVA specifies a three-way analysis of variance of PRESTIGE by REGION, SEX, and
RACE, and a two-way analysis of variance of RINCOME by SEX and RACE.

VARIABLES Subcommand

VARIABLES specifies the analysis list. The actual keyword VARIABLES can be omitted.

• More than one design can be specified on the same ANOVA command by separating the
analysis lists with a slash.

• Variables named before keyword BY are dependent variables. Value ranges are not spec-
ified for dependent variables.

• Variables named after BY are factor (independent) variables.

• Every factor variable must have a value range indicating its minimum and maximum val-
ues. The values must be separated by a space or a comma and enclosed in parentheses.

• Factor variables must have integer values. Noninteger values for factors are truncated.

• Cases with values outside the range specified for a factor are excluded from the analysis.
• If two or more factors have the same value range, you can specify the value range once

following the last factor to which it applies. You can specify a single range that encom-
passes the ranges of all factors on the list. For example, if you have two factors, one with
values 1 and 2 and the other with values 1 through 4, you can specify the range for both
as 1,4. However, this may reduce performance and cause memory problems if the speci-
fied range is larger than some of the actual ranges.

• Variables named after the keyword WITH are covariates.

• Each analysis list can include only one BY and one WITH keyword.

ANOVA 97

COVARIATES Subcommand

COVARIATES specifies the order for assessing blocks of covariates and factor main effects.
• The order of entry is irrelevant when METHOD=UNIQUE.

FIRST Process covariates before factor main effects. This is the default.

WITH Process covariates concurrently with factor main effects.

AFTER Process covariates after factor main effects.

MAXORDERS Subcommand

MAXORDERS suppresses the effects of various orders of interaction.

ALL Examine all interaction effects up to and including the fifth order. This is the default.

n Examine all interaction effects up to and including the nth order. For example,
MAXORDERS=3 examines all interaction effects up to and including the third order.
All higher-order interaction sums of squares are pooled into the error term.

NONE Delete all interaction terms from the model. All interaction sums of squares are
pooled into the error sum of squares. Only main and covariate effects appear in the
ANOVA table.

METHOD Subcommand

METHOD controls the method for decomposing sums of squares.

UNIQUE Regression approach. UNIQUE overrides any keywords on the COVARIATES
subcommand. All effects are assessed simultaneously for their partial contri-
bution. The MCA and MEAN specifications on the STATISTICS subcommand
are not available with the regression approach. This is the default if METHOD
is omitted.

EXPERIMENTAL Classic experimental approach. Covariates, main effects, and ascending or-
ders of interaction are assessed separately in that order.

HIERARCHICAL Hierarchical approach.

Regression Approach

All effects are assessed simultaneously, with each effect adjusted for all other effects in the
model. This is the default when the METHOD subcommand is omitted. Since MCA tables
cannot be produced when the regression approach is used, specifying MCA or ALL on STA-
TISTICS with the default method triggers a warning.

98 ANOVA

Some restrictions apply to the use of the regression approach:

• The lowest specified categories of all the independent variables must have a marginal fre-
quency of at least 1, since the lowest specified category is used as the reference category.
If this rule is violated, no ANOVA table is produced and a message identifying the first
offending variable is displayed.

• Given an n-way crosstabulation of the independent variables, there must be no empty
cells defined by the lowest specified category of any of the independent variables. If this
restriction is violated, one or more levels of interaction effects are suppressed and a warn-
ing message is issued. However, this constraint does not apply to categories defined for
an independent variable but not occurring in the data. For example, given two indepen-
dent variables, each with categories of 1, 2, and 4, the (1,1), (1,2), (1,4), (2,1), and (4,1)
cells must not be empty. The (1,3) and (3,1) cells will be empty but the restriction on emp-
ty cells will not be violated. The (2,2), (2,4), (4,2), and (4,4) cells may be empty, although
the degrees of freedom will be reduced accordingly.

To comply with these restrictions, specify precisely the lowest nonempty category of each
independent variable. Specifying a value range of (0,9) for a variable that actually has values
of 1 through 9 results in an error, and no ANOVA table is produced.

Classic Experimental Approach

Each type of effect is assessed separately in the following order (unless WITH or AFTER is
specified on the COVARIATES subcommand):

• Effects of covariates
• Main effects of factors

• Two-way interaction effects

• Three-way interaction effects

• Four-way interaction effects

• Five-way interaction effects

The effects within each type are adjusted for all other effects of that type and also for the ef-
fects of all prior types (see Table 1).

Hierarchical Approach

The hierarchical approach differs from the classic experimental approach only in the way it
handles covariate and factor main effects. In the hierarchical approach, factor main effects
and covariate effects are assessed hierarchically—factor main effects are adjusted only for
the factor main effects already assessed, and covariate effects are adjusted only for the cova-
riates already assessed (see Table 1). The order in which factors are listed on the ANOVA com-
mand determines the order in which they are assessed.

ANOVA 99

Example

The following analysis list specifies three factor variables named A, B, and C:

ANOVA VARIABLES=Y BY A,B,C(0,3).

Table 1 summarizes the three methods for decomposing sums of squares for this example.

• With the default regression approach, each factor or interaction is assessed with all other
factors and interactions held constant.

• With the classic experimental approach, each main effect is assessed with the two other
main effects held constant, and two-way interactions are assessed with all main effects
and other two-way interactions held constant. The three-way interaction is assessed with
all main effects and two-way interactions held constant.

• With the hierarchical approach, the factor main effects A, B, and C are assessed with all
prior main effects held constant. The order in which the factors and covariates are listed on
the ANOVA command determines the order in which they are assessed in the hierarchical
analysis. The interaction effects are assessed the same way as in the experimental approach.

Summary of Analysis Methods

Table 2 describes the results obtained with various combinations of methods for controlling
entry of covariates and decomposing the sums of squares.

Table 1 Terms adjusted for under each option

Effect Regression
(UNIQUE) Experimental Hierarchical

A All others B,C None
B All others A,C A
C All others A,B A,B
AB All others A,B,C,AC,BC A,B,C,AC,BC
AC All others A,B,C,AB,BC A,B,C,AB,BC
BC All others A,B,C,AB,AC A,B,C,AB,AC
ABC All others A,B,C,AB,AC,BC A,B,C,AB,AC,BC

100 ANOVA

Table 2 Combinations of COVARIATES and METHOD subcommands

Assessments between
types of effects

Assessments within the
same type of effect

METHOD=UNIQUE Covariates, Factors,
and Interactions
simultaneously

Covariates: adjust for factors,
interactions, and all other covariates
Factors: adjust for covariates,
interactions, and all other factors
Interactions: adjust for covariates,
factors, and all other interactions

METHOD=EXPERIMENTAL Covariates
then
Factors
then
Interactions

Covariates: adjust for all other
covariates
Factors: adjust for covariates and all
other factors
Interactions: adjust for covariates,
factors, and all other interactions of the
same and lower orders

METHOD=HIERARCHICAL Covariates
then
Factors
then
Interactions

Covariates: adjust for covariates that
are preceding in the list
Factors: adjust for covariates and
factors preceding in the list
Interactions: adjust for covariates,
factors, and all other interactions of the
same and lower orders

COVARIATES=WITH
and
METHOD=EXPERIMENTAL

Factors and Covariates
concurrently
then
Interactions

Covariates: adjust for factors and all
other covariates
Factors: adjust for covariates and all
other factors
Interactions: adjust for covariates,
factors, and all other interactions of the
same and lower orders

COVARIATES=WITH
and
METHOD=HIERARCHICAL

Factors and Covariates
concurrently
then
Interactions

Factors: adjust only for preceding
factors
Covariates: adjust for factors and
preceding covariates
Interactions: adjust for covariates,
factors, and all other interactions of the
same and lower orders

COVARIATES=AFTER
and
METHOD=EXPERIMENTAL

Factors
then
Covariates
then
Interactions

Factors: adjust for all other factors
Covariates: adjust for factors and all
other covariates
Interactions: adjust for covariates,
factors, and all other interactions of the
same and lower orders

COVARIATES=AFTER
and
METHOD=HIERARCHICAL

Factors
then
Covariates
then
Interactions

Factors: adjust only for preceding
factors
Covariates: adjust factors and
preceding covariates
Interactions: adjust for covariates,
factors, and all other interactions of the
same and lower orders

ANOVA 101

STATISTICS Subcommand

STATISTICS requests additional statistics. STATISTICS can be specified by itself or with one
or more keywords.

• If you specify STATISTICS without keywords, ANOVA calculates MEAN and REG (each de-
fined below).

• If you specify a keyword or keywords on the STATISTICS subcommand, ANOVA calculates
only the additional statistics you request.

MEAN Means and counts table. This statistic is not available when METHOD is omitted or
when METHOD=UNIQUE. See “Cell Means” below.

REG Unstandardized regression coefficients. Displays unstandardized regression coef-
ficients for the covariates. See “Regression Coefficients for the Covariates” below.

MCA Multiple classification analysis. The MCA, the Factor Summary, and the Goodness
of Fit tables are not produced when METHOD is omitted or when METHOD=UNIQUE.
See “Multiple Classification Analysis” below.

ALL Means and counts table, unstandardized regression coefficients, and multiple clas-
sification analysis.

NONE No additional statistics. ANOVA calculates only the statistics needed for analysis of
variance. This is the default if the STATISTICS subcommand is omitted.

Cell Means

STATISTICS=MEAN displays the Cell Means table.

• This statistic is not available with METHOD=UNIQUE.

• The Cell Means table shows means and counts of each dependent variable for each cell
defined by the factors and combinations of factors. Dependent variables and factors ap-
pear in their order on the VARIABLES subcommand.

• If MAXORDERS is used to suppress higher-order interactions, cell means corresponding
to suppressed interaction terms are not displayed.

• The means displayed are the observed means in each cell, and they are produced only for
dependent variables, not for covariates.

Regression Coefficients for the Covariates

STATISTICS=REG requests the unstandardized regression coefficients for the covariates.
• The regression coefficients are computed at the point where the covariates are entered into

the equation. Thus, their values depend on the type of design specified by the COVARIATES
or METHOD subcommands.

• The coefficients are displayed in the ANOVA table.

102 ANOVA

Multiple Classification Analysis

STATISTICS=MCA displays the MCA, the Factor Summary, and the Model Goodness of Fit
tables.
• The MCA table presents counts, predicted means, and deviations of predicted means from

the grand mean for each level of each factor. The predicted and deviation means each ap-
pear in up to three forms: unadjusted, adjusted for other factors, and adjusted for other
factors and covariates.

• The Factor Summary table displays the correlation ratio (eta) with the unadjusted devia-
tions (the square of eta indicates the proportion of variance explained by all categories of
the factor), a partial beta equivalent to the standardized partial regression coefficient that
would be obtained by assigning the unadjusted deviations to each factor category and re-
gressing the dependent variable on the resulting variables, and the parallel partial betas
from a regression that includes covariates in addition to the factors.

• The Model Goodness of Fit table shows R and R2 for each model.

• The tables cannot be produced if METHOD is omitted or if METHOD=UNIQUE. When pro-
duced, the MCA table does not display values adjusted for factors if COVARIATES is omitted,
if COVARIATES=FIRST, or if COVARIATES=WITH and METHOD=EXPERIMENTAL. A full
MCA table is produced only if METHOD=HIERARCHICAL or if METHOD=EXPERIMENTAL
and COVARIATES=AFTER.

MISSING Subcommand

By default, a case that has a missing value for any variable named in the analysis list is deleted
for all analyses specified by that list. Use MISSING to include cases with user-missing data.

EXCLUDE Exclude cases with missing data. This is the default.

INCLUDE Include cases with user-defined missing data.

References

Andrews, F., J. Morgan, J. Sonquist, and L. Klein. 1973. Multiple classification analysis. 2nd ed.
Ann Arbor: University of Michigan.

103

APPLY DICTIONARY

APPLY DICTIONAY FROM=file

Example:
APPLY DICTIONARY FROM = ’MASTER.SAV’.

Overview

APPLY DICTIONARY applies dictionary information from an external SPSS-format data file
to the working data file. The applied dictionary information includes variable and value la-
bels, missing-value flags, print and write formats, and weight. APPLY DICTIONARY does not
add or remove variables, and it cannot apply dictionary information selectively to individual
variables.

Basic Specification

The basic specification is the FROM subcommand and the name of an SPSS-format data file.
The file specification may vary from operating system to operating system, but enclosing
the filename in apostrophes generally works.

Syntax Rules

• The equals sign after FROM is optional.

• The file containing the dictionary information to be applied (the source file) must be an
SPSS-format data file.

• The file to which the dictionary information is applied (the target file) must be the work-
ing data file. You cannot specify another file.

Operation

• APPLY DICTIONARY adds or replaces dictionary information variable by variable by
matching variables that have the same name and the same type (string or numeric) in
both files. Variables in the working data file that do not have a match in the source file
are not changed.

• APPLY DICTIONARY does not add or remove variables from the working data file.
• If no matched variables are found, the program displays a warning message.

• Variables that have the same name but different types are not considered matching. The
program displays a warning message and lists the variables with nonmatching types.

104 APPLY DICTIONARY

Variable Labels

APPLY DICTIONARY adds labels or replaces old labels with new ones. It cannot be used to
remove a defined variable label in the working data file.
• If the variable label in the source file is blank, it will not replace an existing variable label,

even if the blanks are in quotes.

Table 1 shows how variable labels are replaced between matched variables.

Value Labels

APPLY DICTIONARY treats the value labels of a variable as a set. It adds or replaces the entire
set of value labels for a matched variable in the working data file. You cannot remove the
defined value label set from a variable or selectively add or replace individual value labels.

• APPLY DICTIONARY does not merge the set of value labels for a variable in the SPSS-
format data file with the labels for a matched variable in the working data file. The vari-
able in the resulting file uses the labels from the SPSS-format data file only.

• If the variable in the SPSS-format data file does not have any defined value labels, the
matching variable in the working data file keeps its original value labels.

• If the matched variable in the working data file is a long string, value labels are not ap-
plied even if the source variable is a short string and has value labels defined. The pro-
gram displays a message when this occurs.

• If the matched variables are both short strings but the target variable is longer than the
source variable, the values for the source variable are right-padded before their labels are
applied to the target variable.

• If the matched variables are both short strings but the source variable is longer, the values
for the source variable are right-trimmed if there are enough blank spaces on the right. If
any one of the values that has labels defined does not have enough blank spaces to be
trimmed, the entire set of value labels is not applied and the variable in the working data
file maintains its original value label specifications.

Missing Values

APPLY DICTIONARY treats the missing-value specifications of a variable as a set. It adds or
replaces the entire set of missing values for a matched variable in the working data file. You
can remove the entire set of missing-value specifications from a variable but cannot selec-
tively add or replace individual missing-value specifications.

Table 1 Variable label replacement

Variable Label in working file
(target file)

Label in external file
(source file) Label in resulting file

VAR1 “AGE 86” “AGE 91” “AGE 91”
VAR2 “JOBCAT91” “JOBCAT91”
VAR3 “WORK ID” “WORK ID”
VAR4 “RACE” “ ” “RACE”

APPLY DICTIONARY 105

• APPLY DICTIONARY does not merge the set of missing values for a variable in the SPSS-
format data file with the missing-value specifications for a matched variable in the work-
ing data file. The variable in the resulting file uses the missing values defined in the SPSS-
format data file only.

• If the variable in the SPSS-format data file does not define any missing values, the vari-
able in the working data file keeps its missing-value specifications.

• If the matched variable in the working data file is a long string, missing-value specifica-
tions are not applied even if the source variable is a short string and has missing values
defined. The program displays a message specifying the missing value and information
about the length of the matched variables.

• If the matched variables are both short strings but the target variable is longer than the
source variable, the missing values from the source variable are right-padded.

• If the matched variables are both short strings but the source variable is longer, the miss-
ing values from the source variable are right-trimmed if there are enough blank spaces on
the right. If any one of the defined missing values does not have enough blank spaces to
be trimmed, the entire set will not be applied. The variable in the working data file main-
tains its original missing-value specifications.

Print and Write Formats

APPLY DICTIONARY always replaces the print and write formats of matched numeric vari-
ables in the working data file.

• The print and write formats of string variables are not changed. They keep the original
length defined on the DATA LIST or STRING command. To change the length of a string
variable, define a new variable using STRING and then use the COMPUTE command.

Weight

APPLY DICTIONARY adds or replaces the weighting information in the working data file. Table
2 summarizes how weighting information is applied. In the table, WTWORK refers to the
weight variable in the working file and WTSPSS to the weight variable in the SPSS-format data
file.
• A message is displayed when either the weight status or the weight variable is changed.

*If WTSPSS exists in the working file.

Table 2 Weight information

Working file External file Resulting file

Status Weight Status Weight Status Weight

Weighted WTWORK Unweighted N/A Weighted WTWORK

Weighted WTSPSS Weighted WTSPSS*
WTWORK†

Unweighted N/A Weighted WTSPSS Weighted WTSPSS*
Unweighted† N/A

106 APPLY DICTIONARY

†If WTSPSS does not exist in the working file.

FROM Subcommand

FROM specifies an SPSS-format data file as the source file whose dictionary information is
to be applied to the working file.

• FROM is required.

• Only one SPSS-format data file can be specified on FROM.
• The SPSS-format data file from which the current working file was built can be specified

on FROM. This will restore dictionary information from the most recently saved version
of the file.

107

AUTORECODE

AUTORECODE VARIABLES=varlist

 /INTO new varlist

 [/DESCENDING]

 [/PRINT]

Example:
AUTORECODE VARIABLES=COMPANY /INTO RCOMPANY.

Overview

AUTORECODE recodes the values of string and numeric variables to consecutive integers and
puts the recoded values into a new variable called a target variable. The value labels or val-
ues of the original variable are used as value labels for the target variable. AUTORECODE is
useful for creating numeric independent (grouping) variables from string variables for pro-
cedures like ONEWAY, ANOVA, MANOVA, and DISCRIMINANT. AUTORECODE can also recode
the values of factor variables to consecutive integers, which is required by MANOVA and
which reduces the amount of workspace needed by other statistical procedures like ANOVA.
AUTORECODE is also useful with the TABLES procedure, where string values are truncated
to eight characters but value labels can be displayed in full. (See the SPSS Tables manual for
more information.)

AUTORECODE is similar to the RECODE command. The main difference is that
AUTORECODE automatically generates the values. In RECODE, you must specify the new
values.

Options

Displaying Recoded Variables. You can display the values of the original and recoded vari-
ables using the PRINT subcommand.

Ordering of Values. By default, values are recoded in ascending order (lowest to highest).
You can recode values in descending order (highest to lowest) using the DESCENDING
subcommand.

Basic Specification

The basic specification is VARIABLES and INTO. VARIABLES specifies the variables to be re-
coded. INTO provides names for the target variables that store the new values. VARIABLES
and INTO must name or imply the same number of variables.

108 AUTORECODE

Subcommand Order

• VARIABLES must be specified first.

• INTO must immediately follow VARIABLES.

Syntax Rules

A variable cannot be recoded into itself. More generally, target variable names cannot dupli-
cate any variable names already in the working file.

Operations

• The values of each variable to be recoded are sorted and then assigned numeric values.
By default, the values are assigned in ascending order: 1 is assigned to the lowest non-
missing value of the original variable, 2 to the second-lowest nonmissing value, and so
on for each value of the original variable.

• Values of the original variables are unchanged.

• Missing values are recoded into values higher than any nonmissing values, with their or-
der preserved. For example, if the original variable has 10 nonmissing values, the first
missing value is recoded as 11 and retains its user-missing status. System-missing values
remain system-missing.

• AUTORECODE does not sort the cases in the working file. As a result, the consecutive
numbers assigned to the target variables may not be in order in the file.

• Target variables are assigned the same variable labels as the original source variables. To
change the variable labels, use the VARIABLE LABELS command after AUTORECODE.

• Value labels are automatically generated for each value of the target variables. If the orig-
inal value had a label, that label is used for the corresponding new value. If the original
value did not have a label, the old value itself is used as the value label for the new value.
The defined print format of the old value is used to create the new value label.

• AUTORECODE ignores SPLIT FILE specifications. However, any SELECT IF specifications
are in effect for AUTORECODE.

AUTORECODE 109

Example

DATA LIST / COMPANY 1-21 (A) SALES 24-28.
BEGIN DATA
CATFOOD JOY 10000
OLD FASHIONED CATFOOD 11200
. . .
PRIME CATFOOD 10900
CHOICE CATFOOD 14600
END DATA.

AUTORECODE VARIABLES=COMPANY /INTO=RCOMPANY /PRINT.

TABLES TABLE = SALES BY RCOMPANY
/TTITLE=’CATFOOD SALES BY COMPANY’.

• Because TABLES truncates string variables to eight characters, AUTORECODE is used to
recode the string variable COMPANY, which contains the names of various hypothetical
cat food companies.

• AUTORECODE recodes COMPANY into a numeric variable RCOMPANY. Values of
RCOMPANY are consecutive integers beginning with 1 and ending with the number of
different values entered for COMPANY. The values of COMPANY are used as value labels
for RCOMPANY’s numeric values. The PRINT subcommand displays a table of the orig-
inal and recoded values.

• The variable RCOMPANY is used as the banner variable in the TABLES procedure to pro-
duce a table of sales figures for each cat food company. The value labels for RCOMPANY
are used as column headings. Since TABLES does not truncate value labels, the full com-
pany names appear.

Example

AUTORECODE VARIABLES=REGION /INTO=RREGION /PRINT.
ANOVA Y BY RREGION (1,5).

• In statistical procedures, empty cells can reduce performance and increase memory re-
quirements. In this example, assume that the factor REGION has only five nonempty cat-
egories, represented by the numeric codes 1, 4, 6, 14, and 20. AUTORECODE recodes
those values into 1, 2, 3, 4, and 5 for target variable RREGION.

• The variable RREGION is used in ANOVA. If the original variable REGION were used, the
amount of memory required by ANOVA would be 4429 bytes. Using variable RREGION,
ANOVA requires only 449 bytes of memory.

110 AUTORECODE

Example

DATA LIST / RELIGION 1-8 (A) Y 10-13.
MISSING VALUES RELIGION (’ ’).
BEGIN DATA
CATHOLIC 2013
PROTEST 3234
JEWISH 5169
NONE 714
OTHER 2321

. . .
END DATA.
AUTORECODE VARIABLES=RELIGION /INTO=NRELIG /PRINT /DESCENDING.
MANOVA Y BY NRELIG(1,5).

• Because MANOVA requires consecutive integer values for factor levels, the string variable
RELIGION is recoded into a numeric variable. The five values for RELIGION are first sort-
ed in descending order (Z to A) and are then assigned values 1, 2, 3, 4, and 5 in target
variable NRELIG.

• Since a blank space is specified as a user-missing value, it is assigned the value 6. In the
table produced by PRINT, the value 6 is displayed as 6M for the variable NRELIG to flag
it as a user-missing value.

• The values of RELIGION are used as value labels for the corresponding new values in
NRELIG.

• Target variable NRELIG is used as a factor variable in MANOVA.

VARIABLES Subcommand

VARIABLES specifies the variables to be recoded. VARIABLES is required and must be speci-
fied first. The actual keyword VARIABLES is optional.
• Values from the specified variables are recoded and stored in the target variables listed

on INTO. Values of the original variables are unchanged.

INTO Subcommand

INTO provides names for the target variables that store the new values. INTO is required and
must immediately follow VARIABLES.

• The number of target variables named or implied on INTO must equal the number of
source variables listed on VARIABLES.

Example
AUTORECODE VARIABLES=V1 V2 V3 /INTO=NEWV1 TO NEWV3 /PRINT.

• AUTORECODE stores the recoded values of V1, V2, and V3 into target variables named
NEWV1, NEWV2, and NEWV3.

AUTORECODE 111

PRINT Subcommand

PRINT displays a correspondence table of the original values of the source variables and the
new values of the target variables. The new value labels are also displayed.

• The only specification is keyword PRINT. There are no additional specifications.

DESCENDING Subcommand

By default, values for the source variable are recoded in ascending order (from lowest to
highest). DESCENDING assigns the values to new variables in descending order (from highest
to lowest). The largest value is assigned 1, the second-largest, 2, and so on.

• The only specification is keyword DESCENDING. There are no additional specifications.

112

BEGIN DATA—END DATA

BEGIN DATA
data records
END DATA

Example:
BEGIN DATA
1 3424 274 ABU DHABI 2
2 39932 86 AMSTERDAM 4
3 8889 232 ATHENS
4 3424 294 BOGOTA 3
END DATA.

Overview

BEGIN DATA and END DATA are used when data are entered within the command sequence
(inline data). BEGIN DATA and END DATA are also used for inline matrix data. BEGIN DATA
signals the beginning of data lines and END DATA signals the end of data lines.

Basic Specification

The basic specification is BEGIN DATA, the data lines, and END DATA. BEGIN DATA must be
specified by itself on the line that immediately precedes the first data line. END DATA is
specified by itself on the line that immediately follows the last data line.

Syntax Rules

• BEGIN DATA, the data, and END DATA must precede the first procedure.

• The command terminator after BEGIN DATA is optional. It is best to leave it out so that
the program will treat inline data as one continuous specification.

• END DATA must always begin in column 1. It must be spelled out in full and can have
only one space between the words END and DATA. Procedures and additional transfor-
mations can follow the END DATA command.

• Data lines must not have a command terminator. For inline data formats, see DATA LIST.

• Inline data records are limited to a maximum of 80 columns. (On some systems, the
maximum may be fewer than 80 columns.) If data records exceed 80 columns, they must
be stored in an external file that is specified on the FILE subcommand of the DATA LIST
(or similar) command.

BEGIN DATA—END DATA 113

Operations

• When the program encounters BEGIN DATA, it begins to read and process data on the next
input line. All preceding transformation commands are processed as the working file is
built.

• The program continues to evaluate input lines as data until it encounters END DATA, at
which point it begins evaluating input lines as commands.

• No other commands are recognized between BEGIN DATA and END DATA.

• The INCLUDE command can specify a file that contains BEGIN DATA, data lines, and END
DATA. The data in such a file are treated as inline data. Thus, the FILE subcommand should
be omitted from the DATA LIST (or similar) command.

• When running the program from prompts, the prompt DATA> appears immediately after
BEGIN DATA is specified. After END DATA is specified, the command line prompt returns.

Example

DATA LIST /XVAR 1 YVAR ZVAR 3-12 CVAR 14-22(A) JVAR 24.
BEGIN DATA
1 3424 274 ABU DHABI 2
2 39932 86 AMSTERDAM 4
3 8889 232 ATHENS
4 3424 294 BOGOTA 3
5 11323 332 HONG KONG 3
6 323 232 MANILA 1
7 3234 899 CHICAGO 4
8 78998 2344 VIENNA 3
9 8870 983 ZURICH 5
END DATA.
MEANS XVAR BY JVAR.

• DATA LIST defines the names and column locations of the variables. The FILE subcom-
mand is omitted because the data are inline.

• There are nine cases in the inline data. Each line of data completes a case.

• END DATA signals the end of data lines. It begins in column 1 and has only a single space
between END and DATA.

114

BREAK

BREAK

Overview

BREAK controls looping that cannot be fully controlled with IF clauses. Generally, BREAK
is used within a DO IF—END IF structure. The expression on the DO IF command specifies
the condition in which BREAK is executed.

Basic Specification

• The only specification is keyword BREAK. There are no additional specifications.

• BREAK must be specified within a loop structure. Otherwise, an error results.

Operations

• A BREAK command inside a loop structure but not inside a DO IF—END IF structure
terminates the first iteration of the loop for all cases, since no conditions for BREAK
are specified.

• A BREAK command within an inner loop terminates only iterations in that structure, not
in any outer loop structures.

Example

VECTOR #X(10).
LOOP #I = 1 TO #NREC.
+ DATA LIST NOTABLE/ #X1 TO #X10 1-20.
+ LOOP #J = 1 TO 10.
+ DO IF SYSMIS(#X(#J)).
+ BREAK.
+ END IF.
+ COMPUTE X = #X(#J).
+ END CASE.
+ END LOOP.
END LOOP.

• The inner loop terminates when there is a system-missing value for any of the variables
#X1 to #X10.

• The outer loop continues until all records are read.

115

CASEPLOT

CASEPLOT [VARIABLES=]varlist

 [/DIFF={1}]
 {n}

 [/SDIFF={1}]
 {n}

 [/PERIOD=n]

 [/{NOLOG**}]
 {LN }

 [/ID=varname]

 [/MARK={varname }]
 {date specification}

 [/SPLIT {UNIFORM**}]
 {SCALE }

 [/APPLY [=’model name’]]

For plots with one variable:

 [/FORMAT=[{NOFILL**}] [{NOREFERENCE**}]
 {LEFT } {REFERENCE }
 {RIGHT }

For plots with multiple variables:

 [/FORMAT={NOJOIN**}]
 {JOIN }
 {HILO }

**Default if the subcommand is omitted.

Example:
CASEPLOT TICKETS
 /LN
 /DIFF
 /SDIFF
 /PERIOD=12
 /FORMAT=REFERENCE
 /MARK=Y 55 M 6.

Overview

CASEPLOT produces a plot of one or more time series or sequence variables. You can re-
quest natural log and differencing transformations to produce plots of transformed vari-
ables. There are several plot formats available.

116 CASEPLOT

Options

Modifying the Variables. You can request a natural log transformation of the variable using
the LN subcommand and seasonal and nonseasonal differencing to any degree using the
SDIFF and DIFF subcommands. With seasonal differencing, you can also specify the period-
icity on the PERIOD subcommand.

Plot Format. With the FORMAT subcommand you can fill in the area on one side of the plotted
values on plots with one variable. You can also plot a reference line indicating the variable
mean. For plots with two or more variables, you can specify whether you want to join the
values for each case with a horizontal line. With the ID subcommand you can label the ver-
tical axis with the values of a specified variable. You can mark the onset of an intervention
variable on the plot with the MARK subcommand.

Split-File Processing. You can control how to plot data that have been divided into subgroups
by a SPLIT FILE command using the SPLIT subcommand.

Basic Specification

The basic specification is one or more variable names.

• If the DATE command has been specified, the vertical axis is labeled with the DATE_ vari-
able at periodic intervals. Otherwise, sequence numbers are used. The horizontal axis is
labeled with the value scale determined by the plotted variables.

Subcommand Order

• Subcommands can be specified in any order.

Syntax Rules

• VARIABLES can be specified only once.

• Other subcommands can be specified more than once, but only the last specification of
each one is executed.

Operations

• Subcommand specifications apply to all variables named on the CASEPLOT command.

• If the LN subcommand is specified, any differencing requested on that CASEPLOT com-
mand is done on the log-transformed variables.

• In high-resolution plots, split-file information is displayed as part of the subtitle and trans-
formation information is displayed as part of the footnote.

• In low-resolution plots, values of plotted variables are displayed along the right axis. A
wider page specification on SET allows you to display the values of more variables but
does not change the plot frame size.

CASEPLOT 117

Limitations

• Maximum 1 VARIABLES subcommand. There is no limit on the number of variables
named on the list.

Example

CASEPLOT TICKETS
 /LN
 /DIFF
 /SDIFF
 /PERIOD=12
 /FORMAT=REFERENCE
 /MARK=Y 55 M 6.

• This example produces a plot of TICKETS after a natural log transformation, differencing,
and seasonal differencing have been applied.

• LN transforms the data using the natural logarithm (base e) of the variable.

• DIFF differences the variable once.

• SDIFF and PERIOD apply one degree of seasonal differencing with a period of 12.
• FORMAT=REFERENCE adds a reference line at the variable mean. In a low-resolution plot,

the area between the plotted values and the mean is filled with the plotting symbol (T).

• MARK provides a marker on the plot at June 1955. The marker is displayed as a horizontal
reference line in a high-resolution plot.

VARIABLES Subcommand

VARIABLES specifies the names of the variables to be plotted and is the only required sub-
command. The actual keyword VARIABLES can be omitted.

DIFF Subcommand

DIFF specifies the degree of differencing used to convert a nonstationary variable to a station-
ary one with a constant mean and variance before plotting.
• You can specify any positive integer on DIFF.

• If DIFF is specified without a value, the default is 1.

• The number of values displayed decreases by 1 for each degree of differencing.

Example
CASEPLOT TICKETS
 /DIFF=2.

• In this example, TICKETS is differenced twice before plotting.

SDIFF Subcommand

If the variable exhibits a seasonal or periodic pattern, you can use the SDIFF subcommand to
seasonally difference a variable before plotting.

118 CASEPLOT

• The specification on SDIFF indicates the degree of seasonal differencing and can be any
positive integer.

• If SDIFF is specified without a value, the degree of seasonal differencing defaults to 1.

• The number of seasons displayed decreases by 1 for each degree of seasonal differencing.
• The length of the period used by SDIFF is specified on the PERIOD subcommand. If the

PERIOD subcommand is not specified, the periodicity established on the TSET or DATE
command is used (see the PERIOD subcommand below).

PERIOD Subcommand

PERIOD indicates the length of the period to be used by the SDIFF subcommand.

• The specification on PERIOD indicates how many observations are in one period or sea-
son and can be any positive integer.

• PERIOD is ignored if it is used without the SDIFF subcommand.
• If PERIOD is not specified, the periodicity established on TSET PERIOD is in effect. If

TSET PERIOD is not specified either, the periodicity established on the DATE command
is used. If periodicity is not established anywhere, the SDIFF subcommand will not be
executed.

Example
CASEPLOT TICKETS
 /SDIFF=1
 /PERIOD=12.

• This command applies one degree of seasonal differencing with 12 observations per sea-
son to TICKETS before plotting.

LN and NOLOG Subcommands

LN transforms the data using the natural logarithm (base e) of the variable and is used to re-
move varying amplitude over time. NOLOG indicates that the data should not be log trans-
formed. NOLOG is the default.

• If you specify LN on CASEPLOT, any differencing requested on that command will be
done on the log-transformed variable.

• There are no additional specifications on LN or NOLOG.

• Only the last LN or NOLOG subcommand on a CASEPLOT command is executed.
• If a natural log transformation is requested, any value less than or equal to zero is set to

system-missing.

• NOLOG is generally used with an APPLY subcommand to turn off a previous LN specification.

Example
CASEPLOT TICKETS
 /LN.

CASEPLOT 119

• In this example, TICKETS is transformed using the natural logarithm before plotting.

ID Subcommand

ID names a variable whose values will be used as the left-axis labels.

• The only specification on ID is a variable name. If you have a variable named ID in your
working data file, the equals sign after the subcommand is required.

• ID overrides the specification on TSET ID.

• If ID or TSET ID is not specified, the left vertical axis is labeled with the DATE_ variable
created by the DATE command. If the DATE_ variable has not been created, the observa-
tion or sequence number is used as the label.

Example
CASEPLOT VARA
 /ID=VARB.

• In this example, the values of variable VARB will be used to label the left axis of the plot
of VARA.

FORMAT Subcommand

FORMAT controls the plot format.

• The specification on FORMAT is one of the keywords listed below.

• Keywords NOFILL, LEFT, RIGHT, NOREFERENCE, and REFERENCE apply to plots with
one variable. NOFILL, LEFT, and RIGHT are alternatives and indicate how the plot is filled.
NOREFERENCE and REFERENCE are alternatives and specify whether a reference line is
displayed. For low-resolution plots, only one keyword can be specified. One keyword
from each set can be specified for high-resolution plots. NOFILL and NOREFERENCE are
the defaults.

• Keywords JOIN, NOJOIN, and HILO apply to plots with multiple variables and are alterna-
tives. NOJOIN is the default. Only one keyword can be specified on a FORMAT subcom-
mand for plots with two variables.

The following formats are available for plots of one variable:

NOFILL Plot only the values for the variable with no fill. NOFILL produces a plot with
no fill to the left or right of the plotted values. This is the default format when
one variable is specified.

LEFT Plot the values for the variable and fill in the area to the left. For high-reso-
lution plots, if the plotted variable has missing or negative values, keyword
LEFT is ignored and the default NOFILL is used instead. Figure 3 contains a
left-filled high-resolution plot. In low-resolution plots, the area to the left of
the plotted curve is filled in with the first character of the variable name.

RIGHT Plot the values for the variable and fill in the area to the right. In low-
resolution plots, the area to the right of the plotted curve is filled in with the

120 CASEPLOT

first character of the variable name. For high-resolution plots, RIGHT is ig-
nored; if specified, the default NOFILL is used instead.

NOREFERENCE Do not plot a reference line. This is the default when one variable is specified.

REFERENCE Plot a reference line indicating the variable mean. In low resolution, the area
between the plotted curve and the reference line is filled in with the plotting
character (the first character of the variable name). For low-resolution plots,
you cannot specify REFERENCE together with either LEFT or RIGHT. In high
resolution, a fill chart is displayed as an area chart with a reference line and
a nofill chart is a line chart with a reference line.

The following formats are available for plots of multiple variables:

NOJOIN Plot the values of each variable named. In high-resolution plots, different colors or
line patterns are used for multiple variables. In low-resolution plots, the plotting
character for each variable is the first character of the variable name. Multiple oc-
currences of the same value for a single observation are plotted using a dollar sign
($). This is the default format for plots of multiple variables.

JOIN Plot the values of each variable and join the values for each case. Values are plot-
ted as described for NOJOIN and the values for each case are joined together by a
line. Figure 5 contains a plot in this format with three variables (PRICE, INCOME,
and CONSUMP).

HILO Plot the highest and lowest values across variables for each case and join the
two values together. The high and low values are plotted as a pair of vertical bars
and are joined with a dashed line. For high-resolution plots, HILO is ignored if
more than three variables are specified and the default NOJOIN is used instead.

MARK Subcommand

Use MARK to indicate the onset of an intervention variable. Figure 7 shows a high-resolution
plot with a reference line indicating the year 1945.

• In high resolution, the onset date is indicated by a horizontal reference line. In low reso-
lution it is indicated by a tick mark on the left axis.

• The specification on MARK can be either a variable name or an onset date if the DATE_
variable exists.

• If a variable is named, the reference line indicates where the values of that variable
change.

• A date specification follows the same format as the DATE command, that is, a keyword
followed by a value. For example, the specification for June 1955 is Y 1955 M 6 (or Y 55
M 6 if only the last two digits of the year are used on DATE).

SPLIT Subcommand

SPLIT specifies how to plot data that have been divided into subgroups by a SPLIT FILE com-
mand. The specification on SPLIT is either SCALE or UNIFORM.

CASEPLOT 121

• If FORMAT=REFERENCE is specified when SPLIT=SCALE, the reference line is placed at
the mean of the subgroup. If FORMAT=REFERENCE is specified when SPLIT=UNIFORM,
the reference line is placed at the overall mean.

UNIFORM Uniform scale. The horizontal axis is scaled according to the values of the entire
data set. This is the default if SPLIT is not specified.

SCALE Individual scale. The horizontal axis is scaled according to the values of each indi-
vidual subgroup.

Example
SPLIT FILE BY REGION.
CASEPLOT TICKETS / SPLIT=SCALE.

• This example produces one plot for each REGION subgroup.

• The horizontal axis for each plot is scaled according to the values of TICKETS for each
particular region.

APPLY Subcommand

APPLY allows you to produce a caseplot using previously defined specifications without hav-
ing to repeat the CASEPLOT subcommands.

• The only specification on APPLY is the name of a previous model in quotes. If a model
name is not specified, the specifications from the previous CASEPLOT command are used.

122 CASEPLOT

• If no variables are specified, the variables that were specified for the original plot are used.

• To change one or more plot specifications, specify the subcommands of only those por-
tions you want to change after the APPLY subcommand.

• To plot different variables, enter new variable names before or after the APPLY subcommand.

Example
CASEPLOT TICKETS
 /LN
 /DIFF=1
 /SDIFF=1
 /PER=12.
CASEPLOT ROUNDTRP
 /APPLY.
CASEPLOT APPLY
 /NOLOG.

• The first command produces a plot of TICKETS after a natural log transformation, differ-
encing, and seasonal differencing.

• The second command plots ROUNDTRP using the same transformations specified for
TICKETS.

• The third command produces a plot of ROUNDTRP, but this time without any natural log
transformation. The variable is still differenced once and seasonally differenced with a
periodicity of 12.

123

CCF

CCF [VARIABLES=] series names [WITH series names]

 [/DIFF={1}]
 {n}

 [/SDIFF={1}]
 {n}

 [/PERIOD=n]

 [/{NOLOG**}]
 {LN }

 [/SEASONAL]

 [/MXCROSS={7**}]
 {n }

 [/APPLY[=’model name’]]

**Default if the subcommand is omitted and there is no corresponding specification on the TSET command.

Example:
CCF VARX VARY
 /LN
 /DIFF=1
 /SDIFF=1
 /PERIOD=12
 /MXCROSS=25.

Overview

CCF displays and plots the cross-correlation functions of two or more time series. You can
also display and plot the cross-correlations of transformed series by requesting natural log
and differencing transformations within the procedure.

Options

Modifying the Series. You can request a natural log transformation of the series using the LN
subcommand and seasonal and nonseasonal differencing to any degree using the SDIFF and
DIFF subcommands. With seasonal differencing, you can also specify the periodicity on the
PERIOD subcommand.

Statistical Display. You can control which series are paired by using the keyword WITH.
You can specify the range of lags for which you want values displayed and plotted with
the MXCROSS subcommand, overriding the maximum specified on TSET. You can also
display and plot values only at periodic lags using the SEASONAL subcommand.

124 CCF

Basic Specification

The basic specification is two or more series names. By default, CCF automatically displays
the cross-correlation coefficient and standard error for the negative lags (second series lead-
ing), the positive lags (first series leading), and the 0 lag for all possible pair combinations
in the series list. It also plots the cross-correlations and marks the bounds of two standard
errors on the plot. By default, CCF displays and plots values up to 7 lags (lags −7 to +7), or
the range specified on TSET.

Subcommand Order

• Subcommands can be specified in any order.

Syntax Rules

• The VARIABLES subcommand can be specified only once.

• Other subcommands can be specified more than once, but only the last specification of
each one is executed.

Operations

• Subcommand specifications apply to all series named on the CCF command.

• If the LN subcommand is specified, any differencing requested on that CCF command is
done on the log transformed series.

• Confidence limits are displayed in the plot, marking the bounds of two standard errors at
each lag.

Limitations

• Maximum 1 VARIABLES subcommand. There is no limit on the number of series named
on the list.

Example

CCF VARX VARY
 /LN
 /DIFF=1
 /SDIFF=1
 /PERIOD=12
 /MXCROSS=25.

• This example produces a plot of the cross-correlation function for VARX and VARY after
a natural log transformation, differencing, and seasonal differencing have been applied to
both series. Along with the plot, the cross-correlation coefficients and standard errors are
displayed for each lag.

CCF 125

• LN transforms the data using the natural logarithm (base e) of each series.

• DIFF differences each series once.

• SDIFF and PERIOD apply one degree of seasonal differencing with a period of 12.

• MXCROSS specifies 25 for the maximum range of positive and negative lags for which
output is to be produced (lags −25 to +25).

VARIABLES Subcommand

VARIABLES specifies the series to be plotted and is the only required subcommand. The ac-
tual keyword VARIABLES can be omitted.
• The minimum VARIABLES specification is a pair of series names.

• If you do not use keyword WITH, each series is paired with every other series in the list.

• If you specify keyword WITH, every series named before WITH is paired with every series
named after WITH.

Example
CCF VARIABLES=VARA VARB WITH VARC VARD.

• This example displays and plots the cross-correlation functions for the following pairs of
series: VARA with VARC, VARA with VARD, VARB with VARC, and VARB with VARD.

• VARA is not paired with VARB, and VARC is not paired with VARD.

DIFF Subcommand

DIFF specifies the degree of differencing used to convert a nonstationary series to a stationary
one with a constant mean and variance before obtaining cross-correlations.
• You can specify any positive integer on DIFF.

• If DIFF is specified without a value, the default is 1.

• The number of values used in the calculations decreases by 1 for each degree of differencing.

Example
CCF VARX VARY
 /DIFF=1.

• This command differences series VARX and VARY before calculating and plotting the
cross-correlation function.

SDIFF Subcommand

If the series exhibits seasonal or periodic patterns, you can use SDIFF to seasonally difference
the series before obtaining cross-correlations.

126 CCF

• The specification on SDIFF indicates the degree of seasonal differencing and can be any
positive integer.

• If SDIFF is specified without a value, the degree of seasonal differencing defaults to 1.

• The number of seasons used in the calculations decreases by 1 for each degree of seasonal
differencing.

• The length of the period used by SDIFF is specified on the PERIOD subcommand. If the
PERIOD subcommand is not specified, the periodicity established on the TSET or DATE
command is used (see the PERIOD subcommand below).

Example
CCF VAR01 WITH VAR02 VAR03
 /SDIFF=1.

• In this example, one degree of seasonal differencing using the periodicity established on
the TSET or DATE command is applied to the three series.

• Two cross-correlation functions are then plotted, one for the pair VAR01 and VAR02, and
one for the pair VAR01 and VAR03.

PERIOD Subcommand

PERIOD indicates the length of the period to be used by the SDIFF or SEASONAL subcommands.

• The specification on PERIOD indicates how many observations are in one period or sea-
son and can be any positive integer.

• PERIOD is ignored if it is used without the SDIFF or SEASONAL subcommands.

• If PERIOD is not specified, the periodicity established on TSET PERIOD is in effect. If
TSET PERIOD is not specified, the periodicity established on the DATE command is used.
If periodicity was not established anywhere, the SDIFF and SEASONAL subcommands
will not be executed.

Example
CCF VARX WITH VARY
 /SDIFF=1
 /PERIOD=6.

• This command applies one degree of seasonal differencing with a periodicity of 6 to both
series and computes and plots the cross-correlation function.

LN and NOLOG Subcommands

LN transforms the data using the natural logarithm (base e) of each series and is used to re-
move varying amplitude over time. NOLOG indicates that the data should not be log trans-
formed. NOLOG is the default.
• There are no additional specifications on LN or NOLOG.

• Only the last LN or NOLOG subcommand on a CCF command is executed.

• LN and NOLOG apply to all series named on the CCF command.

CCF 127

• If a natural log transformation is requested and any values in either series in a pair are less
than or equal to 0, the CCF for that pair will not be produced because nonpositive values
cannot be log transformed.

• NOLOG is generally used with an APPLY subcommand to turn off a previous LN specification.

Example
CCF VAR01 VAR02
 /LN.

• This command transforms the series VAR01 and VAR02 using the natural log before com-
puting cross-correlations.

SEASONAL Subcommand

Use SEASONAL to focus attention on the seasonal component by displaying and plotting
cross-correlations only at periodic lags.
• There are no additional specifications on SEASONAL.

• If SEASONAL is specified, values are displayed and plotted at the periodic lags indicated
on the PERIOD subcommand. If no PERIOD subcommand is specified, the periodicity first
defaults to the TSET PERIOD specification and then to the DATE command periodicity. If
periodicity is not established anywhere, SEASONAL is ignored (see the PERIOD subcom-
mand on p. 126).

• If SEASONAL is not used, cross-correlations for all lags up to the maximum are displayed
and plotted.

Example
CCF VAR01 VAR02 VAR03
 /SEASONAL.

• This command plots and displays cross-correlations at periodic lags.
• By default, the periodicity established on TSET PERIOD (or the DATE command) is used.

If no periodicity is established, cross-correlations for all lags are displayed and plotted.

MXCROSS Subcommand

MXCROSS specifies the maximum range of lags for a series.

• The specification on MXCROSS must be a positive integer.

• If MXCROSS is not specified, the default range is the value set on TSET MXCROSS. If
TSET MXCROSS is not specified, the default is 7 (lags −7 to +7).

• The value specified on the MXCROSS subcommand overrides the value set on TSET
MXCROSS.

Example
CCF VARX VARY
 /MXCROSS=5.

• The maximum number of cross-correlations can range from lag −5 to lag +5.

128 CCF

APPLY Subcommand

APPLY allows you to use a previously defined CCF model without having to repeat the
specifications.

• The only specification on APPLY is the name of a previous model enclosed in apostrophes.
If a model name is not specified, the model specified on the previous CCF command is
used.

• To change one or more model specifications, specify the subcommands of only those por-
tions you want to change after the APPLY subcommand.

• If no series are specified on the command, the series that were originally specified with
the model being applied are used.

• To change the series used with the model, enter new series names before or after the
APPLY subcommand.

Example
CCF VARX VARY
 /LN
 /DIFF=1
 /MXCROSS=25.
CCF VARX VARY
 /LN
 /DIFF=1
 /SDIFF=1
 /PERIOD=12
 /MXCROSS=25.
CCF VARX VAR01
 /APPLY.
CCF VARX VAR01
 /APPLY=’MOD_1’.

• The first command displays and plots the cross-correlation function for VARX and VARY
after each series is log transformed and differenced. The maximum range is set to 25 lags.
This model is assigned the name MOD_1 as soon as the command is executed.

• The second command displays and plots the cross-correlation function for VARX and
VARY after each series is log transformed, differenced, and seasonally differenced with a
periodicity of 12. The maximum range is again set to 25 lags. This model is assigned the
name MOD_2.

• The third command requests the cross-correlation function for the series VARX and VAR01
using the same model and the same range of lags as used for MOD_2.

• The fourth command applies MOD_1 (from the first command) to the series VARX and
VAR01.

References

Box, G. E. P., and G. M. Jenkins. 1976. Time series analysis: Forecasting and control. San Fran-
cisco: Holden-Day.

129

CLEAR TRANSFORMATIONS

CLEAR TRANSFORMATIONS

Overview

CLEAR TRANSFORMATIONS discards previous data transformation commands.

Basic Specification

The only specification is the command itself. CLEAR TRANSFORMATIONS has no additional
specifications.

Operations

• CLEAR TRANSFORMATIONS discards all data transformation commands that have accu-
mulated since the last procedure.

• CLEAR TRANSFORMATIONS has no effect if a command file is submitted to your operating
system for execution. It generates a warning when a command file is present.

• Be sure to delete CLEAR TRANSFORMATIONS and any unwanted transformation com-
mands from the journal file if you plan to submit the file to the operating system for
batch-mode execution. Otherwise, the unwanted transformations will cause problems.

Example

GET FILE=QUERY.
FREQUENCIES=ITEM1 ITEM2 ITEM3.
RECODE ITEM1, ITEM2, ITEM3 (0=1) (1=0) (2=-1).
COMPUTE INDEXQ=(ITEM1 + ITEM2 + ITEM3)/3.
VARIABLE LABELS INDEXQ ’SUMMARY INDEX OF QUESTIONS’.
CLEAR TRANSFORMATIONS.
DISPLAY DICTIONARY.

• The GET and FREQUENCIES commands are executed.

• The RECODE, COMPUTE, and VARIABLE LABELS commands are transformations. They
do not affect the data until the next procedure is executed.

• The CLEAR TRANSFORMATIONS command discards the RECODE, COMPUTE, and
VARIABLE LABELS commands.

• The DISPLAY command displays the working file dictionary. Data values and labels are
exactly as they were when the FREQUENCIES command was executed. Variable INDEXQ
does not exist because CLEAR TRANSFORMATIONS discarded the COMPUTE command.

130

CLUSTER

CLUSTER varlist [/MISSING=LISTWISE**] [INCLUDE]

[/MEASURE=[{SEUCLID** }]
 {EUCLID }
 {COSINE }
 {CORRELATION }
 {BLOCK }
 {CHEBYCHEV }
 {POWER(p,r) }
 {MINKOWSKI(p) }
 {CHISQ }
 {PH2 }
 {RR[(p[,np])] }
 {SM[(p[,np])] }
 {JACCARD[(p[,np])] }
 {DICE[(p[,np])] }
 {SS1[(p[,np])] }
 {RT[(p[,np])] }
 {SS2[(p[,np])] }
 {K1[(p[,np])] }
 {SS3[(p[,np])] }
 {K2[(p[,np])] }
 {SS4[(p[,np])] }
 {HAMANN[(p[,np])] }
 {OCHIAI[(p[,np])] }
 {SS5[(p[,np])] }
 {PHI[(p[,np])] }
 {LAMBDA[(p[,np])] }
 {D[(p[,np])] }
 {Y[(p[,np])] }
 {Q[(p[,np])] }
 {BEUCLID[(p[,np])] }
 {SIZE[(p[,np])] }
 {PATTERN[(p[,np])] }
 {BSEUCLID[(p[,np])]}
 {BSHAPE[(p[,np])] }
 {DISPER[(p[,np])] }
 {VARIANCE[(p[,np])]}
 {BLWMN[(p[,np])] }

[/METHOD={BAVERAGE**}[(rootname)] [...]]
 {WAVERAGE }
 {SINGLE }
 {COMPLETE }
 {CENTROID }
 {MEDIAN }
 {WARD }
 {DEFAULT** }

 [/SAVE=CLUSTER({level })] [/ID=varname]
 {min,max}

 [/PRINT=[CLUSTER({level })] [DISTANCE] [SCHEDULE**] [NONE]]
 {min,max}

 [/PLOT=[VICICLE**[(min[,max[,inc]])]] [DENDROGRAM] [NONE]]
 [HICICLE[(min[,max[,inc]])]]

 [/MATRIX=[IN({file})] [OUT({file})]]
 {* } {* }

** Default if subcommand or keyword is omitted.

CLUSTER 131

Example:
CLUSTER V1 TO V4
/PLOT=DENDROGRAM
/PRINT=CLUSTER (2,4).

Overview

CLUSTER produces hierarchical clusters of items based on distance measures of dissimilar-
ity or similarity. The items being clustered are usually cases from the working data file, and
the distance measures are computed from their values for one or more variables. You can
also cluster variables if you read in a matrix measuring distances between variables. Cluster
analysis is discussed in Anderberg (1973).

Options

Cluster Measures and Methods. You can specify one of 37 similarity or distance measures on
the MEASURE subcommand and any of the seven methods on the METHOD subcommand.

New Variables. You can save cluster membership for specified solutions as new variables in
the working data file using the SAVE subcommand.

Display and Plots. You can display cluster membership, the distance or similarity matrix used
to cluster variables or cases, and the agglomeration schedule for the cluster solution with
the PRINT subcommand. You can request either a horizontal or vertical icicle plot or a den-
drogram of the cluster solution and control the cluster levels displayed in the icicle plot with
the PLOT subcommand. You can also specify a variable to be used as a case identifier in the
display on the ID subcommand.

Matrix Input and Output. You can write out the distance matrix and use it in subsequent
CLUSTER, PROXIMITIES, or ALSCAL analyses or read in matrices produced by other CLUSTER
or PROXIMITIES procedures using the MATRIX subcommand.

Basic Specification

The basic specification is a variable list. CLUSTER assumes that the items being clustered are
cases and uses the squared Euclidean distances between cases on the variables in the analysis
as the measure of distance.

Subcommand Order

• The variable list must be specified first.

• The remaining subcommands can be specified in any order.

Syntax Rules

• The variable list and subcommands can each be specified once.

132 CLUSTER

• More than one clustering method can be specified on the METHOD subcommand.

Operations

The CLUSTER procedure involves four steps:

• First, CLUSTER obtains distance measures of similarities between or distances separating
initial clusters (individual cases or individual variables if the input is a matrix measuring
distances between variables).

• Second, it combines the two nearest clusters to form a new cluster.

• Third, it recomputes similarities or distances of existing clusters to the new cluster.

• It then returns to the second step until all items are combined in one cluster.

This process yields a hierarchy of cluster solutions, ranging from one overall cluster to as
many clusters as there are items being clustered. Clusters at a higher level can contain several
lower-level clusters. Within each level, the clusters are disjoint (each item belongs to only
one cluster).

• CLUSTER identifies clusters in solutions by sequential integers (1, 2, 3, and so on).

Limitations

• CLUSTER stores cases and a lower-triangular matrix of proximities in memory. Storage
requirements increase rapidly with the number of cases. You should be able to cluster 100
cases using a small number of variables in an 80K workspace.

• CLUSTER does not honor weights.

Example

CLUSTER V1 TO V4
/PLOT=DENDROGRAM
/PRINT=CLUSTER (2 4).

• This example clusters cases based on their values for all variables between and including
V1 and V4 in the working data file.

• The analysis uses the default measure of distance (squared Euclidean) and the default
clustering method (average linkage between groups).

• PLOT requests a dendrogram.
• PRINT displays a table of the cluster membership of each case for the two-, three-, and

four-cluster solutions.

Variable List

The variable list identifies the variables used to compute similarities or distances between
cases.

CLUSTER 133

• The variable list is required except when matrix input is used. It must be specified before
the optional subcommands.

• If matrix input is used, the variable list can be omitted. The names for the items in the ma-
trix are used to compute similarities or distances.

• You can specify a variable list to override the names for the items in the matrix. This
allows you to read in a subset of cases for analysis. Specifying a variable that does not
exist in the matrix results in an error.

MEASURE Subcommand

MEASURE specifies the distance or similarity measure used to cluster cases.

• If the MEASURE subcommand is omitted or included without specifications, squared
Euclidean distances are used.

• Only one measure can be specified.

Measures for Interval Data

For interval data, use any one of the following keywords on MEASURE:

SEUCLID Squared Euclidean distance. The distance between two items, x and y, is the
sum of the squared differences between the values for the items. SEUCLID is
the measure commonly used with centroid, median, and Ward’s methods of
clustering. SEUCLID is the default and can also be requested with keyword
DEFAULT.

EUCLID Euclidean distance. This is the default specification for MEASURE. The dis-
tance between two items, x and y, is the square root of the sum of the squared
differences between the values for the items.

CORRELATION Correlation between vectors of values. This is a pattern similarity measure.

where Zxi is the Z-score (standardized) value of x for the ith case or variable,

and N is the number of cases or variables.

COSINE Cosine of vectors of values. This is a pattern similarity measure.

SEUCLID x y,() Σi xi yi–()2=

EUCLID x y,() Σi xi yi–()2=

CORRELATION x y,()
Σi ZxiZyi()

N 1–
-------------------------=

COSINE x y,()
Σi xiyi()

Σixi
2() Σiyi

2()
-----------------------------------=

134 CLUSTER

CHEBYCHEV Chebychev distance metric. The distance between two items is the maximum
absolute difference between the values for the items.

BLOCK City-block or Manhattan distance. The distance between two items is the
sum of the absolute differences between the values for the items.

MINKOWSKI(p) Distance in an absolute Minkowski power metric. The distance between two
items is the pth root of the sum of the absolute differences to the pth power
between the values for the items. Appropriate selection of the integer param-
eter p yields Euclidean and many other distance metrics.

POWER(p,r) Distance in an absolute power metric. The distance between two items is the
rth root of the sum of the absolute differences to the pth power between the
values for the items. Appropriate selection of the integer parameters p and r
yields Euclidean, squared Euclidean, Minkowski, city-block, and many oth-
er distance metrics.

Measures for Frequency Count Data

For frequency count data, use any one of the following keywords on MEASURE:

CHISQ Based on the chi-square test of equality for two sets of frequencies. The mag-
nitude of this dissimilarity measure depends on the total frequencies of the
two cases or variables whose dissimilarity is computed. Expected values are
from the model of independence of cases or variables x and y.

PH2 Phi-square between sets of frequencies. This is the CHISQ measure nor-
malized by the square root of the combined frequency. Therefore, its value
does not depend on the total frequencies of the two cases or variables
whose dissimilarity is computed.

CHEBYCHEV x y,() maxi xi yi–=

BLOCK x y,() Σi xi yi–=

MINKOWSKI x y,() Σi xi yi– p()1 p/=

POWER x y,() Σi xi yi– p()1 r/=

CHISQ x y,()
Σi xi E xi()–()2

E xi()

Σi yi E yi()–()2

E yi()
-----------------------------------+=

PH2 x y,()

Σi xi E xi()–()2

E xi()

Σi yi E yi()–()2

E yi()
-----------------------------------+

N
---=

CLUSTER 135

Measures for Binary Data

Different binary measures emphasize different aspects of the relationship between sets of
binary values. However, all the measures are specified in the same way. Each measure has
two optional integer-valued parameters, p (present) and np (not present).

• If both parameters are specified, CLUSTER uses the value of the first as an indicator that
a characteristic is present and the value of the second as an indicator that a characteristic
is absent. CLUSTER skips all other values.

• If only the first parameter is specified, CLUSTER uses that value to indicate presence and
all other values to indicate absence.

• If no parameters are specified, CLUSTER assumes that 1 indicates presence and 0 indi-
cates absence.

Using the indicators for presence and absence within each item (case or variable), CLUSTER con-
structs a contingency table for each pair of items in turn. It uses this table to compute a
proximity measure for the pair.

CLUSTER computes all binary measures from the values of a, b, c, and d. These values are
tallied across variables (when the items are cases) or across cases (when the items are vari-
ables). For example, if variables V, W, X, Y, Z have values 0, 1, 1, 0, 1 for case 1 and values 0,
1, 1, 0, 0 for case 2 (where 1 indicates presence and 0 indicates absence), the contingency
table is as follows:

The contingency table indicates that both cases are present for two variables (W and X), both
cases are absent for two variables (V and Y), and case 1 is present and case 2 is absent for one
variable (Z). There are no variables for which case 1 is absent and case 2 is present.

The available binary measures include matching coefficients, conditional probabilities,
predictability measures, and others.

Matching Coefficients. Table 1 shows a classification scheme for matching coefficients. In
this scheme, matches are joint presences (value a in the contingency table) or joint absences
(value d). Nonmatches are equal in number to value b plus value c. Matches and nonmatches
may be weighted equally or not. The three coefficients JACCARD, DICE, and SS2 are related
monotonically, as are SM, SS1, and RT. All coefficients in Table 1 are similarity measures,

Item 2 characteristics

Present Absent

Item 1 characteristics

Present a b

Absent c d

Case 2 characteristics

Present Absent

Case 1 characteristics

Present 2 1

Absent 0 2

2 2×

136 CLUSTER

and all except two (K1 and SS3) range from 0 to 1. K1 and SS3 have a minimum value of 0
and no upper limit.

RR[(p[,np])] Russell and Rao similarity measure. This is the binary dot product.

SM[(p[,np])] Simple matching similarity measure. This is the ratio of the number of
matches to the total number of characteristics.

JACCARD[(p[,np])] Jaccard similarity measure. This is also known as the similarity ratio.

Table 1 Binary matching coefficients in CLUSTER

Joint absences
excluded from
numerator

Joint absences
included in
numerator

All matches included
in denominator

Equal weight for
matches and nonmatches RR SM

Double weight for
matches

 SS1

Double weight for
nonmatches

 RT

Joint absences excluded
from denominator

Equal weight for
matches and nonmatches JACCARD

Double weight for
matches DICE

Double weight for
nonmatches SS2

All matches excluded
from denominator

Equal weight for
matches and nonmatches K1 SS3

RR x y,() a
a b c d+ + +
------------------------------=

SM x y,() a d+
a b c d+ + +
------------------------------=

JACCARD x y,() a
a b c+ +
---------------------=

CLUSTER 137

DICE[(p[,np])] Dice (or Czekanowski or Sorenson) similarity measure.

SS1[(p[,np])] Sokal and Sneath similarity measure 1.

RT[(p[,np])] Rogers and Tanimoto similarity measure.

SS2[(p[,np])] Sokal and Sneath similarity measure 2.

K1[(p[,np])] Kulczynski similarity measure 1. This measure has a minimum value
of 0 and no upper limit. It is undefined when there are no nonmatches
(b=0 and c=0). PROXIMITIES assigns an artificial upper limit of 10,000
to K1 when it is undefined or exceeds this value.

SS3[(p[,np])] Sokal and Sneath similarity measure 3. This measure has a minimum
value of 0 and no upper limit. It is undefined when there are no non-
matches (b=0 and c=0). PROXIMITIES assigns an artificial upper limit
of 10,000 to SS3 when it is undefined or exceeds this value.

Conditional Probabilities. The following binary measures yield values that can be interpreted
in terms of conditional probability. All three are similarity measures.

K2[(p[,np])] Kulczynski similarity measure 2. This yields the average conditional
probability that a characteristic is present in one item given that the
characteristic is present in the other item. The measure is an average
over both items acting as predictors. It has a range of 0 to 1.

SS4[(p[,np])] Sokal and Sneath similarity measure 4. This yields the conditional
probability that a characteristic of one item is in the same state (presence

DICE x y,() 2a
2a b c+ +
------------------------=

SS1 x y,() 2 a d+()
2 a d+() b c+ +
---------------------------------------=

RT x y,() a d+
a d 2 b c+()+ +
---------------------------------------=

SS2 x y,() a
a 2 b c+()+
-----------------------------=

K1 x y,() a
b c+
------------=

SS3 x y,() a d+
b c+
------------=

K2 x y,() a a b+()⁄ a a c+()⁄+
2

--=

138 CLUSTER

or absence) as the characteristic of the other item. The measure is an av-
erage over both items acting as predictors. It has a range of 0 to 1.

HAMANN[(p[,np])] Hamann similarity measure. This measure gives the probability that a
characteristic has the same state in both items (present in both or absent
from both) minus the probability that a characteristic has different states
in the two items (present in one and absent from the other). HAMANN has
a range of −1 to +1 and is monotonically related to SM, SS1, and RT.

Predictability Measures. The following four binary measures assess the association between
items as the predictability of one given the other. All four measures yield similarities.

LAMBDA[(p[,np])] Goodman and Kruskal’s lambda (similarity). This coefficient assesses
the predictability of the state of a characteristic on one item (present
or absent) given the state on the other item. Specifically, LAMBDA
measures the proportional reduction in error using one item to predict
the other when the directions of prediction are of equal importance.
LAMBDA has a range of 0 to 1.

where
t1 = max(a,b) + max(c,d) + max(a,c) + max(b,d)

t2 = max(a + c, b + d) + max(a + d, c + d).

D[(p[,np])] Anderberg’s D (similarity). This coefficient assesses the predictability
of the state of a characteristic on one item (present or absent) given the
state on the other. D measures the actual reduction in the error probabil-
ity when one item is used to predict the other. The range of D is 0 to 1.

where
t1 = max(a,b) + max(c,d) + max(a,c) + max(b,d)

t2 = max(a + c, b + d) + max(a + d, c + d)

Y[(p[,np])] Yule’s Y coefficient of colligation (similarity). This is a function of the
cross ratio for a table. It has a range of −1 to +1.

SS4 x y,() a a b+()⁄ a a c+()⁄ d b d+()⁄ d c d+()⁄+ + +
4

---=

HAMANN x y,() a d+() b c+()–
a b c d+ + +

--=

LAMBDA x y,()
t1 t2–

2 a b c d+ + +() t2–
---=

D x y,()
t1 t2–

2 a b c d+ + +()
---------------------------------------=

2 2×

CLUSTER 139

Q[(p[,np])] Yule’s Q (similarity). This is the version of Goodman and

Kruskal’s ordinal measure gamma. Like Yule’s Y, Q is a function of
the cross ratio for a table and has a range of −1 to +1.

Other Binary Measures. The remaining binary measures available in CLUSTER are either binary
equivalents of association measures for continuous variables or measures of special properties
of the relationship between items.

OCHIAI[(p[,np])] Ochiai similarity measure. This is the binary form of the cosine. It has
a range of 0 to 1.

SS5[(p[,np])] Sokal and Sneath similarity measure 5. The range is 0 to 1.

PHI[(p[,np])] Fourfold point correlation (similarity). This is the binary form of the
Pearson product-moment correlation coefficient.

BEUCLID[(p[,np])] Binary Euclidean distance. This is a distance measure. Its minimum
value is 0, and it has no upper limit.

BSEUCLID[(p[,np])] Binary squared Euclidean distance. This is a distance measure. Its
minimum value is 0, and it has no upper limit.

SIZE[(p[,np])] Size difference. This is a dissimilarity measure with a minimum value
of 0 and no upper limit.

Y x y,() ad bc–

ad bc+
---------------------------=

2 2×

2 2×

Q x y,() ad bc–
ad bc+
------------------=

OCHIAI x y,() a
a b+

a
a c+
------------⋅=

SS5 x y,() ad

a b+() a c+() b d+() c d+()
---=

PHI x y,() ad bc–

a b+() a c+() b d+() c d+()
---=

BEUCLID x y,() b c+=

BSEUCLID x y,() b c+=

SIZE x y,() b c–()2

a b c d+ + +()2
--------------------------------------=

140 CLUSTER

PATTERN[(p[,np])] Pattern difference. This is a dissimilarity measure. The range is 0 to 1.

BSHAPE[(p[,np])] Binary shape difference. This dissimilarity measure has no upper or
lower limit.

DISPER[(p[,np])] Dispersion similarity measure. The range is −1 to +1.

VARIANCE[(p[,np])] Variance dissimilarity measure. This measure has a minimum value
of 0 and no upper limit.

BLWMN[(p[,np])] Binary Lance-and-Williams nonmetric dissimilarity measure. This
measure is also known as the Bray-Curtis nonmetric coefficient. The
range is 0 to 1.

METHOD Subcommand

METHOD specifies one or more clustering methods.

• If the METHOD subcommand is omitted or included without specifications, the method of
average linkage between groups is used.

• Only one METHOD subcommand can be used, but more than one method can be specified
on it.

• When the number of items is large, CENTROID and MEDIAN require significantly more
CPU time than other methods.

BAVERAGE Average linkage between groups (UPGMA). BAVERAGE is the default and
can also be requested with keyword DEFAULT.

WAVERAGE Average linkage within groups.

SINGLE Single linkage or nearest neighbor.

COMPLETE Complete linkage or furthest neighbor.

PATTERN x y,() bc
a b c d+ + +()2

--------------------------------------=

BSHAPE x y,() a b c d+ + +() b c+() b c–()2–
a b c d+ + +()2

---=

DISPER x y,() ad bc–
a b c d+ + +()2

--------------------------------------=

VARIANCE x y,() b c+
4 a b c d+ + +()
---------------------------------------=

BLWMN x y,() b c+
2a b c+ +
------------------------=

CLUSTER 141

CENTROID Centroid clustering (UPGMC). Squared Euclidean distances are commonly
used with this method.

MEDIAN Median clustering (WPGMC). Squared Euclidean distances are commonly
used with this method.

WARD Ward’s method. Squared Euclidean distances are commonly used with this
method.

Example
CLUSTER V1 V2 V3
/METHOD=SINGLE COMPLETE WARDS.

• This example clusters cases based on their values for variables V1, V2, and V3, and uses
three clustering methods: single linkage, complete linkage, and Ward’s method.

SAVE Subcommand

SAVE allows you to save cluster membership at specified solution levels as new variables in
the working data file.

• The specification on SAVE is the CLUSTER keyword, followed by either a single number
indicating the level (number of clusters) of the cluster solution or a range separated by a
comma indicating the minimum and maximum numbers of clusters when membership of
more than one solution is to be saved. The number or range must be enclosed in parenthe-
ses and applies to all methods specified on METHOD.

• You can specify a rootname in parentheses after each method specification on the METHOD
subcommand. CLUSTER forms new variable names by appending the number of the cluster
solution to the rootname.

• If no rootname is specified, CLUSTER forms variable names using the formula CLUn_m,
where m increments to create a unique rootname for the set of variables saved for one
method and n is the number of the cluster solution.

• As n and m increase, the prefix CLU is truncated to keep names within eight characters.

• The names and descriptive labels of the new variables are displayed in the procedure in-
formation notes.

• You cannot use the SAVE subcommand if you are replacing the working data file with
matrix materials (see “Matrix Output” on p. 144).

Example
CLUSTER A B C
/METHOD=BAVERAGE SINGLE (SINMEM) WARD
/SAVE=CLUSTERS(3,5).

• This command creates nine new variables: CLU5_1, CLU4_1, and CLU3_1 for BAVERAGE,
SINMEM5, SINMEM4, and SINMEM3 for SINGLE, and CLU5_2, CLU4_2, and CLU3_2 for
WARD. The variables contain the cluster membership for each case at the five-, four-, and
three-cluster solutions using the three clustering methods. Ward’s method is the third

142 CLUSTER

specification on METHOD but uses the second set of default names since it is the second
method specified without a rootname.

• The order of the new variables in the working data file is the same as listed above, since
the solutions are obtained in the order from 5 to 3.

• New variables are listed in the procedure information notes.

ID Subcommand

ID names a string variable to be used as the case identifier in cluster membership tables, icicle
plots, and dendrograms. If the ID subcommand is omitted, cases are identified by case num-
bers alone.

PRINT Subcommand

PRINT controls the display of cluster output (except plots, which are controlled by the PLOT
subcommand).

• If the PRINT subcommand is omitted or included without specifications, an agglomera-
tion schedule is displayed. If any keywords are specified on PRINT, the agglomeration
schedule is displayed only if explicitly requested.

• CLUSTER automatically displays summary information (the method and measure used, the
number of cases) for each method named on the METHOD subcommand. This summary is
displayed regardless of specifications on PRINT.

You can specify any or all of the following on the PRINT subcommand:

SCHEDULE Agglomeration schedule. The agglomeration schedule shows the order
and distances at which items and clusters combine to form new clus-
ters. It also shows the cluster level at which an item joins a cluster.
SCHEDULE is the default and can also be requested with keyword
DEFAULT.

CLUSTER(min,max) Cluster membership. For each item, the display includes the value of
the case identifier (or the variable name if matrix input is used), the
case sequence number, and a value (1, 2, 3, and so on) identifying the
cluster to which that case belongs in a given cluster solution. Specify
either a single integer value in parentheses indicating the level of a sin-
gle solution or a minimum value and a maximum value indicating a
range of solutions for which display is desired. If the number of clus-
ters specified exceeds the number produced, the largest number of
clusters is used (the number of items minus 1). If CLUSTER is speci-
fied more than once, the last specification is used.

DISTANCE Proximities matrix. The proximities matrix table displays the distances
or similarities between items computed by CLUSTER or obtained from
an input matrix. DISTANCE produces a large volume of output and uses
significant CPU time when the number of cases is large.

CLUSTER 143

NONE None of the above. NONE overrides any other keywords specified on
PRINT.

Example
CLUSTER V1 V2 V3 /PRINT=CLUSTER(3,5).

• This example displays cluster membership for each case for the three-, four-, and five-
cluster solutions.

PLOT Subcommand

PLOT controls the plots produced for each method specified on the METHOD subcommand.
For icicle plots, PLOT allows you to control the cluster solution at which the plot begins and
ends and the increment for displaying intermediate cluster solutions.

• If the PLOT subcommand is omitted or included without specifications, a vertical icicle
plot is produced.

• If any keywords are specified on PLOT, only those plots requested are produced.

• The icicle plots are generated as pivot tables and the dendrogram is generated as text out-
put.

• If there is not enough memory for a dendrogram or an icicle plot, the plot is skipped and
a warning is issued.

• The size of an icicle plot can be controlled by specifying range values or an increment for
VICICLE or HICICLE. Smaller plots require significantly less workspace and time.

VICICLE(min,max,inc) Vertical icicle plot. This is the default. The range specifications are
optional. If used, they must be integer and must be enclosed in paren-
theses. The specification min is the cluster solution at which to start
the display (the default is 1), and the specification max is the cluster
solution at which to end the display (the default is the number of cases
minus 1). If max is greater than the number of cases minus 1, the
default is used. The increment to use between cluster solutions is inc
(the default is 1). If max is specified, min must be specified, and if inc
is specified, both min and max must be specified. If VICICLE is spec-
ified more than once, only the last range specification is used.

HICICLE(min,max,inc) Horizontal icicle plot. The range specifications are the same as for
VICICLE. If both VICICLE and HICICLE are specified, the last range
specified is used for both. If a range is not specified on the last instance
of VICICLE or HICICLE, the defaults are used even if a range is speci-
fied earlier.

DENDROGRAM Tree diagram. The dendrogram is scaled by the joining distances of
the clusters.

NONE No plots.

Example
CLUSTER V1 V2 V3 /PLOT=VICICLE(1,20).

144 CLUSTER

• This example produces a vertical icicle plot for the one-cluster through the twenty-cluster
solution.

Example
CLUSTER V1 V2 V3 /PLOT=VICICLE(1,151,5).

• This example produces a vertical icicle plot for every fifth cluster solution starting with
1 and ending with 151 (1 cluster, 6 clusters, 11 clusters, and so on).

MISSING Subcommand

MISSING controls the treatment of cases with missing values. By default, a case that has a
missing value for any variable on the variable list is omitted from the analysis.

LISTWISE Delete cases with missing values listwise. Only cases with nonmissing val-
ues for all variables on the variable list are used. LISTWISE is the default and
can also be requested with keyword DEFAULT.

INCLUDE Include cases with user-missing values. Only cases with system-missing
values are excluded.

MATRIX Subcommand

MATRIX reads and writes SPSS-format matrix data files.

• Either IN or OUT and a matrix file in parentheses are required. When both IN and OUT are
used on the same CLUSTER procedure, they can be specified on separate MATRIX subcom-
mands or on the same subcommand.

• The input or output matrix information is displayed in the procedure information notes.

OUT (filename) Write a matrix data file. Specify either a filename or an asterisk in parentheses
(*). If you specify a filename, the file is stored on disk and can be retrieved at
any time. If you specify an asterisk (*), the matrix data file replaces the work-
ing data file but is not stored on disk unless you use SAVE or XSAVE.

IN (filename) Read a matrix data file. If the matrix data file is the current working data file,
specify an asterisk (*) in parentheses. If the matrix data file is another file,
specify the filename in parentheses. A matrix file read from an external file
does not replace the working data file.

Matrix Output

• CLUSTER writes proximity-type matrices with ROWTYPE_ values of PROX. CLUSTER
neither reads nor writes additional statistics with its matrix materials. See “Format of the
Matrix Data File” below for a description of the file.

• The matrices produced by CLUSTER can be used by subsequent CLUSTER procedures or
by procedures PROXIMITIES and ALSCAL.

CLUSTER 145

• Any documents contained in the working data file are not transferred to the matrix file.

Matrix Input

• CLUSTER can read matrices written by a previous CLUSTER command or by PROXIMITIES,
or created by MATRIX DATA. When the input matrix contains distances between variables,
CLUSTER clusters all or a subset of the variables.

• The order among rows and cases in the input matrix file is unimportant, as long as values
for split-file variables precede values for ROWTYPE_.

• CLUSTER ignores unrecognized ROWTYPE_ values.

• When you are reading a matrix created with MATRIX DATA, you should supply a value
label for PROX of either SIMILARITY or DISSIMILARITY so the matrix is correctly iden-
tified. If you do not supply a label, CLUSTER assumes DISSIMILARITY. (See “Format of
the Matrix Data File” below.)

• The program reads variable names, variable and value labels, and print and write formats
from the dictionary of the matrix data file.

• MATRIX=IN cannot be specified unless a working data file has already been defined. To
read an existing matrix data file at the beginning of a session, use GET to retrieve the
matrix file and then specify IN(*) on MATRIX.

• The variable list on CLUSTER can be omitted when a matrix data file is used as input. By
default, all cases or variables in the matrix data file are used in the analysis. Specify a vari-
able list when you want to read in a subset of items for analysis.

Format of the Matrix Data File

• The matrix data file can include three special variables created by the program:
ROWTYPE_, ID, and VARNAME_.

• Variable ROWTYPE_ is a string variable with value PROX (for proximity measure).
PROX is assigned value labels containing the distance measure used to create the matrix
and either SIMILARITY or DISSIMILARITY as an identifier.

• ID is included only when an identifying variable is not specified on the ID subcommand.
ID is a short string and takes the value CASE m, where m is the actual number of each
case. Note that m may not be consecutive if cases have been selected.

• If an identifying variable is specified on the ID subcommand, it takes the place of ID
between ROWTYPE_ and VARNAME_. Up to 20 characters can be displayed for the iden-
tifying variable.

• VARNAME_ is a string variable that takes the values VAR1, VAR2 ...VARn, to correspond
to the names of the distance variables in the matrix (VAR1, VAR2 ... VARn, where n is the
number of cases in the largest split file). The numeric suffix for the variable names is con-
secutive and may not be the same as the actual case number.

• The remaining variables in the matrix file are the distance variables used to form the
matrix. The distance variables are assigned variable labels in the form of CASE m to iden-
tify the actual number of each case.

146 CLUSTER

Split Files

• When split-file processing is in effect, the first variables in the matrix data file are the split
variables, followed by ROWTYPE_, the case-identifier variable or ID, VARNAME_, and the
distance variables.

• A full set of matrix materials is written for each split-file group defined by the split variables.

• A split variable cannot have the same name as any other variable written to the matrix
data file.

• If split-file processing is in effect when a matrix is written, the same split file must be in
effect when that matrix is read by any procedure.

Missing Values

Missing-value treatment affects the values written to a matrix data file. When reading a
matrix data file, be sure to specify a missing-value treatment on CLUSTER that is compatible
with the treatment that was in effect when the matrix materials were generated.

Example

DATA LIST FILE=ALMANAC1 RECORDS=3
/1 CITY 6-18(A) POP80 53-60
/2 CHURCHES 10-13 PARKS 14-17 PHONES 18-25 TVS 26-32

RADIOST 33-35 TVST 36-38 TAXRATE 52-57(2).
N OF CASES 8.

CLUSTER CHURCHES TO TAXRATE
/ID=CITY
/MEASURE=EUCLID
/MATRIX=OUT(CLUSMTX).

• CLUSTER reads raw data from file ALMANAC1 and writes one set of matrix materials to
file CLUSMTX.

• The working data file is still the ALMANAC1 file defined on DATA LIST. Subsequent com-
mands are executed on ALMANAC1.

Example

DATA LIST FILE=ALMANAC1 RECORDS=3
/1 CITY 6-18(A) POP80 53-60
/2 CHURCHES 10-13 PARKS 14-17 PHONES 18-25 TVS 26-32

RADIOST 33-35 TVST 36-38 TAXRATE 52-57(2).
N OF CASES 8.

CLUSTER CHURCHES TO TAXRATE
/ID=CITY
/MEASURE=EUCLID
/MATRIX=OUT(*).

LIST.

CLUSTER 147

• CLUSTER writes the same matrix as in the previous example. However, the matrix data
file replaces the working data file. The LIST command is executed on the matrix file, not
on ALMANAC1.

Example

GET FILE=CLUSMTX.
CLUSTER

/ID=CITY
/MATRIX=IN(*).

• This example starts a new session and reads an existing matrix data file. GET retrieves the
matrix data file CLUSMTX.

• MATRIX=IN specifies an asterisk because the matrix data file is the working data file. If
MATRIX=IN(CLUSMTX) is specified, the program issues an error message.

• If the GET command is omitted, the program issues an error message.

Example

GET FILE=PRSNNL.
FREQUENCIES VARIABLE=AGE.

CLUSTER
/ID=CITY
/MATRIX=IN(CLUSMTX).

• This example performs a frequencies analysis on file PRSNNL and then uses a different
file for CLUSTER. The file is an existing matrix data file.

• The variable list is omitted on the CLUSTER command. By default, all cases in the matrix
file are used in the analysis.

• MATRIX=IN specifies the matrix data file CLUSMTX.

• CLUSMTX does not replace PRSNNL as the working data file.

Example

GET FILE=CRIME.
PROXIMITIES MURDER TO MOTOR

/VIEW=VARIABLE
/MEASURE=PH2
/MATRIX=OUT(*).

CLUSTER
/MATRIX=IN(*).

• GET retrieves an SPSS-format data file.

• PROXIMITIES uses the data from the CRIME file, which is now the working data file. The
VIEW subcommand specifies computation of proximity values between variables. The
MATRIX subcommand writes the matrix to the working data file.

• MATRIX=IN(*) on the CLUSTER command reads the matrix materials from the working
data file. Since the matrix contains distances between variables, CLUSTER clusters vari-

148 CLUSTER

ables based on distance measures in the input. The variable list is omitted on the CLUS-
TER command, so all variables are used in the analysis. The slash preceding the MATRIX
subcommand is required because there is an implied variable list. Without the slash,
CLUSTER would attempt to interpret MATRIX as a variable name rather than a subcom-
mand name.

149

COMMENT

{COMMENT} text
{ * }

Overview

COMMENT inserts explanatory text within the command sequence. Comments are included
among the commands printed back in the output; they do not become part of the information
saved in an SPSS-format data file. To include commentary in the dictionary of a data file,
use the DOCUMENT command.

Syntax Rules

• The first line of a comment can begin with the keyword COMMENT or with an asterisk (*).
Comment text can extend for multiple lines and can contain any characters. A period is
required at the end of the last line to terminate the comment.

• Use /* and */ to set off a comment within a command. The comment can be placed
wherever a blank is valid (except within strings) and should be preceded by a blank.
Comments within a command cannot be continued on the next line.

• The closing */ is optional when the comment is at the end of the line. The command can
continue on the next line just as if the inserted comment was a blank.

• Comments cannot be inserted within data lines.

Example

* Create a new variable as a combination of two old variables;
the new variable is a scratch variable used later in the

 session; it will not be saved with the data file.

COMPUTE #XYVAR=0.
IF (XVAR EQ 1 AND YVAR EQ 1) #XYVAR=1.

• The three-line comment will be included in the display file but will not be part of the data
file if the working data file is saved.

Example

IF (RACE EQ 1 AND SEX EQ 1) SEXRACE = 1 /*White males.

• The comment is entered on a command line. The closing */ is not needed because the
comment is at the end of the line.

150

COMPUTE

COMPUTE target variable=expression

Arithmetic operators:

Arithmetic functions:

Statistical functions:

+ Addition – Subtraction
* Multiplication / Division
** Exponentiation

ABS(arg) Absolute value
RND(arg) Round
TRUNC(arg) Truncate
MOD(arg) Modulus
SQRT(arg) Square root
EXP(arg) Exponential
LG10(arg) Base 10 logarithm
LN(arg) Natural logarithm
ARSIN(arg) Arcsine
ARTAN(arg) Arctangent
SIN(arg) Sine
COS(arg) Cosine

SUM[.n](arg list) Sum of values across argument list
MEAN[.n](arg list) Mean value across argument list
SD[.n](arg list) Standard deviation of values across list
VAR[.n](arg list) Variance of values across list
CFVAR[.n](arg list) Coefficient of variation of values across list
MIN[.n](arg list) Minimum value across list
MAX[.n](arg list) Maximum value across list

COMPUTE 151

Cumulative distribution functions (continuous):

Inverse distribution functions (continuous):

Random variable functions (continuous distributions):

CDF.BETA(q,a,b) Return probability that the beta random variate falls below q (0≤q≤1; a>0; b>0).
CDF.CAUCHY(q,a,b) Return probability that the Cauchy random variate falls below q (q≥0; b>0).
CDF.CHISQ (q,a) Return probability that the chi-square random variate falls below q (q≥0; a>0).
CDF.EXP(q,a) Return probability that the exponential random variate falls below q (q≥0; a>0).
CDF.F(q,a,b) Return probability that the F random variate falls below q (q≥0; a>0; b>0).
CDF.GAMMA(q,a,b) Return probability that the gamma random variate falls below q (q≥0; a>0; b>0).
CDF.LAPLACE(q,a,b) Return probability that the Laplace random variate falls below q (b>0).
CDF.LOGISTIC(q,a,b) Return probability that the logistic random variate falls below q (b>0).
CDF.LNORMAL(q,a,b) Return probability that the lognormal random variate falls below q (q≥0; b>0).
CDF.NORMAL (q,a,b) Return probability that the normal random variate falls below q (b>0). When a=0,

b=1, alias CDFNORM (q).
CDF.PARETO(q,a,b) Return probability that the Pareto random variate falls below q (q≥a>0; b>0).
CDF.T(q,a) Return probability that the Student t random variate falls below q (a>0).
CDF.UNIFORM(q,a,b) Return probability that the uniform random variate falls below q (a≤q≤b).
CDF.WEIBULL(q,a,b) Return probability that the Weibull random variate falls below q (q≥0; a>0; b>0).

IDF.BETA(p,a,b) Return value q such that CDF.BETA(q,a,b)=p (0≤p≤1; a>0; b>0).
IDF.CAUCHY(p,a,b) Return value q such that CDF.CAUCHY(q,a,b)=p (0<p<1; b>0).
IDF.CHISQ (p,a) Return value q such that CDF.CHISQ(q,a)=p (0≤p<1; a>0).
IDF.EXP (p,a) Return value q such that CDF.EXP(q,a)=p (0≤p<1; a>0).
IDF.F(p,a,b) Return value q such that CDF.F(q,a,b)=p (0≤p<1; a>0; b>0).
IDF.GAMMA(p,a,b) Return value q such that CDF.GAMMA(q,a,b)=p (0≤p<1; a>0; b>0).
IDF.LAPLACE(p,a,b) Return value q such that CDF.LAPLACE(q,a,b)=p (0<p<1; b>0).
IDF.LOGISTIC(p,a,b) Return value q such that CDF.LOGISTIC(q,a,b)=p (0<p<1; b>0).
IDF.LNORMAL(p,a,b) Return value q such that CDF.LNORMAL(q,a,b)=p (0≤p≤1; b>0).
IDF.NORMAL(p,a,b) Return value q such that CDF.NORMAL(q,a,b)=p (0<p<1; b>0). When a=0,

b=1, alias PROBIT(p).
IDF.PARETO(p,a,b) Return value q such that CDF.PARETO(q,a,b)=p (0≤p<1; a>0; b>0).
IDF.T(p,a) Return value q such that CDF.T(q,a)=p (0<p<1; a>0).
IDF.UNIFORM(p,a,b) Return value q such that CDF.UNIFORM(q,a,b)=p (0≤p≤1; a≤b).
IDF.WEIBULL(p,a,b) Return value q such that CDF.WEIBULL(q,a,b)=p (0≤p<1; a>0; b>0).

RV.BETA(a,b) Generate a random variable of the beta distribution (a>0; b>0).
RV.CAUCHY(a,b) Generate a random variable of the Cauchy distribution (b>0).
RV.CHISQ(a) Generate a random variable of the chi-square distribution (a>0).
RV.EXP(a) Generate a random variable of the exponential distribution (a>0).
RV.F(a,b) Generate a random variable of the F distribution (a>0; b>0).
RV.GAMMA(a,b) Generate a random variable of the gamma distribution (a>0; b>0).
RV.LAPLACE(a,b) Generate a random variable of the Laplace distribution (b>0).

152 COMPUTE

Cumulative distribution functions (discrete):

Random variable functions (discrete distributions):

Noncentral Distribution Functions:

RV.LOGISTIC(a,b) Generate a random variable of the logistic distribution (b>0).
RV.LNORMAL(a,b) Generate a random variable of the lognormal distribution (b>0).
RV.NORMAL(a,b) Generate a random variable of the normal distribution (b>0). When a=0,

alias NORMAL(b).
RV.PARETO(x,a,b) Generate a random variable of the Pareto distribution (b>0).
RV.T(a) Generate a random variable of the Student t distribution (b>0).
RV.UNIFORM(a,b) Generate a random variable of the uniform distribution. When a=0, alias

UNIFORM(b).
RV.WEIBULL(a,b) Generate a random variable of the Weibull distribution (a>0; b>0).

CDF.BERNOULLI(q,a) Return probability that the Bernoulli distributed variate is less than or
equal to q (q=0 or 1 only, 0≤a≤1).

CDF.BINOM(q,a,b) Return probability that the binomially distributed variate is less than or
equal to q (0≤q≤a integer, 0≤b≤1).

CDF.GEOM(q,a) Return probability that the geometrically distributed variate is less than or
equal to q (q>0 integer; 0<a≤1).

CDF.HYPER(q,a,b,c) Return probability that the hypergeometrically distributed variate is less
than or equal to q (a>0 integer, 0≤c≤a, 0≤b≤a; max(0,b-
a+c)≤q≤min(c,b)).

CDF.NEGBIN(q,a,b) Return probability that the negative binomially distributed variate is less
than or equal to q (a>0 integer, 0≤b≤1; q≥a integer).

CDF.POISSON(q,a) Return probability that the Poisson distributed variate is less than or equal
to q (a>0; q≥0 integer).

RV.BERNOULLI(a) Generate a random variable from the Bernoulli distribution.
RV.BINOM(a.b) Generate a random variable from the binomial distribution.
RV.GEOM(a) Generate a random variable from the geometric distribution.
RV.HYPER(a,b,c) Generate a random variable from the hypergeometric distribution (a>0

integer, 0≤c≤a, 0≤b≤a).
RV.NEGBIN(a,b) Generate a random variable from the negative binomial distribution (a>0

integer, 0≤b≤1).
RV.POISSON(a) Generate a random variable from the Poisson distribution (a>0).

NCDF.BETA(x,a,b,c) Return probability that the noncentral beta distributed variate falls below x
(a>0,b>0,c≥0; 0≤x≤1).

NCDF.CHISQ(x,a,c) Return probability that the noncentral chi-square distributed variate falls
below x (a>0, c≥0; x≥0).

NCDF.F(x,a,b,c) Return probability that the noncentral F distributed variate falls below x
(a>0, b>0, c≥0; x≥0).

NCDF.T(x,a,c) Return probability that the noncetnral Student t distributed variate falls
below x (a>0, c≥0).

COMPUTE 153

Missing-value functions:

Cross-case function:

Logical functions:

Other functions:

Date and time aggregation functions:

Date and time conversion functions:

VALUE(varname) Ignore user-missing.
MISSING(varname) True if missing.
SYSMIS(varname) True if system-missing.
NMISS(arg list) Number of missing values across list.
NVALID(arg list) Number of valid values across list.

LAG(varname,n) Value of variable n cases before

RANGE(varname,range) True if value of variable is in range.
ANY(arg,arg list) True if value of first argument is included on argument list.

UNIFORM(arg) Uniform pseudo-random number between 0 and n
NORMAL(arg) Normal pseudo-random number with mean of 0 and standard deviation of n
CDFNORM(arg) Probability that random variable falls below n
PROBIT(arg) Inverse of CDFNORM

DATE.DMY(d,m,y) Read day, month, year, and return date.
DATE.MDY(m,d,y) Read month, day, year, and return date.
DATE.YRDAY(y,d) Read year, day, and return date.
DATE.QYR(q,y) Read quarter, year, and return quarter start date.
DATE.MOYR(m,y) Read month, year, and return month start date.
DATE.WKYR(w,y) Read week, year, and return week start date.
TIME.HMS(h,m,s) Read hour, minutes, seconds, and return time interval.
TIME.DAYS(d) Read days and return time interval.

YRMODA(yr,mo,da) Convert year, month, day to day number.
CTIME.DAYS(arg) Convert time interval to days.
CTIME.HOURS(arg) Convert time interval to hours.
CTIME.MINUTES(arg) Convert time interval to minutes.

154 COMPUTE

Date and time extraction functions:

String functions:

XDATE.MDAY(arg) Return day of the month.
XDATE.MONTH(arg) Return month of the year.
XDATE.YEAR(arg) Return four-digit year.
XDATE.HOUR(arg) Return hour of a day.
XDATE.MINUTE(arg) Return minute of an hour.
XDATE.SECOND(arg) Return second of a minute.
XDATE.WKDAY(arg) Return weekday number.
XDATE.JDAY(arg) Return day number of day in given year.
XDATE.QUARTER(arg) Return quarter of date in given year.
XDATE.WEEK(arg) Return week number of date in given year.
XDATE.TDAY(arg) Return number of days in time interval.
XDATE.TIME(arg) Return time portion of given date and time.
XDATE.DATE(arg) Return integral portion of date.

ANY(arg,arg list) Return 1 if value of argument is included on argument list.
CONCAT(arg list) Join the arguments into a string.
INDEX(a1,a2,a3) Return number indicating position of first occurrence of a2 in a1;

optionally, a2 in a3 evenly divided substrings of a1.
LAG(arg,n) Return value of argument n cases before.
LENGTH(arg) Return length of argument.
LOWER(arg list) Convert upper case to lower case.
LPAD(a1,a2,a3) Left-pad beginning of a1 to length a2 with character a3.
LTRIM(a1,a2) Trim character a2 from beginning of a1.
MAX(arg list) Return maximum value of argument list.
MIN(arg list) Return minimum value of argument list.
NUMBER(arg,format) Convert argument into number using format.
RANGE(arg,arg list) Return 1 if value of argument is in inclusive range of argument list.
RINDEX(a1,a2,a3) Return number indicating rightmost occurrence of a2 in a1;

optionally, a2 in a3 evenly divided substrings of a1.
RPAD(a1,a2,a3) Right-pad end of a1 to length a2 with character a3.
RTRIM(a1,a2) Trim character a2 from end of a1.
STRING(arg,format) Convert argument into string using format.
SUBSTR(a1,a2,a3) Return substring of a1 beginning with position a2 for length a3.
UPCASE(arg list) Convert lower case to upper case.
MBLEN.BYTE(arg,a1) Return the number of bytes for the character beginning at position a1

in the string argument. If a1 is not specified, it defaults to 1.

COMPUTE 155

Example:
COMPUTE NEWVAR=RND((V1/V2)*100).
STRING DEPT(A20).
COMPUTE DEPT=’PERSONNEL DEPARTMENT’.

Overview

COMPUTE creates new numeric variables or modifies the values of existing string or numeric
variables. The variable named on the left of the equals sign is the target variable. The variables,
constants, and functions on the right side of the equals sign form an assignment expression.
For a complete discussion of functions, see “Transformation Expressions” on p. 34.

Numeric Transformations

Numeric variables can be created or modified with COMPUTE. The assignment expression
for numeric transformations can include combinations of constants, variables, numeric oper-
ators, and functions.

String Transformations

String variables can be modified but cannot be created with COMPUTE. However, a new
string variable can be declared and assigned a width with the STRING command and then as-
signed values by COMPUTE. The assignment expression can include string constants, string
variables, and any of the string functions. All other functions are available for numeric trans-
formations only.

Basic Specification

The basic specification is a target variable, an equals sign (required), and an assignment
expression.

Syntax Rules

• The target variable must be named first, and the equals sign is required. Only one target
variable is allowed per COMPUTE command.

• Numeric and string variables cannot be mixed in an expression. In addition, if the target
variable is numeric, the expression must yield a numeric value; if the target variable is a
string, the expression must yield a string value.

• Each function must specify at least one argument enclosed in parentheses. If a function has
two or more arguments, the arguments must be separated by commas. For a complete dis-
cussion of the functions and their arguments, see “Transformation Expressions” on p. 34.

• You can use the TO keyword to refer to a set of variables where the argument is a list of
variables.

156 COMPUTE

Numeric Variables

• Parentheses are used to indicate the order of execution and to set off the arguments to a
function.

• Numeric functions use simple or complex expressions as arguments. Expressions must be
enclosed in parentheses.

String Variables

• String values and constants must be enclosed in apostrophes or quotation marks.

• When strings of different lengths are compared using the ANY or RANGE functions, the
shorter string is right-padded with blanks so that its length equals that of the longer.

Operations

• If the target variable already exists, its values are replaced.

• If the target variable does not exist and the assignment expression is numeric, the program
creates a new variable.

• If the target variable does not exist and the assignment expression is a string, the program
displays an error message and does not execute the command.

• COMPUTE is not executed if it contains invalid syntax. New variables are not created and
existing target variables remain unchanged.

Numeric Variables

• New numeric variables created with COMPUTE are assigned a dictionary format of F8.2
and are initialized to the system-missing value for each case (unless the LEAVE command
is used). Existing numeric variables transformed with COMPUTE retain their original dic-
tionary formats. The format of a numeric variable can be changed with the FORMATS
command.

• All expressions are evaluated in the following order: first functions, then exponentiation,
and then arithmetic operations. The order of operations can be changed with parentheses.

• COMPUTE returns the system-missing value when it doesn’t have enough information to
evaluate a function properly. Arithmetic functions that take only one argument cannot be
evaluated if that argument is missing. The date and time functions cannot be evaluated if
any argument is missing. Statistical functions are evaluated if a sufficient number of ar-
guments are valid. For example, in the command

COMPUTE FACTOR = SCORE1 + SCORE2 + SCORE3

FACTOR is assigned the system-missing value for a case if any of the three score val-
ues is missing. It is assigned a valid value only when all score values are valid. In the
command

COMPUTE FACTOR = SUM(SCORE1 TO SCORE3).

COMPUTE 157

FACTOR is assigned a valid value if at least one score value is valid. It is system-missing
only when all three score values are missing.

String Variables

• String variables can be modified but not created on COMPUTE. However, a new string
variable can be created and assigned a width with the STRING command and then as-
signed new values with COMPUTE.

• Existing string variables transformed with COMPUTE retain their original dictionary for-
mats. String variables declared on STRING and transformed with COMPUTE retain the
formats assigned to them on STRING.

• The format of string variables cannot be changed with FORMATS. Instead, use STRING to
create a new variable with the desired width and then use COMPUTE to set the values of
the new string equal to the values of the original.

• The string returned by a string expression does not have to be the same width as the target
variable. If the target variable is shorter, the result is right-trimmed. If the target variable
is longer, the result is right-padded. The program displays no warning messages when
trimming or padding.

• To control the width of strings, use the functions that are available for padding (LPAD,
RPAD), trimming (LTRIM, RTRIM), and selecting a portion of strings (SUBSTR).

• To determine whether a character in a string is single-byte or double-byte, use the
MBLEN.BYTE function. Specify the string and, optionally, its beginning byte position. If
the position is not specified, it defaults to 1.

Examples

The following examples illustrate the use of COMPUTE. For a complete discussion of each
function, see “Transformation Expressions” on p. 34.

Arithmetic Operations

COMPUTE V1=25-V2.
COMPUTE V3=(V2/V4)*100.

DO IF TENURE GT 5.
COMPUTE RAISE=SALARY*.12.
ELSE IF TENURE GT 1.
COMPUTE RAISE=SALARY*.1.
ELSE.
COMPUTE RAISE=0.
END IF.

• V1 is 25 minus V2 for all cases. V3 is V2 expressed as a percentage of V4.

• RAISE is 12% of SALARY if TENURE is greater than 5. For remaining cases, RAISE is 10%
of SALARY if TENURE is greater than 1. For all other cases, RAISE is 0.

158 COMPUTE

Arithmetic Functions

COMPUTE WTCHANGE=ABS(WEIGHT1-WEIGHT2).
COMPUTE NEWVAR=RND((V1/V2)*100).
COMPUTE INCOME=TRUNC(INCOME).
COMPUTE MINSQRT=SQRT(MIN(V1,V2,V3,V4)).

COMPUTE TEST = TRUNC(SQRT(X/Y)) * .5.
COMPUTE PARENS = TRUNC(SQRT(X/Y) * .5).

• WTCHANGE is the absolute value of WEIGHT1 minus WEIGHT2.
• NEWVAR is the percentage V1 is of V2, rounded to an integer.

• INCOME is truncated to an integer.

• MINSQRT is the square root of the minimum value of the four variables V1 to V4. MIN de-
termines the minimum value of the four variables, and SQRT computes the square root.

• The last two examples illustrate the use of parentheses to control the order of execution.
For a case with value 2 for X and Y, TEST equals 0.5, since 2 divided by 2 (X/Y) is 1, the
square root of 1 is 1, truncating 1 returns 1, and 1 times 0.5 is 0.5. However, PARENS
equals 0 for the same case, since SQRT(X/Y) is 1, 1 times 0.5 is 0.5, and truncating 0.5
returns 0.

Statistical Functions

COMPUTE NEWSAL = SUM(SALARY,RAISE).
COMPUTE MINVAL = MIN(V1,V2,V3,V4).
COMPUTE MEANVAL = MEAN(V1,V2,V3,V4).
COMPUTE NEWMEAN = MEAN.3(V1,V2,V3,V4).

• NEWSAL is the sum of SALARY plus RAISE.

• MINVAL is the minimum of the values for V1 to V4.

• MEANVAL is the mean of the values for V1 to V4. Since the mean can be computed for one,
two, three, or four values, MEANVAL is assigned a valid value as long as any one of the
four variables has a valid value for that case.

• In the last example, the .3 suffix specifies the minimum number of valid arguments re-
quired. NEWMEAN is the mean of variables V1 to V4 only if at least three of these variables
have valid values. Otherwise, NEWMEAN is system-missing for that case.

Missing-Value Functions

MISSING VALUE V1 V2 V3 (0).
COMPUTE ALLVALID=V1 + V2 + V3.
COMPUTE UM=VALUE(V1) + VALUE(V2) + VALUE(V3).
COMPUTE SM=SYSMIS(V1) + SYSMIS(V2) + SYSMIS(V3).
COMPUTE M=MISSING(V1) + MISSING(V2) + MISSING(V3).

• The MISSING VALUE command declares value 0 as missing for V1, V2, and V3.

• ALLVALID is the sum of three variables only for cases with valid values for all three vari-
ables. ALLVALID is assigned the system-missing value for a case if any variable in the as-
signment expression has a system- or user-missing value.

COMPUTE 159

• The VALUE function overrides user-missing value status. Thus, UM is the sum of V1, V2, and
V3 for each case, including cases with value 0 (the user-missing value) for any of the three
variables. Cases with the system-missing value for V1, V2, and V3 are system-missing.

• The SYSMIS function on the third COMPUTE returns value 1 if the variable is system-
missing. Thus, SM ranges from 0 to 3 for each case, depending on whether variables V1,
V2, and V3 are system-missing for that case.

• The MISSING function on the fourth COMPUTE returns the value 1 if the variable named
is system- or user-missing. Thus, M ranges from 0 to 3 for each case, depending on wheth-
er variables V1, V2, and V3 are user- or system-missing for that case.

• Alternatively, you could use the COUNT command to create variables SM and M.

* Test for listwise deletion of missing values.

DATA LIST /V1 TO V6 1-6.
BEGIN DATA
213 56
123457
123457
9234 6
END DATA.
MISSING VALUES V1 TO V6(6,9).

COMPUTE NOTVALID=NMISS(V1 TO V6).
FREQUENCIES VAR=NOTVALID.

• COMPUTE determines the number of missing values for each case. For each case without
missing values, the value of NOTVALID is 0. For each case with one missing value, the val-
ue of NOTVALID is 1, and so forth. Both system- and user-missing values are counted.

• FREQUENCIES generates a frequency table for NOTVALID. The table gives a count of how
many cases have all valid values, how many cases have one missing value, how many cases
have two missing values, and so forth, for variables V1 to V6. This table can be used to de-
termine how many cases would be dropped in an analysis that uses listwise deletion of miss-
ing values. See p. 280 and p. 458 for other ways to check listwise deletion.

Cross-Case Operations

COMPUTE LV1=LAG(V1).
COMPUTE LV2=LAG(V2,3).

• LV1 is the value of V1 for the previous case.

• LV2 is the value of V2 for three cases previous. The first three cases of LV2 receive the
system-missing value.

Logical Functions

COMPUTE WORKERS=RANGE(AGE,18,65).
COMPUTE QSAME=ANY(Q1,Q2).

• WORKERS is 1 for cases where AGE is from 18 through 65, 0 for all other valid values of
AGE, and system-missing for cases with a missing value for AGE.

• QSAME is 1 whenever Q1 equals Q2 and 0 whenever they are different.

160 COMPUTE

Other Functions

COMPUTE V1=UNIFORM(10).
COMPUTE V2=NORMAL(1.5).

• V1 is a pseudo-random number from a distribution with values ranging between 0 and the
specified value of 10.

• V2 is a pseudo-random number from a distribution with a mean of 0 and a standard devi-
ation of the specified value of 1.5.

• You can change the seed value of the pseudo-random-number generator with the SEED
specification on SET.

Date and Time Aggregation Functions

COMPUTE OCTDAY=DATE.YRDAY(1688,301).
COMPUTE QUART=DATE.QYR(QTR,YEAR).
COMPUTE WEEK=DATE.WKYR(WK,YEAR).

• OCTDAY is the 301st day of year 1688. With a DATE format, OCTDAY displays as 27-
OCT-1688.

• QUART reads values for quarter from variable QTR and values for year from variable
YEAR. If QTR is 3 and YEAR is 88, QUART with a QDATE format displays as 3 Q 88.

• WEEK takes the value for week from variable WK, and the value for year from variable
YEAR. If WK is 48 and YEAR is 57, WEEK with a DATE format displays as 26-NOV-57.

Date and Time Conversion Functions

COMPUTE NMINS=CTIME.MINUTES(TIME.HMS(HR,MIN,SEC)).
COMPUTE AGER=(YRMODA(1992,10,01)-
 YRMODA(YRBIRTH,MOBIRTH,DABIRTH))/365.25.

• The CTIME.MINUTES function converts a time interval to number of minutes. If HR equals
12, MIN equals 30, and SEC equals 30, the TIME.HMS function returns an interval of
45,030, which CTIME.MINUTES converts to minutes. NMINS equals 750.50.

• The YRMODA function converts the current date (in this example, October 1, 1992) and
birthdate to a number of days. Birthdate is subtracted from current date and the remainder
is divided by the number of days in a year to yield age in years.

Date and Time Extraction Functions

COMPUTE MONTHNUM=XDATE.MONTH(BIRTHDAY).
COMPUTE DAYNUM=XDATE.JDAY(BIRTHDAY).

• The XDATE.MONTH function reads a date and returns the month number expressed as an
integer from 1 to 12. If BIRTHDAY is formatted as DATETIME20 and contains the value 05-
DEC-1954 5:30:15, MONTHNUM equals 12.

• The XDATE.JDAY function returns the day of the year, expressed as an integer between 1
and 366. For the value BIRTHDAY used by the first COMPUTE, DAYNUM equals 339.

COMPUTE 161

Equivalence

STRING DEPT(A20).
COMPUTE DEPT=’Personnel Department’.
COMPUTE OLDVAR=NEWVAL.

• DEPT is a new string variable and must be specified on STRING before it can be specified
on COMPUTE. STRING assigns DEPT a width of 20 characters, and COMPUTE assigns the
value Personnel Department to DEPT for each case.

• OLDVAR must already exist; otherwise, it would have to be declared on STRING. The
values of OLDVAR are modified to equal the values of NEWVAL. NEWVAL must be an ex-
isting string variable. If the dictionary width of NEWVAL is longer than the dictionary
width of OLDVAR, the modified values of OLDVAR are truncated.

String Functions

STRING NEWSTR(A7) / DATE(A8) / #MO #DA #YR (A2).
COMPUTE NEWSTR=LAG(OLDSTR,2).

COMPUTE #MO=STRING(MONTH,F2.0).
COMPUTE #DA=STRING(DAY,F2.0).
COMPUTE #YR=STRING(YEAR,F2.0).
COMPUTE DATE=CONCAT(#MO,’/’,#DA,’/’,#YR).

COMPUTE LNAME=UPCASE(LNAME).

• STRING declares NEWSTR as a new string variable with a width of seven characters, DATE
with a width of eight characters, and scratch variables #MO, #DA, and #YR with a width of
two characters each.

• The first COMPUTE sets NEWSTR equal to the value of OLDSTR for two cases previous.
The first two cases receive the system-missing value for NEWSTR.

• The next three COMPUTE commands convert existing numeric variables MONTH, DAY,
and YEAR to the temporary string variables #MO, #DA, and #YR so that they can be used
with the CONCAT function. The next COMPUTE assigns the concatenated value of #MO,
#DA, and #YR, separated by slashes, to DATE. If #MO is 10, #DA is 16, and #YR is 49, DATE
is 10/16/49.

• The final COMPUTE converts lowercase letters for the existing string variable LNAME to
uppercase letters.

162

CORRELATIONS

CORRELATIONS [VARIABLES=] varlist [WITH varlist] [/varlist...]

 [/MISSING={PAIRWISE**} [{INCLUDE}]]
 {LISTWISE } {EXCLUDE}

 [/PRINT={TWOTAIL**} {SIG**}]
 {ONETAIL } {NOSIG}

[/MATRIX=OUT({* })]
 {file}

 [/STATISTICS=[DESCRIPTIVES] [XPROD] [ALL]]

**Default if the subcommand is omitted.

Example:
CORRELATIONS VARIABLES=FOOD RENT PUBTRANS TEACHER COOK ENGINEER

/MISSING=INCLUDE.

Overview

CORRELATIONS (alias PEARSON CORR) produces Pearson product-moment correlations
with significance levels and, optionally, univariate statistics, covariances, and cross-prod-
uct deviations. Other procedures that produce correlation matrices are PARTIAL CORR,
REGRESSION, DISCRIMINANT, and FACTOR.

Options

Types of Matrices. A simple variable list on the VARIABLES subcommand produces a square
matrix. You can also request a rectangular matrix of correlations between specific pairs of
variables or between variable lists using the keyword WITH on VARIABLES.

Significance Levels. By default, CORRELATIONS displays the number of cases and signifi-
cance levels for each coefficient. Significance levels are based on a two-tailed test. You can
request a one-tailed test, and you can display the significance level for each coefficient as
an annotation using the PRINT subcommand.

Additional Statistics. You can obtain the mean, standard deviation, and number of nonmissing
cases for each variable, and the cross-product deviations and covariance for each pair of
variables using the STATISTICS subcommand.

Matrix Output. You can write matrix materials to a data file using the MATRIX subcommand.
The matrix materials include the mean, standard deviation, number of cases used to com-
pute each coefficient, and Pearson correlation coefficient for each variable. The matrix data
file can be read by several other procedures.

CORRELATIONS 163

Basic Specification

• The basic specification is the VARIABLES subcommand, which specifies the variables to
be analyzed. The actual keyword VARIABLES can be omitted.

• By default, CORRELATIONS produces a matrix of correlation coefficients. The number of
cases and the significance level are displayed for each coefficient. The significance level
is based on a two-tailed test.

Subcommand Order

• The VARIABLES subcommand must be first.

• The remaining subcommands can be specified in any order.

Operations

• The correlation of a variable with itself is displayed as 1.0000.

• A correlation that cannot be computed is displayed as a period (.).
• CORRELATIONS does not execute if long or short string variables are specified on the

variable list.

Limitations

• Maximum 40 variable lists.

• Maximum 500 variables total per command.

• Maximum 250 syntax elements. Each individual occurrence of a variable name, keyword,
or special delimiter counts as 1 toward this total. Variables implied by the TO keyword do
not count toward this total.

Example

CORRELATIONS VARIABLES=FOOD RENT PUBTRANS TEACHER COOK ENGINEER
/VARIABLES=FOOD RENT WITH COOK TEACHER MANAGER ENGINEER
/MISSING=INCLUDE.

• The first VARIABLES subcommand requests a square matrix of correlation coefficients
among variables FOOD, RENT, PUBTRANS, TEACHER, COOK, and ENGINEER.

• The second VARIABLES subcommand requests a rectangular correlation matrix in which
FOOD and RENT are the row variables and COOK, TEACHER, MANAGER, and ENGINEER
are the column variables.

• MISSING requests that user-missing values be included in the computation of each coefficient.

164 CORRELATIONS

VARIABLES Subcommand

VARIABLES specifies the variable list. The actual keyword VARIABLES is optional.

• A simple variable list produces a square matrix of correlations of each variable with every
other variable.

• Variable lists joined by keyword WITH produce a rectangular correlation matrix. Variables
before WITH define the rows of the matrix and variables after WITH define the columns.

• Keyword ALL can be used on the variable list to refer to all user-defined variables.

• You can specify multiple VARIABLES subcommands on a single CORRELATIONS com-
mand. The slash between the subcommands is required; the keyword VARIABLES is not.

PRINT Subcommand

PRINT controls whether the significance level is based on a one- or two-tailed test and whether
the number of cases and the significance level for each correlation coefficient are displayed.

TWOTAIL Two-tailed test of significance. This test is appropriate when the direction of
the relationship cannot be determined in advance, as is often the case in
exploratory data analysis. This is the default.

ONETAIL One-tailed test of significance. This test is appropriate when the direction of
the relationship between a pair of variables can be specified in advance of
the analysis.

SIG Display the significance level. SIG is the default.

NOSIG Display the significance level in an annotation.

STATISTICS Subcommand

The correlation coefficients are automatically displayed in the Correlations table for an
analysis specified by a VARIABLES list. STATISTICS requests additional statistics.

DESCRIPTIVES Display mean, standard deviation, and number of nonmissing cases for each
variable on the Variables list in the Descriptive Statistics table. This table
precedes all Correlations tables. Variables specified on more than one
VARIABLES lists are displayed only once. Missing values are handled on a
variable-by-variable basis regardless of the missing-value option in effect
for the correlations.

XPROD Display cross-product deviations and covariance for each pair of variables
in the Correlations table(s).

ALL All additional statistics. This produces the same statistics as DESCRIPTIVES
and XPROD together.

CORRELATIONS 165

MISSING Subcommand

MISSING controls the treatment of missing values.
• The PAIRWISE and LISTWISE keywords are alternatives; however, each can be specified

with INCLUDE or EXCLUDE.

• The default is LISTWISE and EXCLUDE.

PAIRWISE Exclude missing values pairwise. Cases that have missing values for one or
both of a pair of variables for a specific correlation coefficient are excluded
from the computation of that coefficient. Since each coefficient is based on all
cases that have valid values for that particular pair of variables, this can result
in a set of coefficients based on a varying number of cases. The valid number
of cases is displayed in the Correlations table. This is the default.

LISTWISE Exclude missing values listwise. Cases that have missing values for any vari-
able named on any VARIABLES list are excluded from the computation of all
coefficients across lists. The valid number of cases is the same for all analy-
ses and is displayed in a single annotation.

INCLUDE Include user-missing values. User-missing values are included in the analysis.

EXCLUDE Exclude all missing values. Both user- and system-missing values are ex-
cluded from the analysis.

MATRIX Subcommand

MATRIX writes matrix materials to a data file. The matrix materials include the mean and stan-
dard deviation for each variable, the number of cases used to compute each coefficient, and
the Pearson correlation coefficients. Several procedures can read matrix materials produced
by CORRELATIONS, including PARTIAL CORR, REGRESSION, FACTOR, and CLUSTER (see
“SPSS Matrix Data Files” on p. 13).

• CORRELATIONS cannot write rectangular matrices (those specified with keyword WITH)
to a file.

• If you specify more than one variable list on CORRELATIONS, only the last list that does
not use keyword WITH is written to the matrix data file.

• Keyword OUT specifies the file to which the matrix is written. The filename must be spec-
ified in parentheses.

• Documents from the original file will not be included in the matrix file and will not be
present if the matrix file becomes the working data file.

OUT (filename) Write a matrix data file. Specify either a file or an asterisk (*), enclosed in
parentheses. If you specify a file, the file is stored on disk and can be
retrieved at any time. If you specify an asterisk, the matrix data file replaces
the working file but is not stored on disk unless you use SAVE or XSAVE.

166 CORRELATIONS

Format of the Matrix Data File

• The matrix data file has two special variables created by the program: ROWTYPE_ and
VARNAME_. Variable ROWTYPE_ is a short string variable with values MEAN, STDDEV, N,
and CORR (for Pearson correlation coefficient). The next variable, VARNAME_, is a short string
variable whose values are the names of the variables used to form the correlation matrix. When
ROWTYPE_ is CORR, VARNAME_ gives the variable associated with that row of the correlation
matrix.

• The remaining variables in the file are the variables used to form the correlation matrix.

Split Files

• When split-file processing is in effect, the first variables in the matrix file will be split
variables, followed by ROWTYPE_, VARNAME_, and the variables used to form the cor-
relation matrix.

• A full set of matrix materials is written for each subgroup defined by the split variables.

• A split variable cannot have the same name as any other variable written to the matrix
data file.

• If split-file processing is in effect when a matrix is written, the same split-file specifica-
tions must be in effect when that matrix is read by another procedure.

Missing Values

• With pairwise treatment of missing values (the default), a matrix of the number of cases
used to compute each coefficient is included with the matrix materials.

• With listwise treatment, a single number indicating the number of cases used to calculate
all coefficients is included.

Example

GET FILE=CITY /KEEP FOOD RENT PUBTRANS TEACHER COOK ENGINEER.
CORRELATIONS VARIABLES=FOOD TO ENGINEER
/MATRIX OUT(CORRMAT).

• CORRELATIONS reads data from the file CITY and writes one set of matrix materials to the
file CORRMAT. The working file is still CITY. Subsequent commands are executed on
CITY.

Example

GET FILE=CITY /KEEP FOOD RENT PUBTRANS TEACHER COOK ENGINEER.
CORRELATIONS VARIABLES=FOOD TO ENGINEER
/MATRIX OUT(*).
LIST.
DISPLAY DICTIONARY.

CORRELATIONS 167

• CORRELATIONS writes the same matrix as in the example above. However, the matrix
data file replaces the working file. The LIST and DISPLAY commands are executed on the
matrix file, not on the CITY file.

Example

CORRELATIONS VARIABLES=FOOD RENT COOK TEACHER MANAGER ENGINEER
/FOOD TO TEACHER /PUBTRANS WITH MECHANIC
/MATRIX OUT(*).

• Only the matrix for FOOD TO TEACHER is written to the matrix data file because it is the
last variable list that does not use keyword WITH.

168

COUNT

COUNT varname=varlist(value list) [/varname=...]

Keywords for numeric value lists:

LOWEST, LO, HIGHEST, HI, THRU, MISSING, SYSMIS

Example:
COUNT TARGET=V1 V2 V3 (2).

Overview

COUNT creates a numeric variable that, for each case, counts the occurrences of the same
value (or list of values) across a list of variables. The new variable is called the target vari-
able. The variables and values that are counted are the criterion variables and values. Cri-
terion variables can be either numeric or string.

Basic Specification

The basic specification is the target variable, an equals sign, the criterion variable(s), and
the criterion value(s) enclosed in parentheses.

Syntax Rules

• Use a slash to separate the specifications for each target variable.

• The criterion variables specified for a single target variable must be either all numeric or
all string.

• Each value on a list of criterion values must be separated by a comma or space. String
values must be enclosed in apostrophes.

• Keywords THRU, LOWEST (LO), HIGHEST (HI), SYSMIS, and MISSING can only be used
with numeric criterion variables.

• A variable can be specified on more than one criterion variable list.

• You can use keyword TO to specify consecutive criterion variables that have the same
criterion value or values.

• You can specify multiple variable lists for a single target variable to count different values
for different variables.

COUNT 169

Operations

• Target variables are always numeric and are initialized to 0 for each case. They are as-
signed a dictionary format of F8.2.

• If the target variable already exists, its previous values are replaced.

• COUNT ignores the missing-value status of user-missing values. It counts a value even if
that value has been previously declared as missing.

• The target variable is never system-missing. To define user-missing values for target vari-
ables, use the RECODE or MISSING VALUES command.

• SYSMIS counts system-missing values for numeric variables.

• MISSING counts both user- and system-missing values for numeric variables.

Example

COUNT TARGET=V1 V2 V3 (2).

• The value of TARGET for each case will be either 0, 1, 2, or 3, depending on the number
of times the value 2 occurs across the three variables for each case.

• TARGET is a numeric variable with an F8.2 format.

Example

COUNT QLOW=Q1 TO Q10 (LO THRU 0)
/QSYSMIS=Q1 TO Q10 (SYSMIS).

• Assuming that there are 10 variables between and including Q1 and Q10 in the working
data file, QLOW ranges from 0 to 10, depending on the number of times a case has a neg-
ative or 0 value across variables Q1 to Q10.

• QSYSMIS ranges from 0 to 10, depending on how many system-missing values are en-
countered for Q1 to Q10 for each case. User-missing values are not counted.

• Both QLOW and QSYSMIS are numeric variables and have F8.2 formats.

Example

COUNT SVAR=V1 V2 (’male ’) V3 V4 V5 (’female’).

• SVAR ranges from 0 to 5, depending on the number of times a case has a value of male
for V1 and V2 and a value of female for V3, V4, and V5.

• SVAR is a numeric variable with an F8.2 format.

170

CREATE

CREATE new series={CSUM (series) }
 {DIFF (series, order) }
 {FFT (series) }
 {IFFT (series) }
 {LAG (series, order [,order]) }
 {LEAD (series, order [,order]) }
 {MA (series, span [,minimum span]) }
 {PMA (series, span) }
 {RMED (series, span [,minimum span]) }
 {SDIFF (series, order [,periodicity])}
 {T4253H (series) }

[/new series=function (series {,span {,minimum span}})]
 {,order {,order }}
 {,periodicity }

Function keywords:

Example:
CREATE NEWVAR1 NEWVAR2 = CSUM(TICKETS RNDTRP).

Overview

CREATE produces new series as a function of existing series. You can also use CREATE to
replace the values of existing series. The new or revised series can be used in any procedure
and can be saved in an SPSS-format data file.

CREATE displays a list of the new series, the case numbers of the first and last nonmiss-
ing cases, the number of valid cases, and the functions used to create the variables.

Basic Specification

The basic specification is a new series name, an equals sign, a function, and the existing se-
ries along with any additional specifications needed.

CSUM Cumulative sum
DIFF Difference
FFT Fast Fourier transform
IFFT Inverse fast Fourier transform
LAG Lag
LEAD Lead
MA Centered moving averages
PMA Prior moving average
RMED Running medians
SDIFF Seasonal difference
T4253H Smoothing

CREATE 171

Syntax Rules

• The existing series together with any additional specifications (order, span, or periodicity)
must be enclosed in parentheses.

• The equals sign is required.

• Series names and additional specifications must be separated by commas or spaces.

• You can specify only one function per equation.

• You can create more than one new series per equation by specifying more than one new
series name on the left side of the equation and either multiple existing series names or
multiple orders on the right.

• The number of new series named on the left side of the equation must equal the number
of series created on the right. Note that the FFT function creates two new series for each
existing series, and IFFT creates one series from two existing series.

• You can specify more than one equation on a CREATE command. Equations are separated
by slashes.

• A newly created series can be specified in subsequent equations on the same CREATE command.

Operations

• Each new series created is added to the working data file.

• If the new series named already exist, their values are replaced.

• If the new series named do not already exist, they are created.

• Series are created in the order in which they are specified on the CREATE command.

• If multiple series are created by a single equation, the first new series named is assigned
the values of the first series created, the second series named is assigned the values of the
second series created, and so forth.

• CREATE automatically generates a variable label for each new series describing the func-
tion and series used to create it.

• The format of the new series is based on the function specified and the format of the ex-
isting series.

• CREATE honors the TSET MISSING setting that is currently in effect.
• CREATE does not honor the USE command.

• When an even-length span is specified for functions MA and RMED, the centering algo-
rithm uses an average of two spans of the specified length. The first span ranges from
span/2 cases before the current observation to the span length. The second span ranges
from (span/2)−1 cases before the current observation to the span length.

Limitations

• Maximum 1 function per equation.

• There is no limit on the number of series created by an equation.

• There is no limit on the number of equations.

172 CREATE

Example

CREATE NEWVAR1 = DIFF(OLDVAR,1).

• In this example, the series NEWVAR1 is created by taking the first-order difference of
OLDVAR.

CSUM Function

CSUM produces new series based on the cumulative sums of the existing series. Cumulative
sums are the inverse of first-order differencing.

• The only specification on CSUM is the name or names of the existing series in parentheses.
• Cases with missing values in the existing series are not used to compute values for the

new series. The values of these cases are system-missing in the new series.

Example
CREATE NEWVAR1 NEWVAR2 = CSUM(TICKETS RNDTRP).

• This example produces a new series called NEWVAR1, which is the cumulative sum of the
series TICKETS, and a new series called NEWVAR2, which is the cumulative sum of the
series RNDTRP.

DIFF Function

DIFF produces new series based on nonseasonal differences of existing series.

• The specification on DIFF is the name or names of the existing series and the degree of
differencing, in parentheses.

• The degree of differencing must be specified; there is no default.
• Since one observation is lost for each order of differencing, system-missing values will

appear at the beginning of the new series.

• You can specify only one degree of differencing per DIFF function.

• If either of the pair of values involved in a difference computation is missing, the result
is set to system-missing in the new series.

Example
CREATE ADIF2 = DIFF(VARA,2) /
 YDIF1 ZDIF1 = DIFF(VARY VARZ,1).

• The series ADIF2 is created by differencing VARA twice.

• The series YDIF1 is created by differencing VARY once.
• The series ZDIF1 is created by differencing VARZ once.

CREATE 173

FFT Function

FFT produces new series based on fast Fourier transformations of existing series (Brigham,
1974).

• The only specification on FFT is the name or names of the existing series in parentheses.

• FFT creates two series, the cosine and sine parts (also called real and imaginary parts), for
each existing series named. Thus, you must specify two new series names on the left side
of the equation for each existing series specified on the right side.

• The first new series named becomes the real series, and the second new series named be-
comes the imaginary series.

• The existing series cannot have imbedded missing values.

• The existing series must be even length. If an odd-length series is specified, FFT pads it
with a 0 to make it even. Alternatively, you can make the series even by adding or drop-
ping an observation.

• The new series will be only half as long as the existing series. The remaining cases are
assigned the system-missing value.

Example
CREATE A B = FFT(C).

• Two series, A (real) and B (imaginary), are created by applying a fast Fourier transforma-
tion to series C.

IFFT Function

IFFT produces new series based on the inverse Fourier transformation of existing series.

• The only specification on IFFT is the name or names of the existing series in parentheses.

• IFFT needs two existing series to compute each new series. Thus, you must specify two
existing series names on the right side of the equation for each new series specified on the
left.

• The first existing series specified is the real series and the second series is the imaginary.
• The existing series cannot have imbedded missing values.

• The new series will be twice as long as the existing series. Thus, the last half of each ex-
isting series must be system-missing to allow enough room to create the new series.

Example
CREATE C = IFFT(A B).

• This command creates one new series, C, from the series A (real) and B (imaginary).

174 CREATE

LAG Function

LAG creates new series by copying the values of the existing series and moving them forward
the specified number of observations. This number is called the lag order. Table 1 shows a
first-order lag for a hypothetical data set.

• The specification on LAG is the name or names of the existing series and one or two lag
orders, in parentheses.

• At least one lag order must be specified; there is no default.

• Two lag orders indicate a range. For example, 2,6 indicates lag orders two through six. A
new series is created for each lag order in the range.

• The number of new series specified must equal the number of existing series specified
times the number of lag orders in the range.

• The first n cases at the beginning of the new series, where n is the lag order, are assigned
the system-missing value.

• Missing values in the existing series are lagged and are assigned the system-missing value
in the new series.

• A first-order lagged series can also be created using COMPUTE. COMPUTE does not cause
a data pass (see COMPUTE).

Example
CREATE LAGVAR2 TO LAGVAR5 = LAG(VARA,2,5).

• Four new variables are created based on lags on VARA. LAGVAR2 is VARA lagged two
steps, LAGVAR3 is VARA lagged three steps, LAGVAR4 is VARA lagged four steps, and
LAGVAR5 is VARA lagged five steps.

LEAD Function

LEAD creates new series by copying the values of the existing series and moving them back
the specified number of observations. This number is called the lead order. Table 1 shows a
first-order lead for a hypothetical data set.

• The specification on LEAD is the name or names of the existing series and one or two lead
orders, in parentheses.

• At least one lead order must be specified; there is no default.

Table 1 First-order lag and lead of series X

X Lag Lead

198 . 220

220 198 305
305 220 470
470 305 .

CREATE 175

• Two lead orders indicate a range. For example, 1,5 indicates lead orders one through five.
A new series is created for each lead order in the range.

• The number of new series must equal the number of existing series specified times the
number of lead orders in the range.

• The last n cases at the end of the new series, where n equals the lead order, are assigned
the system-missing value.

• Missing values in the existing series are moved back and are assigned the system-missing
value in the new series.

Example
CREATE LEAD1 TO LEAD4 = LEAD(VARA,1,4).

• Four new series are created based on leads of VARA. LEAD1 is VARA led one step, LEAD2
is VARA led two steps, LEAD3 is VARA led three steps, and LEAD4 is VARA led four steps.

MA Function

MA produces new series based on the centered moving averages of existing series.

• The specification on MA is the name or names of the existing series and the span to be
used in averaging, in parentheses.

• A span must be specified; there is no default.

• If the specified span is odd, the MA is naturally associated with the middle term. If the
specified span is even, the MA is centered by averaging each pair of uncentered means
(Velleman & Hoaglin, 1981).

• After the initial span, a second span can be specified to indicate the minimum number of
values to use in averaging when the number specified for the initial span is unavailable.
This makes it possible to produce nonmissing values at or near the ends of the new series.

• The second span must be greater than or equal to 1 and less than or equal to the first span.
• The second span should be even (or 1) if the first span is even; it should be odd if the first

span is odd. Otherwise, the next higher span value will be used.

• If no second span is specified, the minimum span is simply the value of the first span.

• If the number of values specified for the span or the minimum span is not available, the
case in the new series is set to system-missing. Thus, unless a minimum span of 1 is spec-
ified, the endpoints of the new series will contain system-missing values.

• When MA encounters an imbedded missing value in the existing series, it creates two sub-
sets, one containing cases before the missing value and one containing cases after the
missing value. Each subset is treated as a separate series for computational purposes.

• The endpoints of these subset series will have missing values according to the rules de-
scribed above for the endpoints of the entire series. Thus, if the minimum span is 1, the
endpoints of the subsets will be nonmissing; the only cases that will be missing in the new
series are cases that were missing in the original series.

176 CREATE

Example
CREATE TICKMA = MA(TICKETS,4,2).

• This example creates the series TICKMA based on centered moving average values of the
series TICKETS.

• A span of 4 is used for computing averages. At the endpoints, where four values are not
available, the average is based on the specified minimum of two values.

PMA Function

PMA creates new series based on the prior moving averages of existing series. The prior mov-
ing average for each case in the original series is computed by averaging the values of a span
of cases preceding it.
• The specification on PMA is the name or names of the existing series and the span to be

used, in parentheses.

• Only one span can be specified and it is required. There is no default span.

• If the number of values specified for the span is not available, the case is set to system-
missing. Thus, the number of cases with system-missing values at the beginning of the
new series equals the number specified for the span.

• When PMA encounters an imbedded missing value in the existing series, it creates two
subsets, one containing cases before the missing value and one containing cases after the
missing value. Each subset is treated as a separate series for computational purposes. The
first n cases in the second subset will be system-missing, where n is the span.

Example
CREATE PRIORA = PMA(VARA,3).

• This command creates series PRIORA by computing prior moving averages for series
VARA. Since the span is 3, the first three cases in series PRIORA are system-missing. The
fourth case equals the average of cases 1, 2, and 3 of VARA, the fifth case equals the av-
erage of cases 2, 3, and 4 of VARA, and so on.

RMED Function

RMED produces new series based on the centered running medians of existing series.
• The specification on RMED is the name or names of the existing series and the span to be

used in finding the median, in parentheses.

• A span must be specified; there is no default.

• If the specified span is odd, RMED is naturally the middle term. If the specified span is
even, the RMED is centered by averaging each pair of uncentered medians (Velleman &
Hoaglin, 1981).

• After the initial span, a second span can be specified to indicate the minimum number of
values to use in finding the median when the number specified for the initial span is un-
available. This makes it possible to produce nonmissing values at or near the ends of the
new series.

CREATE 177

• The second span must be greater than or equal to 1 and less than or equal to the first span.

• The second span should be even (or 1) if the first span is even; it should be odd if the first
span is odd. Otherwise, the next higher span value will be used.

• If no second span is specified, the minimum span is simply the value of the first span.

• If the number of values specified for the span or the minimum span is not available, the
case in the new series is set to system-missing. Thus, unless a minimum span of 1 is spec-
ified, the endpoints of the new series will contain system-missing values.

• When RMED encounters an imbedded missing value in the existing series, it creates two
subsets, one containing cases before the missing value and one containing cases after the
missing value. Each subset is treated as a separate series for computational purposes.

• The endpoints of these subset series will have missing values according to the rules de-
scribed above for the endpoints of the entire series. Thus, if the minimum span is 1, the
endpoints of the subsets will be nonmissing; the only cases that will be missing in the new
series are cases that were missing in the original series.

Example
CREATE TICKRMED = RMED(TICKETS,4,2).

• This example creates the series TICKRMED using centered running median values of the
series TICKETS.

• A span of 4 is used for computing medians. At the endpoints, where four values are not
available, the median is based on the specified minimum of two values.

SDIFF Function

SDIFF produces new series based on seasonal differences of existing series.

• The specification on SDIFF is the name or names of the existing series, the degree of dif-
ferencing, and, optionally, the periodicity, all in parentheses.

• The degree of differencing must be specified; there is no default.

• Since the number of seasons used in the calculations decreases by 1 for each order of dif-
ferencing, system-missing values will appear at the beginning of the new series.

• You can specify only one degree of differencing per SDIFF function.

• If no periodicity is specified, the periodicity established on TSET PERIOD is in effect. If
TSET PERIOD has not been specified, the periodicity established on the DATE command is
used. If periodicity was not established anywhere, the SDIFF function cannot be executed.

• If either of the pair of values involved in a seasonal difference computation is missing, the
result is set to system-missing in the new series.

Example
CREATE SDVAR = SDIFF(VARA,1,12).

• The series SDVAR is created by applying one seasonal difference with a periodicity of 12
to the series VARA.

178 CREATE

T4253H Function

T4253H produces new series by applying a compound data smoother to the original series.
The smoother starts with a running median of 4, which is centered by a running median of 2.
It then resmooths these values by applying a running median of 5, a running median of 3, and
hanning (running weighted averages). Residuals are computed by subtracting the smoothed
series from the original series. This whole process is then repeated on the computed residu-
als. Finally, the smoothed residuals are added to the smoothed values obtained the first time
through the process (Velleman & Hoaglin, 1981).

• The only specification on T4253H is the name or names of the existing series in parentheses.

• The existing series cannot contain imbedded missing values.

• Endpoints are smoothed through extrapolation and are not system-missing.

Example
CREATE SMOOTHA = T4253H(VARA).

• The series SMOOTHA is a smoothed version of the series VARA.

References

Box, G. E. P., and G. M. Jenkins. 1976. Time series analysis: Forecasting and control. San Fran-
cisco: Holden-Day.

Brigham, E. O. 1974. The fast Fourier transform. Englewood Cliffs, N.J.: Prentice-Hall.
Cryer, J. D. 1986. Time series analysis. Boston: Duxbury Press.
Makridakis, S., S. C. Wheelwright, and V. E. McGee. 1983. Forecasting: Methods and applica-

tions. New York: John Wiley and Sons.
Monro, D. M. 1975. Algorithm AS 83: Complex discrete fast Fourier transform. Applied Statis-

tics, 24: 153–160.
Monro, D. M., and J. L. Branch. 1977. Algorithm AS 117: The Chirp discrete Fourier transform

of general length. Applied Statistics, 26: 351–361.
Velleman, P. F., and D. C. Hoaglin. 1981. Applications, basics, and computing of exploratory

data analysis. Boston: Duxbury Press.

179

CROSSTABS

General mode:

CROSSTABS [TABLES=]varlist BY varlist [BY...] [/varlist...]

 [/MISSING={TABLE**}]
 {INCLUDE}

 [/WRITE[={NONE**}]]
 {CELLS }

Integer mode:

CROSSTABS VARIABLES=varlist(min,max) [varlist...]

 /TABLES=varlist BY varlist [BY...] [/varlist...]

 [/MISSING={TABLE**}]
 {INCLUDE}
 {REPORT }

 [/WRITE[={NONE**}]]
 {CELLS }
 {ALL }
Both modes:

[/FORMAT= {AVALUE**} {TABLES**}]
 {DVALUE } {NOTABLES}

 [/CELLS=[{COUNT**}] [ROW] [EXPECTED] [SRESID]]
 {NONE } [COLUMN] [RESID] [ASRESID]
 [TOTAL] [ALL]

 [/STATISTICS=[CHISQ] [LAMBDA] [BTAU] [GAMMA] [ETA]]
 [PHI] [UC] [CTAU] [D] [CORR]
 [CC] [RISK] [KAPPA] [MCNEMAR]
 [ALL] [NONE]

 [/METHOD={MC [CIN({99.0 })] [SAMPLES({10000})]}]††
 {value} {value}
 {EXACT [TIMER({5 })] }
 {value}

 [/BARCHART]

**Default if the subcommand is omitted.

†† The METHOD subcommand is available only if the Exact Tests Option is installed.

Example:
CROSSTABS TABLES=FEAR BY SEX
/CELLS=ROW COLUMN EXPECTED RESIDUALS
/STATISTICS=CHISQ.

180 CROSSTABS

Overview

CROSSTABS produces contingency tables showing the joint distribution of two or more vari-
ables that have a limited number of distinct values. The frequency distribution of one vari-
able is subdivided according to the values of one or more variables. The unique combination
of values for two or more variables defines a cell.

CROSSTABS can operate in two different modes: general and integer. Integer mode
builds some tables more efficiently but requires more specifications than general mode.
Some subcommand specifications and statistics are available only in integer mode.

Options

Methods for Building Tables. To build tables in general mode, use the TABLES subcommand.
Integer mode requires the TABLES and VARIABLES subcommands and minimum and maxi-
mum values for the variables.

Cell Contents. By default, CROSSTABS displays only the number of cases in each cell. You
can request row, column, and total percentages, and also expected values and residuals using
the CELLS subcommand.

Statistics. In addition to the tables, you can obtain measures of association and tests of
hypotheses for each subtable using the STATISTICS subcommand.

Formatting Options. With the FORMAT subcommand, you can control the display order for
categories in rows and columns of subtables and suppress Crosstabulation tables.

Writing and Reproducing Tables. You can write cell frequencies to a file and reproduce the
original tables with the WRITE subcommand.

Basic Specification

In general mode, the basic specification is TABLES with a table list. The actual keyword
TABLES can be omitted. In integer mode, the minimum specification is the VARIABLES
subcommand, specifying the variables to be used and their value ranges, and the TABLES
subcommand with a table list.

• The minimum table list specifies a list of row variables, the keyword BY, and a list of
column variables.

• In integer mode, all variables must be numeric with integer values. In general mode,
variables can be numeric (integer or noninteger) or string.

• The default table shows cell counts.

Subcommand Order

• In general mode, the table list must be first if keyword TABLES is omitted. If keyword
TABLES is explicitly used, subcommands can be specified in any order.

• In integer mode, VARIABLES must precede TABLES. Keyword TABLES must be explicitly
specified.

CROSSTABS 181

Operations

• Integer mode builds tables more quickly but requires more workspace if a table has many
empty cells.

• If a long string variable is used in general mode, only the short string portion (first eight
characters) is tabulated.

• Statistics are calculated separately for each two-way table or two-way subtable. Missing
values are reported for the table as a whole.

• In general mode, keyword TO on the TABLES subcommand refers to the order of variables
in the working file. ALL refers to all variables in the working file. In integer mode, TO and
ALL refer to the position and subset of variables specified on the VARIABLES subcommand.

Limitations

The following limitations apply to CROSSTABS in general mode:

• Maximum 200 variables named or implied on the TABLES subcommand

• Maximum 1000 nonempty rows or columns for each table

• Maximum 20 table lists per CROSSTABS command

• Maximum 10 dimensions (9 BY keywords) per table
• Maximum 400 value labels displayed on any single table

The following limitations apply to CROSSTABS in integer mode:

• Maximum 100 variables named or implied on the VARIABLES subcommand

• Maximum 100 variables named or implied on the TABLES subcommand

• Maximum 1000 nonempty rows or columns for each table

• Maximum 20 table lists per CROSSTABS command
• Maximum 8 dimensions (7 BY keywords) per table

• Maximum 20 rows or columns of missing values when REPORT is specified on MISSING

• Minimum value that can be specified is –99,999

• Maximum value that can be specified is 999,999

Example

CROSSTABS TABLES=FEAR BY SEX
/CELLS=ROW COLUMN EXPECTED RESIDUALS
/STATISTICS=CHISQ.

• CROSSTABS generates a Case Processing Summary table, a Crosstabulation table and a
Chi-Square Tests table.

• Variable FEAR defines the rows and variable SEX defines the columns of the Crosstabu-
lation table. CELLS requests row and column percentages, expected cell frequencies, and
residuals.

• STATISTICS requests the chi-square statistics displayed in the Chi-Square table.

182 CROSSTABS

Example

CROSSTABS TABLES=JOBCAT BY EDCAT BY SEX BY INCOME3.

• This table list produces a subtable of JOBCAT by EDCAT for each combination of values
of SEX and INCOME3.

VARIABLES Subcommand

The VARIABLES subcommand is required for integer mode. VARIABLES specifies a list of
variables to be used in the crosstabulations and the lowest and highest values for each vari-
able. Values are specified in parentheses and must be integers. Noninteger values are truncat-
ed.

• Variables can be specified in any order. However, the order in which they are named on
VARIABLES determines their implied order on TABLES (see the TABLES subcommand
below).

• A range must be specified for each variable. If several variables can have the same range,
it can be specified once after the last variable to which it applies.

• CROSSTABS uses the specified ranges to allocate tables. One cell is allocated for each
possible combination of values of the row and column variables before the data are read.
Thus, if the specified ranges are larger than the actual ranges, workspace will be wasted.

• Cases with values outside the specified range are considered missing and are not used in
the computation of the table. This allows you to select a subset of values within
CROSSTABS.

• If the table is sparse because the variables do not have values throughout the specified
range, consider using general mode or recoding the variables.

Example
CROSSTABS VARIABLES=FEAR SEX RACE (1,2) MOBILE16 (1,3)

/TABLES=FEAR BY SEX MOBILE16 BY RACE.

• VARIABLES defines values 1 and 2 for FEAR, SEX, and RACE, and values 1, 2, and 3 for
MOBILE16.

TABLES Subcommand

TABLES specifies the table lists and is required in both integer mode and general mode. The
following rules apply to both modes:

• You can specify multiple TABLES subcommands on a single CROSSTABS command. The
slash between the subcommands is required; the keyword TABLES is required only in
integer mode.

• Variables named before the first BY on a table list are row variables, and variables named
after the first BY on a table list are column variables.

CROSSTABS 183

• When the table list specifies two dimensions (one BY keyword), the first variable before
BY is crosstabulated with each variable after BY, then the second variable before BY with
each variable after BY, and so on.

• Each subsequent use of the keyword BY on a table list adds a new dimension to the tables
requested. Variables named after the second (or subsequent) BY are control variables.

• When the table list specifies more than two dimensions, a two-way subtable is produced
for each combination of values of control variables. The value of the last specified control
variable changes the most slowly in determining the order in which tables are displayed.

• You can name more than one variable in each dimension.

General Mode

• The actual keyword TABLES can be omitted in general mode.
• In general mode, both numeric and string variables can be specified. Long strings are

truncated to short strings for defining categories.

• Keywords ALL and TO can be specified in any dimension. In general mode, TO refers to
the order of variables in the working data file and ALL refers to all variables defined in the
working data file.

Example
CROSSTABS TABLES=FEAR BY SEX BY RACE.

• This example crosstabulates FEAR by SEX controlling for RACE. In each subtable, FEAR
is the row variable and SEX is the column variable.

• A subtable is produced for each value of the control variable RACE.

Example
CROSSTABS TABLES=CONFINAN TO CONARMY BY SEX TO REGION.

• This command produces crosstabulations of all variables in the working data file between
and including CONFINAN and CONARMY by all variables between and including SEX and
REGION.

Integer Mode

• In integer mode, variables specified on TABLES must first be named on VARIABLES.

• Keywords TO and ALL can be specified in any dimension. In integer mode, TO and ALL
refer to the position and subset of variables specified on the VARIABLES subcommand, not
to the variables in the working data file.

Example
CROSSTABS VARIABLES=FEAR (1,2) MOBILE16 (1,3)

/TABLES=FEAR BY MOBILE16.

• VARIABLES names two variables, FEAR and MOBILE16. Values 1 and 2 for FEAR are used
in the tables, and values 1, 2, and 3 are used for variable MOBILE16.

184 CROSSTABS

• TABLES specifies a Crosstabulation table with two rows (values 1 and 2 for FEAR) and
three columns (values 1, 2, and 3 for MOBILE16). FEAR and MOBILE16 can be named on
TABLES because they were named on the previous VARIABLES subcommand.

Example
CROSSTABS VARIABLES=FEAR SEX RACE DEGREE (1,2)
 /TABLES=FEAR BY SEX BY RACE BY DEGREE.

• This command produces four subtables. The first subtable crosstabulates FEAR by SEX,
controlling for the first value of RACE and the first value of DEGREE; the second subtable
controls for the second value of RACE and the first value of DEGREE; the third subtable
controls for the first value of RACE and the second value of DEGREE; and the fourth sub-
table controls for the second value of RACE and the second value of DEGREE.

CELLS Subcommand

By default, CROSSTABS displays only the number of cases in each cell of the Crosstabula-
tion table. Use CELLS to display row, column or total percentages, expected counts, or resid-
uals. These are calculated separately for each Crosstabulation table or subtable.

• CELLS specified without keywords displays cell counts plus row, column, and total
percentages for each cell.

• If CELLS is specified with keywords, CROSSTABS displays only the requested cell
information.

• Scientific notation is used for cell contents when necessary.

COUNT Observed cell counts. This is the default if CELLS is omitted.

ROW Row percentages. The number of cases in each cell in a row is expressed as
a percentage of all cases in that row.

COLUMN Column percentages. The number of cases in each cell in a column is ex-
pressed as a percentage of all cases in that column.

TOTAL Two-way table total percentages. The number of cases in each cell of a sub-
table is expressed as a percentage of all cases in that subtable.

EXPECTED Expected counts. Expected counts are the number of cases expected in each
cell if the two variables in the subtable are statistically independent.

RESID Residuals. Residuals are the difference between the observed and expected
cell counts.

SRESID Standardized residuals (Haberman, 1978).

ASRESID Adjusted standardized residuals (Haberman, 1978).

ALL All cell information. This includes cell counts; row, column and total per-
centages; expected counts; residuals; standardized residuals; and adjusted
standardized residuals.

CROSSTABS 185

NONE No cell information. Use NONE when you want to write tables to a procedure
output file without displaying them (see the WRITE subcommand on p. 188).
This is the same as specifying NOTABLES on FORMAT.

STATISTICS Subcommand

STATISTICS requests measures of association and related statistics. By default, CROSSTABS
does not display any additional statistics.

• STATISTICS without keywords displays the chi-square test.

• If STATISTICS is specified with keywords, CROSSTABS calculates only the requested
statistics.

• In integer mode, values that are not included in the specified range are not used in the
calculation of the statistics, even if these values exist in the data.

• If user-missing values are included with MISSING, cases with user-missing values are
included in the calculation of statistics as well as in the tables.

CHISQ Display the Chi-Square Test table. Chi-square statistics include Pearson chi-
square, likelihood-ratio chi-square, and Mantel-Haenszel chi-square (linear-
by-linear association). Mantel-Haenszel is valid only if both variables are nu-
meric. Fisher’s exact test and Yates’ corrected chi-square are computed for all
2 × 2 tables. This is the default if STATISTICS is specified with no keywords.

PHI Display phi and Cramér’s V in the Symmetric Measures table.

CC Display contingency coefficient in the Symmetric Measures table.

LAMBDA Display lambda (symmetric and asymmetric) and Goodman and Kruskal’s
tau in the Directional Measures table.

UC Display uncertainty coefficient (symmetric and asymmetric) in the Direc-
tional Measures table.

BTAU Display Kendall’s tau-b in the Symmetric Measures table.

CTAU Display Kendall’s tau-c in the Symmetric Measures table.

GAMMA Display gamma in the Symmetric Measures table or Zero-Order and Partial
Gammas table. The Zero-Order and Partial Gammas table is produced only
for tables with more than two variable dimensions in integer mode.

D Display Somers’ d (symmetric and asymmetric) in the Directional Measures
table.

ETA Display eta in the Directional Measures table. Available for numeric data
only.

CORR Display Pearson’s r and Spearman’s correlation coefficient in the Symmet-
ric Measures table. This is available for numeric data only.

KAPPA Display kappa coefficient (Kraemer, 1982) in the Symmetric Measures table.
Kappa can be computed only for square tables in which the row and column

186 CROSSTABS

values are identical. If there is a missing row or column, use integer mode to
specify the square table, since a missing column or row in general mode
would keep the table from being square.

RISK Display relative risk (Bishop et al., 1975) in the Risk Estimate table. Relative
risk can be calculated only for tables.

MCNEMAR Display a Crosstabulation table for each pair of related dichotomous vari-
ables and a Test Statistics table for all pairs showing the number of valid
cases, chi-square, and probability for each pair. Useful for detecting changes
in responses due to experimental intervention in “before-and-after” designs.

ALL All statistics available.

NONE No summary statistics. This is the default if STATISTICS is omitted.

METHOD Subcommand

METHOD displays additional results for each statistic requested. If no METHOD subcommand
is specified, the standard asymptotic results are displayed. If fractional weights have been
specified, results for all methods will be calculated on the weight rounded to the nearest inte-
ger.

MC Displays an unbiased point estimate and confidence interval based on the
Monte Carlo sampling method, for all statistics. Asymptotic results are also
displayed. When exact results can be calculated, they will be provided instead
of the Monte Carlo results.

CIN(n) Controls the confidence level for the Monte Carlo estimate. CIN is available
only when /METHOD=MC is specified. CIN has a default value of 99.0. You
can specify a confidence interval between 0.01 and 99.9, inclusive.

SAMPLES Specifies the number of tables sampled from the reference set when calcu-
lating the Monte Carlo estimate of the exact p value. Larger sample sizes
lead to narrower confidence limits, but also take longer to calculate. You can
specify any integer between 1 and 1,000,000,000 as the sample size. SAM-
PLES has a default value of 10,000.

EXACT Computes the exact significance level for all statistics, in addition to the as-
ymptotic results. If both the EXACT and MC keywords are specified, only ex-
act results are provided. Calculating the exact p value can be memory-inten-
sive. If you have specified /METHOD=EXACT and find that you have insuf-
ficient memory to calculate results, you should first close any other
applications that are currently running in order to make more memory avail-
able. You can also enlarge the size of your swap file (see your Windows
manual for more information). If you still cannot obtain exact results, specify
/METHOD=MC to obtain the Monte Carlo estimate of the exact p value. An
optional TIMER keyword is available if you choose /METHOD=EXACT.

TIMER(n) Specifies the maximum number of minutes allowed to run the exact analysis
for each statistic. If the time limit is reached, the test is terminated, no exact

2 2×

CROSSTABS 187

results are provided, and the program begins to calculate the next test in the
analysis. TIMER is available only when /METHOD=EXACT is specified. You
can specify any integer value for TIMER. Specifying a value of 0 for TIMER
turns the timer off completely. TIMER has a default value of 5 minutes. If a
test exceeds a time limit of 30 minutes, it is recommended that you use the
Monte Carlo, rather than the exact, method.

Example
CROSSTABS TABLES=FEAR BY SEX
/CELLS=ROW COLUMN EXPECTED RESIDUALS
/STATISTICS=CHISQ
 /METHOD=MC SAMPLES(10000) CIN(95).

• This example requests chi-square statistics.

• An unbiased point estimate and confidence interval based on the Monte Carlo sampling
method are displayed with the asymptotic results.

MISSING Subcommand

By default, CROSSTABS deletes cases with missing values on a table-by-table basis. Cases
with missing values for any variable specified for a table are not used in the table or in the
calculation of statistics. Use MISSING to specify alternative missing-value treatments.
• The only specification is a single keyword.

• The number of missing cases is always displayed in the Case Processing Summary table.

• If the missing values are not included in the range specified on VARIABLES, they are ex-
cluded from the table regardless of the keyword you specify on MISSING.

TABLE Delete cases with missing values on a table-by-table basis. When multiple table
lists are specified, missing values are handled separately for each list. This is the
default.

INCLUDE Include user-missing values. Available in integer mode only.

REPORT Report missing values in the tables. This option includes missing values in tables
but not in the calculation of percentages or statistics. The missing status is indicated
on the categorical label. REPORT is available only in integer mode.

FORMAT Subcommand

By default, CROSSTABS displays tables and subtables. The values for the row and column
variables are displayed in order from lowest to highest. Use FORMAT to modify the default
table display.

AVALUE Display row and column variables from lowest to highest value. This is the
default.

DVALUE Display row and column variables from highest to lowest.

TABLES Display tables. This is the default.

188 CROSSTABS

NOTABLES Suppress Crosstabulation tables. NOTABLES is useful when you want to
write tables to a file without displaying them or when you want only the
Statistics table. This is the same as specifying NONE on CELLS.

BARCHART Subcommand

BARCHART produces a clustered bar chart where bars represent categories defined by the
first variable in a crosstabulation while clusters represent categories defined by the second
variable in a crosstabulation. Any controlling varibles in a crosstabulation are collapsed
over before the clustered bar chart is created.

• BARCHART takes no further specification.

• If integer mode is in effect and MISSING=REPORT, BARCHART displays valid and user
missing values. Otherwise only valid values are used.

WRITE Subcommand

Use the WRITE subcommand to write cell frequencies to a file for subsequent use by the cur-
rent program or another program. CROSSTABS can also use these cell frequencies as input
to reproduce tables and compute statistics. When WRITE is specified, an Output File Sum-
mary table is displayed before all other tables.

• The only specification is a single keyword.

• The name of the file must be specified on the PROCEDURE OUTPUT command preceding
CROSSTABS.

• If both CELLS and ALL are specified, CELLS is in effect and only the contents of nonempty
cells are written to the file.

• If you include missing values with INCLUDE or REPORT on MISSING, no values are con-
sidered missing and all nonempty cells, including those with missing values, are written,
even if CELLS is specified.

• If you exclude missing values on a table-by-table basis (the default), no records are writ-
ten for combinations of values that include a missing value.

• If multiple tables are specified, the tables are written in the same order as they are dis-
played.

NONE Do not write cell counts to a file. This is the default.

CELLS Write cell counts for nonempty and nonmissing cells to a file. Combinations
of values that include a missing value are not written to the file.

ALL Write cell counts for all cells to a file. A record for each combination of val-
ues defined by VARIABLES and TABLES is written to the file. ALL is available
only in integer mode.

The file contains one record for each cell. Each record contains the following:

Columns Contents

CROSSTABS 189

1–4 Split-file group number, numbered consecutively from 1. Note that this is not
the value of the variable or variables used to define the splits.

5–8 Table number. Tables are defined by the TABLES subcommand.

9–16 Cell frequency. The number of times this combination of variable values oc-
curred in the data, or, if case weights are used, the sum of case weights for
cases having this combination of values.

17–24 The value of the row variable (the one named before the first BY).

25–32 The value of the column variable (the one named after the first BY).

33–40 The value of the first control variable (the one named after the second BY).

41–48 The value of the second control variable (the one named after the third BY).

49–56 The value of the third control variable (the one named after the fourth BY).

57–64 The value of the fourth control variable (the one named after the fifth BY).

65–72 The value of the fifth control variable (the one named after the sixth BY).

73–80 The value of the sixth control variable (the one named after the seventh BY).

• The split-file group number, table number, and frequency are written as integers.

• In integer mode, the values of variables are also written as integers. In general mode, the
values are written according to the print format specified for each variable. Alphanumeric
values are written at the left end of any field in which they occur.

• Within each table, records are written from one column of the table at a time, and the val-
ue of the last control variable changes the most slowly.

Example
PROCEDURE OUTPUT OUTFILE=CELLDATA.
CROSSTABS VARIABLES=FEAR SEX (1,2)
/TABLES=FEAR BY SEX
/WRITE=ALL.

• CROSSTABS writes a record for each cell in the table FEAR by SEX to the file CELLDATA.
Figure 1 shows the contents of the CELLDATA file.

Example
PROCEDURE OUTPUT OUTFILE=XTABDATA.
CROSSTABS TABLES=V1 TO V3 BY V4 BY V10 TO V15

/WRITE=CELLS.

• CROSSTABS writes a set of records for each table to file XTABDATA.

Figure 1 Cell records
 1 1 55 1 1
 1 1 172 2 1
 1 1 180 1 2
 1 1 89 2 2

190 CROSSTABS

• Records for the table V1 by V4 by V10 are written first, followed by records for V1 by V4
by V11, and so on. The records for V3 by V4 by V15 are written last.

Reading a CROSSTABS Procedure Output File

You can use the file created by WRITE in a subsequent session to reproduce a table and com-
pute statistics for it. Each record in the file contains all the information used to build the orig-
inal table. The cell frequency information can be used as a weight variable on the WEIGHT
command to replicate the original cases.

Example
DATA LIST FILE=CELLDATA
/WGHT 9-16 FEAR 17-24 SEX 25-32.
VARIABLE LABELS FEAR ’AFRAID TO WALK AT NIGHT IN NEIGHBORHOODS’.
VALUE LABELS FEAR 1 ’YES’ 2 ’NO’/ SEX 1 ’MALE’ 2 ’FEMALE’.
WEIGHT BY WGHT.
CROSSTABS TABLES=FEAR BY SEX
/STATISTICS=ALL.

• DATA LIST reads the cell frequencies and row and column values from the CELLDATA file
shown in Figure 1. The cell frequency is read as a weighting factor (variable WGHT). The
values for the rows are read as FEAR, and the values for the columns are read as SEX, the
two original variables.

• The WEIGHT command recreates the sample size by weighting each of the four cases
(cells) by the cell frequency.

If you do not have the original data or the CROSSTABS procedure output file, you can repro-
duce a crosstabulation and compute statistics simply by entering the values from the table:

DATA LIST /FEAR 1 SEX 3 WGHT 5-7.
VARIABLE LABELS FEAR ’AFRAID TO WALK AT NIGHT IN NEIGHBORHOOD’.
VALUE LABELS FEAR 1 ’YES’ 2 ’NO’/ SEX 1 ’MALE’ 2 ’FEMALE’.
WEIGHT BY WGHT.
BEGIN DATA
1 1 55
2 1 172
1 2 180
2 2 89
END DATA.
CROSSTABS TABLES=FEAR BY SEX
/STATISTICS=ALL.

References

Bishop, Y. M. M., S. E. Feinberg, and P. W. Holland. 1975. Discrete multivariate analysis: Theory
and practice. Cambridge, Mass.: MIT Press.

Haberman, S. J. 1978. Analysis of qualitative data. Vol. 1. London: Academic Press.
Kraemer, H. C. 1982. Kappa coefficient. In: Encyclopedia of Statistical Sciences, S. Katz and N.

L. Johnson, eds. New York: John Wiley and Sons.

191

CURVEFIT

CURVEFIT [VARIABLES=] varname [WITH varname]

 [/MODEL= [LINEAR**] [LOGARITHMIC] [INVERSE]

 [QUADRATIC] [CUBIC] [COMPOUND]

 [POWER] [S] [GROWTH] [EXPONENTIAL]

 [LGSTIC] [ALL]]

 [/CIN={95** }]
 {value}

 [/UPPERBOUND={NO**}]
 {n }

 [/{CONSTANT† }
 {NOCONSTANT}

 [/PLOT={FIT** }]
 {NONE }

 [/ID = varname]

 [/PRINT=ANOVA]

 [/SAVE=[PRED] [RESID] [CIN]]

 [/APPLY [=’model name’] [{SPECIFICATIONS}]]
 {FIT }

**Default if the subcommand is omitted.
†Default if the subcommand is omitted and there is no corresponding specification on the TSET command.

Example:
CURVEFIT VARY
 /MODEL=CUBIC.

Overview

CURVEFIT fits selected curves to a line plot, allowing you to examine the relationship be-
tween one or more dependent variables and one independent variable. CURVEFIT also fits
curves to time series and produces forecasts, forecast errors, lower confidence limits, and
upper confidence limits. You can choose curves from a variety of regression models.

Options

Model Specification. There are 11 regression models available on the MODEL subcommand.
You can fit any or all of these to the data. Keyword ALL is available to fit all 11 models. You
can control whether the regression equation includes a constant term using the CONSTANT
or NOCONSTANT subcommand.

192 CURVEFIT

Upperbound Value. You can specify the upperbound value for the logistic model using the
UPPERBOUND subcommand.

Output. You can produce an analysis-of-variance summary table using the PRINT subcom-
mand. You can suppress the display of the curve-fitting plot using the PLOT subcommand.

New Variables. To evaluate the regression statistics without saving predicted and residual vari-
ables, specify TSET NEWVAR=NONE prior to CURVEFIT. To save the new variables and re-
place the variables saved earlier, use TSET NEWVAR=CURRENT (the default). To save the
new variables without erasing variables saved earlier, use TSET NEWVAR=ALL or the SAVE
subcommand on CURVEFIT.

Forecasting. When used with the PREDICT command, CURVEFIT can produce forecasts and
confidence limits beyond the end of the series (see PREDICT).

Basic Specification

The basic specification is one or more dependent variables. If the variables are not time se-
ries, you must also specify keyword WITH and an independent variable.

• By default, the LINEAR model is fit.

• A 95% confidence interval is used unless it is changed by a TSET CIN command prior to
the procedure.

• CURVEFIT produces a plot of the curve, a regression summary table displaying the type
of curve used, the R-squared coefficient, degrees of freedom, overall F test and signifi-
cance level, and the regression coefficients.

• For each variable and model combination, CURVEFIT creates four variables: fit/forecast
values, residuals, lower confidence limits, and upper confidence limits. These variables
are automatically labeled and added to the working data file unless TSET NEWVAR=NONE
is specified prior to CURVEFIT. For the new variable names, see the SAVE subcommand
on p. 196.

Subcommand Order

• Subcommands can be specified in any order.

Syntax Rules

• VARIABLES can be specified only once.

• Other subcommands can be specified more than once, but only the last specification of
each one is executed.

CURVEFIT 193

Operations

• When CURVEFIT is used with the PREDICT command to forecast values beyond the end
of a time series, the original and residual series are assigned the system-missing value af-
ter the last case in the original series.

• If a model requiring a log transformation (COMPOUND, POWER, S, GROWTH, EXPONEN-
TIAL, or LGSTIC) is requested and there are values in the dependent variable(s) less than or
equal to 0, the model cannot be fit because non-positive values cannot be log transformed.

• CURVEFIT uses listwise deletion of missing values. Whenever one dependent variable is
missing a value for a particular case or observation, that case or observation will not be
included in any computations.

• For models QUADRATIC and CUBIC, a message is issued if the tolerance criterion is not
met. (See TSET for information on changing the tolerance criterion.)

• Since CURVEFIT automatically generates four variables for each dependent variable and
model combination, the ALL specification after MODEL should be used cautiously to avoid
creating and adding to the working data file many more variables than are necessary.

• The residual variable is always reported in the original metric. To compute the logged re-
sidual (which should be used for diagnostic checks) for the models COMPOUND, POWER,
S, GROWTH, and EXPONENTIAL, specify

COMPUTE NEWVAR = LN(VAR) - LN(FIT#n).

where NEWVAR is the logged residual, VAR is the name of the dependent variable or ob-
served series, and FIT#n is the name of the fitted variable generated by CURVEFIT.

For the LGSTIC (logistic) model, the logged residual can be obtained by

COMPUTE NEWERR = LN(VAR) - LN(1/FIT#n).

or, if upperbound value u is specified on the UPPERBOUND subcommand, by

COMPUTE NEWVAR = LN(1/VAR - 1/u) - LN(1/FIT#n).

• CURVEFIT obeys the WEIGHT command when there is an independent variable. The
WEIGHT specification is ignored if no independent variable is specified.

Limitations

• Maximum 1 VARIABLES subcommand. There is no limit on the number of dependent vari-
ables or series named on the subcommand.

• Maximum 1 independent variable can be specified after keyword WITH.

Example

CURVEFIT VARY
 /MODEL=CUBIC.

• This example fits a cubic curve to the series VARY.

194 CURVEFIT

VARIABLES Subcommand

VARIABLES specifies the variables and is the only required subcommand. The actual key-
word VARIABLES can be omitted.

• If the dependent variables specified are not time series, you must also specify keyword
WITH and an independent variable.

MODEL Subcommand

MODEL specifies the model or models to be fit to the data. The default model is LINEAR.

• You can fit any or all of the eleven available models.
• Model name keywords can be abbreviated to the first three characters.

• You can use keyword ALL to fit all models.

• When the LGSTIC model is specified, the upperbound value is included in the output.

The following table lists the available models and their regression equations. The linear
transformations for the last six models are also shown.

where

b0 = a constant
bn = regression coefficient
t = independent variable or time value
ln = the natural log base
e = base e logs
u = upperbound value for LGSTIC

Keyword Equation Linear equation

LINEAR

LOGARITHMIC

INVERSE

QUADRATIC

CUBIC

COMPOUND

POWER

S

GROWTH

EXPONENTIAL

LGSTIC
(logistic)

Y b0 b1t+=

Y b0 b1ln t()+=

Y b0 b1 t⁄+=

Y b0 b1t b2t 2+ +=

Y b0 b1t b2t 2 b3t 3+ + +=

Y b0b1
t= ln Y() ln b0() t ln b1()+=

Y b0 t b1()= ln Y() ln b0() b1ln t()+=

Y eb0 b1 t⁄+= ln Y() b0 b1 t⁄+=

Y eb0 b1t+= ln Y() b0 b1t+=

Y b0 eb1t()= ln Y() ln b0() b1t+=

Y 1 u⁄ b0b1
t+() 1–= ln 1 Y⁄ 1 u⁄–() ln b0() t ln b1()+=

CURVEFIT 195

Example
CURVEFIT VARX.

• This command fits a curve to VARX using the linear regression model (the default).

Example
CURVEFIT VARY
 /MODEL=GROWTH EXPONENTIAL.

• This command fits two curves to VARY, one using the growth model and the other using
the exponential model.

UPPERBOUND Subcommand

UPPERBOUND is used with the logistic model (keyword LGSTIC) to specify an upper bound-
ary value to be used in the regression equation.

• The specification on UPPERBOUND must be a positive number and must be greater than
the largest data value in any of the specified dependent variables.

• The default UPPERBOUND value is infinity, so that 1/u = 0 and is dropped from the equation.

• You can specify UPPERBOUND NO to reset the value to infinity when applying a previous
model.

• If you specify UPPERBOUND without LGSTIC, it is ignored.

• Note that UPPERBOUND is a subcommand and cannot be used within a MODEL subcom-
mand. For example, the following specification is not valid:

 /MODEL=CUBIC LGSTIC /UPPER=99 LINEAR

The correct specification is:

 /MODEL=CUBIC LGSTIC LINEAR
 /UPPER=99

CONSTANT and NOCONSTANT Subcommands

CONSTANT and NOCONSTANT indicate whether a constant term should be estimated in the re-
gression equation. The specification overrides the corresponding setting on the TSET command.

• CONSTANT indicates that a constant should be estimated. It is the default unless changed
by TSET NOCONSTANT prior to the current procedure.

• NOCONSTANT eliminates the constant term from the model.

Example
CURVEFIT Y1
 /MODEL=COMPOUND
 /NOCONSTANT.

• In this example, a compound curve is fit to Y1 with no constant term in the model.

196 CURVEFIT

CIN Subcommand

CIN controls the size of the confidence interval.

• The specification on CIN must be greater than 0 and less than 100.

• The default confidence interval is 95.

• The CIN subcommand overrides the TSET CIN setting.

PLOT Subcommand

PLOT specifies whether the curve-fitting plot is displayed. If PLOT is not specified, the de-
fault is FIT. The curve-fitting plot is displayed. PLOT=FIT is generally used with an APPLY
subcommand to turn off a PLOT=NONE specification in the applied model.

FIT Display the curve-fitting plot.

NONE Do not display the plot.

ID Subcommand

ID specifies an identification variable. When in point selection mode, you can click on an in-
dividual chart point to display the value of the ID variable for the selected case.

SAVE Subcommand

SAVE saves the values of predicted, residual, and/or confidence interval variables generated
during the current session in the working data file.

• SAVE saves the specified variables with default names: PRED_n for predicted values
RESID_n for residuals, LCL_n for the lower confidence limit, and UCL_n for the upper con-
fidence limit, where n increments each time any variable is saved for a model.

• SAVE overrides the CURRENT or NONE setting on TSET NEWVARS (see TSET).

PRED Predicted variable.

RESID Residual variable.

CIN Confidence interval.

PRINT Subcommand

PRINT is used to produce an additional analysis of variance table for each model and variable.
• The only specification on PRINT is keyword ANOVA.

CURVEFIT 197

APPLY Subcommand

APPLY allows you to use a previously defined CURVEFIT model without having to repeat the
specifications.

• The specifications on APPLY can include the name of a previous model in quotes and one
of two keywords. All of these specifications are optional.

• If a model name is not specified, the model specified on the previous CURVEFIT command
is used.

• To change one or more of the specifications of the model, specify the subcommands of
only those portions you want to change after the subcommand APPLY.

• If no variables or series are specified on the CURVEFIT command, the dependent variables
that were originally specified with the model being reapplied are used.

• To change the dependent variables used with the model, enter new variable names before
or after the APPLY subcommand.

The keywords available for APPLY on CURVEFIT are:

SPECIFICATIONS Use only the specifications from the original model. This is the default.

FIT Use the coefficients estimated for the original model in the equation.

Example
CURVEFIT X1
 /MODEL=QUADRATIC.
CURVEFIT Z1
 /APPLY.

• The first command fits a quadratic curve to X1.

• The second command fits the same type of curve to Z1.

Example
CURVEFIT X1 Y1 Z1
 /MODEL=QUADRATIC.
CURVEFIT APPLY
 /MODEL=CUBIC.

• The first command fits quadratic curves to X1, Y1, and Z1.

• The second command fits curves to the same three series using the cubic model.

References

Abraham, B., and J. Ledolter. 1983. Statistical methods of forecasting. New York: John Wiley and
Sons.

Draper, N. R., and H. Smith. 1981. Applied regression analysis. New York: John Wiley and Sons.
Montgomery, D. C., and E. A. Peck. 1982. Introduction to linear regression analysis. New York:

John Wiley and Sons.

198

DATA LIST

DATA LIST [FILE=file] [{FIXED}] [RECORDS={1}] [{TABLE }]
 {n} {NOTABLE}

 {FREE} [{("delimiter")}]
 {LIST} {(TAB)}

 /{1 } varname {col location [(format)]} [varname ...]
 {rec #} {(FORTRAN-like format) }

 [/{2 } ...] [/ ...]
 {rec #}

Numeric and string input formats:

Some formats are not available on all implementations of the program.
Format elements to skip columns:

Date and time input formats:

Type Column-style
format

FORTRAN-like
format

Numeric (default) d or F,d Fw.d
Restricted numeric N,d Nw.d
Scientific notation E,d Ew.d
Numeric with commas COMMA,d COMMAw.d
Numeric with dots DOT,d DOTw.d
Numeric with commas and
dollar sign

DOLLAR,d DOLLARw.d

Numeric with percent sign PCT,d PCTw.d
Zoned decimal Z,d Zw.d
String A Aw

Type Column-style
format

FORTRAN-like
format

Tab to column n Tn
Skip n columns nX

Type Data input Format FORTRAN-like
format

International date dd-mmm-yyyy DATE DATEw
American date mm/dd/yyyy ADATE ADATEw
European date dd/mm/yy EDATE EDATEw
Julian date yyddd JDATE JDATEw
Sorted date yy/mm/dd SDATE SDATEw
Quarter and year qQyyyy QYR QYRw

DATA LIST 199

Example:
DATA LIST /ID 1-3 SEX 5 (A) AGE 7-8 OPINION1 TO OPINION5 10-14.

Overview

DATA LIST defines a raw data file (a raw data file contains numbers and other alphanumeric
characters) by assigning names and formats to each variable in the file. Raw data can be in-
line (entered with your commands between BEGIN DATA and END DATA) or stored in an ex-
ternal file. They can be in fixed format (values for the same variable are always entered in
the same location on the same record for each case) or in freefield format (values for consec-
utive variables are not in particular columns but are entered one after the other, separated by
blanks or commas).

For information on defining matrix materials, see MATRIX DATA. For information on de-
fining complex data files that cannot be defined with DATA LIST, see FILE TYPE and
REPEATING DATA. For information on reading SPSS-format data files and SPSS-format
portable files, see GET and IMPORT.

The program can also read data files created by other software applications. Commands
that read these files include GET CAPTURE and GET TRANSLATE.

Options

Data Source. You can use inline data or data from an external file.

Data Formats. You can define numeric (with or without decimal places) and string variables
using an array of input formats (percent, dollar, date and time, and so forth). You can also
specify column binary and unaligned positive integer binary formats (available only if used
with the MODE=MULTIPUNCH setting on the FILE HANDLE command). For a complete list of
available formats, see “Variable Formats” on p. 22.

Data Organization. You can define data that are in fixed format (values in the same location
on the same record for each case), in freefield format with multiple cases per record, or in
freefield format with one case on each record using the FIXED, FREE, and LIST keywords.

Multiple Records. For fixed-format data, you can indicate the number of records per case on
the RECORDS subcommand. You can specify which records to read in the variable definition
portion of DATA LIST.

Summary Table. For fixed-format data, you can display a table that summarizes the variable
definitions using the TABLE subcommand. You can suppress this table using NOTABLE.

Month and year mm/yyyy MOYR MOYRw
Week and year wkWKyyyy WKYR WKYRw
Date and time dd-mmm-yyyy hh:mm:ss.ss DATETIME DATETIMEw.d
Time hh:mm:ss.ss TIME TIMEw.d
Days and time ddd hh:mm:ss.ss DTIME DTIMEw.d
Day of the week string WKDAY WKDAYw
Month string MONTH MONTHw

200 DATA LIST

Value Delimiter. For freefield-format data (keywords FREE and LIST), you can specify the
character(s) that separate data values, or you can use the keyword TAB to specify the tab-
character as the delimiter. Any delimiter other than the TAB keyword must be enclosed in
quotes, and the specification must be enclosed in parentheses, as in DATA LIST FREE(“,”).

End-of-File Processing. You can specify a logical variable that indicates the end of the data
using the END subcommand. This logical variable can be used to invoke special processing
after all the cases from the data file have been read.

Basic Specification

• The basic specification is the FIXED, LIST, or FREE keyword, followed by a slash that sig-
nals the beginning of variable definition.

• FIXED is the default.

• If the data are in an external file, the FILE subcommand must be used.
• If the data are inline, the FILE subcommand is omitted and the data are specified between

the BEGIN DATA and END DATA commands.

• Variable definition for fixed-format data includes a variable name, a column location, and
a format (unless the default numeric format is used). The column location is not specified
if FORTRAN-like formats are used, since these formats include the variable width.

• Variable definition for freefield data includes a variable name and, optionally, a delimiter
specification and a FORTRAN-like format specification. If format specifications include a
width and number of decimal positions (e.g., F8.2), the width and decimal specifications are
not used to read the data but are assigned as print and write formats for the variables.

Subcommand Order

Subcommands can be named in any order. However, all subcommands must precede the first
slash, which signals the beginning of variable definition.

Syntax Rules

Subcommands on DATA LIST are separated by spaces or commas, not by slashes.

Operations

• DATA LIST clears the working data file and defines a new working file.

• Variable names are stored in the working file dictionary.

• Formats are stored in the working file dictionary and are used to display and write the values.
To change output formats of numeric variables defined on DATA LIST, use the FORMATS
command.

DATA LIST 201

Fixed-Format Data

• The order of the variables in the working file dictionary is the order in which they are de-
fined on DATA LIST, not their sequence in the input data file. This order is important if you
later use the TO keyword to refer to variables on subsequent commands.

• In numeric format, blanks to the left or right of a number are ignored; imbedded blanks
are invalid. When the program encounters a field that contains one or more blanks inter-
spersed among the numbers, it issues a warning message and assigns the system-missing
value to that case.

• Alphabetical and special characters, except the decimal point and leading plus and minus
signs, are not valid in numeric variables and are set to system-missing if encountered in
the data.

• The system-missing value is assigned to a completely blank field for numeric variables.
The value assigned to blanks can be changed using the BLANKS specification on the SET
command.

• The program ignores data contained in columns and records that are not specified in the
variable definition.

Freefield Data

FREE can read freefield data with multiple cases recorded on one record or with one case re-
corded on more than one record. LIST can read freefield data with one case on each record.

• Line endings are read as delimiters between values.

• If you use FORTRAN-like format specifications (for example, DOLLAR12.2), width and
decimal specifications are not used to read the data but are assigned as print and write for-
mats for the variable.

For freefield data without an explicitly specified value delimiter:

• Commas and blanks are interpreted as delimiters between values.

• Extra blanks are ignored.

• Multiple commas with or without blank space between them can be used to specify miss-
ing data.

• If a valid value contains commas or blank spaces, enclose the values in quotation marks
or apostrophes.

For data with an explicitly specified value delimiter (for example, DATA LIST FREE (","):

• Multiple delimiters without any intervening space can be used to specify missing data.

• The specified delimiter cannot occur within a data value, even if you enclose the value in
quotation marks or apostrophes.

Note: Freefield-format with a specified value delimiter is typically used to read data in text-
format written by computer program, not for data manually entered in a text editor.

202 DATA LIST

Example

* Column-style format specifications.

DATA LIST /ID 1-3 SEX 5 (A) AGE 7-8 OPINION1 TO OPINION5 10-14.
BEGIN DATA
001 m 28 12212
002 f 29 21212
003 f 45 32145
...
128 m 17 11194
END DATA.

• The data are inline between the BEGIN DATA and END DATA commands, so the FILE sub-
command is not specified. The data are in fixed format. The keyword FIXED is not spec-
ified because it is the default.

• Variable definition begins after the slash. Variable ID is in columns 1 through 3. Because
no format is specified, numeric format is assumed. Variable ID is therefore a numeric vari-
able that is three characters wide.

• Variable SEX is a short string variable in column 5. Variable SEX is one character wide.
• AGE is a two-column numeric variable in columns 7 and 8.

• Variables OPINION1, OPINION2, OPINION3, OPINION4, and OPINION5 are named using
the TO keyword (see “Keyword TO” on p. 20). Each is a one-column numeric variable,
with OPINION1 located in column 10 and OPINION5 located in column 14.

• The BEGIN DATA and END DATA commands enclose the inline data. Note that the values
of SEX are lowercase letters and must be specified as such on subsequent commands.

FILE Subcommand

FILE specifies the raw data file. FILE is required when data are stored in an external data file.
FILE must not be used when the data are stored in a file that is included with the INCLUDE
command or when the data are inline (see INCLUDE and BEGIN DATA—END DATA).

• FILE must be separated from other DATA LIST subcommands by at least one blank or
comma.

• FILE must precede the first slash, which signals the beginning of variable definition.

FIXED, FREE, and LIST Keywords

FIXED, FREE, or LIST indicates the format of the data. Only one of these keywords can be
used on each DATA LIST. The default is FIXED.

FIXED Fixed-format data. Each variable is recorded in the same column location on the
same record for each case in the data. FIXED is the default.

FREE Freefield data. The variables are recorded in the same order for each case but not
necessarily in the same column locations. More than one case can be entered on the
same record. By default, values are separated by blanks or commas. You can also
specify a different value delimiter.

DATA LIST 203

LIST Freefield data with one case on each record. The variables are recorded in freefield
format as described for the keyword FREE except that the variables for each case
must be recorded on one record.

• FIXED, FREE, or LIST must be separated from other DATA LIST subcommands by at least
one blank or comma.

• FIXED, FREE, or LIST must precede the first slash, which signals the beginning of data def-
inition.

• For fixed-format data, you can use column-style or FORTRAN-like formats, or a combi-
nation of both. For freefield data, you can use only FORTRAN-like formats.

• For fixed-format data, the program reads values according to the column locations spec-
ified or implied by the FORTRAN-like format. Values in the data do not have to be in the
same order as the variables named on DATA LIST and do not have to be separated by a
space or column.

• For freefield data, the program reads values sequentially in the order in which the vari-
ables are named on DATA LIST. Values in the data must be in the order in which the vari-
ables are named on DATA LIST and must be separated by at least one valid delimiter.

• For freefield data, multiple blank spaces can only be used to indicate missing information
if a blank space is explicitly specified as the delimiter. In general, it is better to use mul-
tiple non-blank delimiters (e.g. two commas with no intervening space) to specify missing
data.

• In freefield format, a value cannot be split across records.

Example
* Data in fixed format.

DATA LIST FILE=HUBDATA FIXED RECORDS=3
/1 YRHIRED 14-15 DEPT 19 SEX 20.

• FIXED indicates explicitly that the HUBDATA file is in fixed format. Because FIXED is the
default, the keyword FIXED could have been omitted.

• Variable definition begins after the slash. Column locations are specified after each vari-
able. Since formats are not specified, the default numeric format is used. Variable widths
are determined by the column specifications: YRHIRED is two characters wide, and DEPT
and SEX are each one character wide.

Example
* Data in freefield format.
DATA LIST FREE / POSTPOS NWINS.
BEGIN DATA
2, 19, 7, 5, 10, 25, 5, 17, 8, 11, 3,, 6, 8, 1, 29
END DATA.

• Data are inline, so FILE is omitted. The keyword FREE is used because data are in freefield
format with multiple cases on a single record. Two variables, POSTPOS and NWINS, are
defined. Since formats are not specified, both variables receive the default F8.2 format.

• All of the data are recorded on one record. The first two values build the first case in the
working data file. For the first case, POSTPOS has value 2 and NWINS has value 19. For

204 DATA LIST

the second case, POSTPOS has value 7 and NWINS has value 5, and so on. The working
data file will contain eight cases.

• The two commas without intervening space after the data value 3 indicate a missing data
value.

Example
* Data in list format.

DATA LIST LIST (",")/ POSTPOS NWINS.
BEGIN DATA
2,19
7,5
10,25
5,17
8,11
3,
6,8
1,29
END DATA.

• This example defines the same data as the previous example, but LIST is used because
each case is recorded on a separate record. FREE could also be used. However, LIST is
less prone to errors in data entry. If you leave out a value in the data with FREE format,
all values after the missing value are assigned to the wrong variable. Since LIST format
reads a case from each record, a missing value will affect only one case.

• A comma is specified as the delimiter between values.

• Since line endings are interpreted as delimiters between values, the second comma after
the value 3 (in the sixth line of data), is not necessary to indicate that the value of NWINS
is missing for that case.

Example
* Freefield format with formats specified and embedded commas.

DATA LIST LIST / datevar(DATE12) numvar(COMMA8.2).
BEGIN DATA
28 Oct 1986, 12345
"28,10,86", "1,2345"
END DATA.

DATA LIST LIST (",") / datevar(DATE12) numvar(COMMA8.2).
BEGIN DATA
28 Oct 1986, 12345
"28,10,86", "1,2345"
END DATA.

• This example specifies a date format variable and a comma format variable. The width
and decimal specifications are not used to read the data but are assigned as print and write
formats for the variables.

• In the first DATA LIST command, the two data records are read exactly the same. The val-
ues on the second line are enclosed in quotes because they contain commas, which is the
default delimiter.

DATA LIST 205

• In the second DATA LIST command, neither value on the second line is read correctly be-
cause both values contain commas, and a comma is explicitly specified as the delimiter.
With an explicitly specified delimiter, you cannot include the delimter in a data value,
even if you enclose the value in apostrophes or quotation marks.

TABLE and NOTABLE Subcommands

TABLE displays a table summarizing the variable definitions supplied on DATA LIST. NOTABLE
suppresses the summary table. TABLE is the default.

• TABLE and NOTABLE can be used only for fixed-format data.
• TABLE and NOTABLE must be separated from other DATA LIST subcommands by at least

one blank or comma.

• TABLE and NOTABLE must precede the first slash, which signals the beginning of variable
definition.

RECORDS Subcommand

RECORDS indicates the number of records per case for fixed-format data. In the variable def-
inition portion of DATA LIST, each record is preceded by a slash. By default, DATA LIST reads
one record per case.
• The only specification on RECORDS is a single integer indicating the total number of

records for each case (even if the DATA LIST command does not define all the records).

• RECORDS can be used only for fixed-format data and must be separated from other DATA
LIST subcommands by at least one blank or comma. RECORDS must precede the first
slash, which signals the beginning of variable definition.

• Each slash in the variable definition portion of DATA LIST indicates the beginning of a new
record. The first slash indicates the first (or only) record. The second and any subsequent
slashes tell the program to go to a new record.

• To skip a record, specify a slash without any variables for that record.

• The number of slashes in the variable definition cannot exceed the value of the integer
specified on RECORDS.

• The sequence number of the record being defined can be specified after each slash. DATA
LIST reads the number to determine which record to read. If the sequence number is used,
you do not have to use a slash for any skipped records. However, the records to be read
must be in their sequential order.

• The slashes for the second and subsequent records can be specified within the variable
list, or they can be specified on a format list following the variable list (see the example
below).

• All variables to be read from one record should be defined before you proceed to the next
record.

• Since RECORDS can be used only with fixed format, it is not necessary to define all the
variables on a given record or to follow their order in the input data file.

206 DATA LIST

Example
DATA LIST FILE=HUBDATA RECORDS=3
/2 YRHIRED 14-15 DEPT 19 SEX 20.

• DATA LIST defines fixed-format data. RECORDS can be used only for fixed-format data.

• RECORDS indicates that there are three records per case in the data. Only one record per
case is defined in the data definition.

• The sequence number (2) before the first variable definition indicates that the variables
being defined are on the second record. Because the sequence number is provided, a slash
is not required for the first record, which is skipped.

• The variables YRHIRED, DEPT, and SEX are defined and will be included in the working
data file. Any other variables on the second record or on the other records are not defined
and are not included in the working file.

Example
DATA LIST FILE=HUBDATA RECORDS=3

/ /YRHIRED 14-15 DEPT 19 SEX 20.

• This command is equivalent to the one in the previous example. Because the record se-
quence number is omitted, a slash is required to skip the first record.

Example
DATA LIST FILE=HUBDATA RECORDS=3

/YRHIRED (T14,F2.0) / /NAME (T25,A24).

• RECORDS indicates there are three records for each case in the data.

• YRHIRED is the only variable defined on the first record. The FORTRAN-like format
specification T14 means tab over 14 columns. Thus, YRHIRED begins in column 14 and
has format F2.0.

• The second record is skipped. Because the record sequence numbers are not specified, a
slash must be used to skip the second record.

• NAME is the only variable defined for the third record. NAME begins in column 25 and is
a string variable with a width of 24 characters (format A24).

Example
DATA LIST FILE=HUBDATA RECORDS=3

/YRHIRED NAME (T14,F2.0 / / T25,A24).

• This command is equivalent to the one in the previous example. YRHIRED is located on
the first record, and NAME is located on the third record.

• The slashes that indicate the second and third records are specified within the format
specifications. The format specifications follow the complete variable list.

END Subcommand

END provides control of end-of-file processing by specifying a variable that is set to a value
of 0 until the end of the data file is encountered, at which point the variable is set to 1. The

DATA LIST 207

values of all variables named on DATA LIST are left unchanged. The logical variable created
with END can then be used on DO IF and LOOP to invoke special processing after all the cases
from a particular input file have been built.

• DATA LIST and the entire set of commands used to define the cases must be enclosed with-
in an INPUT PROGRAM—END INPUT PROGRAM structure. The END FILE command must
also be used to signal the end of case generation.

• END can be used only with fixed-format data. An error is generated if the END subcom-
mand is used with FREE or LIST.

Example
INPUT PROGRAM.
NUMERIC TINCOME (DOLLAR8.0). /* Total income
LEAVE TINCOME.
DO IF $CASENUM EQ 1.
+ PRINT EJECT.
+ PRINT / ’Name Income’.
END IF
DATA LIST FILE=INCOME END=#EOF NOTABLE / NAME 1-10(A)
 INCOME 16-20(F).
DO IF #EOF.
+ PRINT / ’TOTAL ’, TINCOME.
+ END FILE.
ELSE.
+ PRINT / NAME, INCOME (A10,COMMA8).
+ COMPUTE TINCOME = TINCOME+INCOME. /* Accumulate total income
END IF.
END INPUT PROGRAM.

EXECUTE.

• The data definition commands are enclosed within an INPUT PROGRAM—END INPUT
PROGRAM structure.

• NUMERIC indicates that a new numeric variable, TINCOME, will be created.

• LEAVE tells the program to leave variable TINCOME at its value for the previous case as
each new case is read, so that it can be used to accumulate totals across cases.

• The first DO IF structure, enclosing the PRINT EJECT and PRINT commands, tells the pro-
gram to display the headings Name and Income at the top of the display (when $CASE-
NUM equals 1).

• DATA LIST defines variables NAME and INCOME, and it specifies the scratch variable #EOF
on the END subcommand.

• The second DO IF prints the values for NAME and INCOME and accumulates the variable
INCOME into TINCOME by passing control to ELSE as long as #EOF is not equal to 1. At
the end of the file, #EOF equals 1, and the expression on DO IF is true. The label TOTAL
and the value for TINCOME are displayed, and control is passed to END FILE.

208 DATA LIST

Example
* Concatenate three raw data files.

INPUT PROGRAM.
NUMERIC #EOF1 TO #EOF3. /*These will be used as the END variables.

DO IF #EOF1 & #EOF2 & #EOF3.
+ END FILE.
ELSE IF #EOF1 & #EOF2.
+ DATA LIST FILE=THREE END=#EOF3 NOTABLE / NAME 1-20(A)
 AGE 25-26 SEX 29(A).
+ DO IF NOT #EOF3.
+ END CASE.
+ END IF.
ELSE IF #EOF1.
+ DATA LIST FILE=TWO END=#EOF2 NOTABLE / NAME 1-20(A)
 AGE 21-22 SEX 24(A).
+ DO IF NOT #EOF2.
+ END CASE.
+ END IF.
ELSE.
+ DATA LIST FILE=ONE END=#EOF1 NOTABLE /1 NAME 1-20(A)
 AGE 21-22 SEX 24 (A).
+ DO IF NOT #EOF1.
+ END CASE.
+ END IF.
END IF.
END INPUT PROGRAM.

REPORT FORMAT AUTOMATIC LIST /VARS=NAME AGE SEX.

• The input program contains a DO IF—ELSE IF—END IF structure.

• Scratch variables are used on each END subcommand so the value will not be reinitialized
to the system-missing value after each case is built.

• Three data files are read, two of which contain data in the same format. The third requires
a slightly different format for the data items. All three DATA LIST commands are placed
within the DO IF structure.

• END CASE builds cases from each record of the three files. END FILE is used to trigger
end-of-file processing once all data records have been read.

• This application can also be handled by creating three separate SPSS-format data files
and using ADD FILES to put them together. The advantage of using the input program is
that additional files are not required to store the separate data files prior to performing
ADD FILES.

Variable Definition

The variable definition portion of DATA LIST assigns names and formats to the variables in
the data. Depending on the format of the file, you may also need to specify record and col-
umn location. The following sections describe variable names, location, and formats.

DATA LIST 209

Variable Names

• Variable names can contain up to eight characters. All variable names must begin with a
letter or the @ or # character. A # symbol as the first character of the variable name de-
fines the variable as a scratch variable. System variables (beginning with a $) cannot be
defined on DATA LIST. An underscore can be used within a variable name, provided the
underscore is not the first character.

• The keyword TO can be used to generate names for consecutive variables in the data.
Leading zeros in the number are preserved in the name. X1 TO X100 and X001 TO X100
both generate 100 variable names, but the first 99 names are not the same in the two lists.
X01 TO X9 is not a valid specification. For more information on the TO keyword and other
variable-naming rules, see “Variable Names” on p. 20.

• The order in which variables are named on DATA LIST determines their order in the work-
ing data file. If the working file is saved as an SPSS-format data file, the variables are
saved in this order unless they are explicitly reordered on the SAVE or XSAVE command.

Example
DATA LIST FREE / ID SALARY #V1 TO #V4.

• The FREE keyword indicates that the data are in freefield format. Six variables are de-
fined: ID, SALARY, #V1, #V2, #V3, and #V4. #V1 to #V4 are scratch variables that are not
stored in the working data file. Their values can be used in transformations but not in pro-
cedure commands.

Variable Location

For fixed-format data, variable locations are specified either explicitly using column loca-
tions or implicitly using FORTRAN-like formats. For freefield data, variable locations are
not specified. Values are read sequentially in the order in which variables are named on the
variable list.

Fixed-Format Data

• If column-style formats are used, you must specify the column location of each variable
after the variable name. If the variable is one column wide, specify the column number.
Otherwise, specify the first column number followed by a dash (–) and the last column
number.

• If several adjacent variables on the same record have the same width and format type, you
can use one column specification after the last variable name. Specify the beginning col-
umn location of the first variable, a dash, and the ending column location of the last vari-
able. the program divides the total number of columns specified equally among the
variables. If the number of columns does not divide equally, an error message is issued.

• The same column locations can be used to define multiple variables.

210 DATA LIST

• For FORTRAN-like formats, column locations are implied by the width specified on the
formats (see “Variable Formats” on p. 211). To skip columns, use the Tn or nX format
specifications.

• With fixed format, column-style and FORTRAN-like specifications can be mixed on the
same DATA LIST command.

• Record location is indicated by a slash or a slash and record number before the names of
the variables on that record. See the RECORDS subcommand on p. 205 for information
on specifying record location.

• The program ignores data in columns and on records that are not specified on DATA LIST.

• In the data, values do not have to be separated by a space or comma.

Example
DATA LIST FILE=HUBDATA RECORDS=3

/1 YRHIRED 14-15 DEPT 19 SEX 20
/2 SALARY 21-25.

• The data are in fixed format (the default) and are read from the file HUBDATA.

• Three variables, YRHIRED, DEPT, and SEX, are defined on the first record of the HUBDA-
TA file. One variable, SALARY, is read from columns 21 through 25 on the second record.
The total number of records per case is specified as 3 even though no variables are defined
on the third record. The third record is simply skipped in data definition.

Example
DATA LIST FILE=HUBDATA RECORDS=3

/1 DEPT 19 SEX 20 YRHIRED 14-15 MOHIRED 12-13 HIRED 12-15
/2 SALARY 21-25.

• The first two defined variables are DEPT and SEX, located in columns 19 and 20 on record
1. The next three variables, YRHIRED, MOHIRED, and HIRED, are also located on the first
record.

• YRHIRED is read from columns 14 and 15, MOHIRED from columns 12 and 13, and HIRED
from columns 12 through 15. The variable HIRED is a four-column variable with the first
two columns representing the month when an employee was hired (the same as MO-
HIRED) and the last two columns representing the year of employment (the same as
YRHIRED).

• The order of the variables in the dictionary is the order in which they are defined on DATA
LIST, not their sequence in the HUBDATA file.

Example
DATA LIST FILE=HUBDATA RECORDS=3

/1 DEPT 19 SEX 20 MOHIRED YRHIRED 12-15
/2 SALARY 21-25.

• A single column specification follows MOHIRED and YRHIRED. DATA LIST divides the to-
tal number of columns specified equally between the two variables. Thus, each variable
has a width of two columns.

DATA LIST 211

Example
* Mixing column-style and FORTRAN-like format specifications.

DATA LIST FILE=PRSNL / LNAME M_INIT STREET (A20,A1,1X,A10)
 AGE 35-36.

• FORTRAN-like format specifications are used for string variables LNAME, M_INIT, and
STREET. These variables must be adjacent in the data file. LNAME is 20 characters wide
and is located in columns 1–20. M_INIT is one character wide and is located in column 21.
The 1X specification defines a blank column between M_INIT and STREET. STREET is 10
characters wide and is located in columns 23–32.

• A column-style format is used for the variable AGE. AGE begins in column 35, ends in
column 36, and by default has numeric format.

Freefield Data

• In freefield data, column location is irrelevant, since values are not in fixed column posi-
tions. Instead, values are simply separated from each other by blanks or by commas or a
specified delimiter. Any number of consecutive blanks are interpreted as one delimiter
unless a blank space is explicitly specified as the value delimiter. A value cannot be split
across records.

• If there are not enough values to complete the last case, a warning is issued and the in-
complete case is dropped.

• The specified delimiter can only be used within data values if the value is enclosed in quo-
tations marks or apostrophes.

• To include an apostrophe in a string value, enclose the value in quotation marks. To in-
clude quotation marks in a value, enclose the value in apostrophes (see “String Values in
Command Specifications” on p. 5).

Variable Formats

Two types of format specifications are available: column-style and FORTRAN-like. With
each type, you can specify both numeric and string formats. The difference between the two
types is that FORTRAN-like formats include the width of the variable and column-style for-
mats do not.

• Column-style formats are available only for fixed-format data.

• Column-style and FORTRAN-like formats can be mixed on the same DATA LIST to define
fixed-format data.

• A value that cannot be read according to the format type specified is assigned the system-
missing value and a warning message is issued.

The following sections discuss the rules for specifying column-style and FORTRAN-like
formats, followed by additional considerations for numeric and string formats. See p. 198 for
a partial list of available formats. For a complete discussion of formats, see “Variable For-
mats” on p. 22).

212 DATA LIST

Column-Style Format Specifications

The following rules apply to column-style formats:

• Data must be in a fixed format.
• Column locations must be specified after variable names. The width of a variable is de-

termined by the number of specified columns. See “Fixed-Format Data” on p. 209 for in-
formation on specifying column location.

• Following the column location, specify the format type in parentheses. The format type
applies only to the variable or the list of variables associated with the column location
specification immediately before it. If no format type is specified, numeric (F) format is
used.

• To include decimal positions in the format, specify the format type followed by a comma
and the number of decimal positions. For example, (DOLLAR) specifies only whole dollar
amounts; (DOLLAR,2) specifies DOLLAR format with two decimal positions.

• Since column positions are explicitly specified, the variables can be named in any order.

FORTRAN-like Format Specifications

The following rules apply to FORTRAN-like formats:

• Data can be in either fixed or freefield format.

• Column locations cannot be specified. The width of a variable is determined by the width
portion (w) of the format specification. The width must specify the number of characters
in the widest value.

• One format specification applies to only one variable. The format is specified in paren-
theses after the variable to which it applies. Alternatively, a variable list can be followed
by an equal number of format specifications contained in one set of parentheses. When a
number of consecutive variables have the same format, the number can be used as a mul-
tiplying factor preceding the format. For example, (3F5.2) assigns the format F5.2 to three
consecutive variables.

• For fixed data, the number of formats specified (either explicitly or implied by the multi-
plication factor) must be the same as the number of variables. Otherwise, the program is-
sues an error message. If no formats are specified, all variables have the default format
F8.2.

• For freefield data, variables with no specified formats take the default F8.2 format. How-
ever, an asterisk (*) must be used to indicate where the default format stops. Otherwise,
the program tries to apply the next specified format to every variable before it and issues
an error message if the number of formats specified is less than the number of variables.

• For freefield data, width and decimal specifications are not used to read the data but are
assigned as print and write formats for the variable .

• For fixed data, Tn can be used before a format to indicate that the variable begins at the
nth column, and nX can be used to skip n columns before reading the variable. When Tn
is specified, variables named do not have to follow the order of the variables in the data.

DATA LIST 213

• For freefield data, variables are located according to the sequence in which they are
named on DATA LIST. The order of variables on DATA LIST must correspond to the order
of variables in the data.

• To include decimal positions in the format for fixed-format data, specify the total width
followed by a decimal point and the number of decimal positions. For example,
(DOLLAR5) specifies a five-column DOLLAR format without decimal positions;
(DOLLAR5.2) specifies a five-column DOLLAR format, two columns of which are decimal
positions.

Numeric Formats

• Format specifications on DATA LIST are input formats. Based on the width specification
and format type, the program generates output (print and write) formats for each variable.
The program automatically expands the output format to accommodate punctuation char-
acters such as decimal points, commas, dollar signs, or date and time delimiters. (The pro-
gram does not automatically expand the output formats you assign on the FORMATS,
PRINT FORMATS, and WRITE FORMATS commands. For information on assigning output
formats, refer to these commands.)

• Scientific notation is accepted in input data with F, COMMA, DOLLAR, DOT, and PCT for-
mats. The same rules apply to these formats as to E format. The values 1.234E3, 1.234+3,
and 1.234E 3 are all legitimate. The last value (with a blank space) will cause freefield
data to be misread and therefore should be avoided when LIST or FREE is specified.

Implied Decimal Positions

• For fixed-format data, decimal positions can be coded in the data or implied by the format.
If decimal positions are implied but are not entered in the data, the program interprets the
rightmost digits in each value as the decimal digits. A coded decimal point in a value over-
rides the number of implied decimal places. For example, (DOLLAR,2) specifies two dec-
imal positions. The value 123 is interpreted as 1.23; however, the value 12.3 is interpreted
as 12.3 because the coded decimal position overrides the number of implied decimal
positions.

• For freefield data, decimal positions cannot be implied but must be coded in the data. If
decimal positions are specified in the format but a data value does not include a decimal
point, the program fills the decimal places with zeros. For example, with F3.1 format
(three columns with one decimal place), the value 22 is displayed as 22.0. If a value in the
data has more decimal digits than are specified in the format, the additional decimals are
truncated in displayed output (but not in calculations). For example, with F3.1 format, the
value 2.22 is displayed as 2.2 even though in calculations it remains 2.22.

Table 1 compares how values are interpreted for fixed and freefield formats. Values in the
table are for a four-column numeric variable.

214 DATA LIST

Example
DATA LIST

/MODEL 1 RATE 2-6(PCT,2) COST 7-11(DOLLAR) READY 12-21(ADATE).
BEGIN DATA
1935 7878811-07-1988
2 16754654606-08-1989
3 17684783612-09-1989
END DATA.

• Data are inline and in fixed format (the default).

• Each variable is followed by its column location. After the column location, a column-
style format is specified in parentheses.

• MODEL begins in column 1, is one column wide, and receives the default numeric F for-
mat.

• RATE begins in column 2 and ends in column 6. The PCT format is specified with two dec-
imal places. A comma is used to separate the format type from the number of decimal plac-
es. Decimal points are not coded in the data. Thus, the program reads the rightmost digits
of each value as decimal digits. The value 935 for the first case in the data is interpreted
as 9.35. Note that it does not matter where numbers are entered within the column width.

• COST begins in column 7 and ends in column 11. DOLLAR format is specified.

• READY begins in column 12 and ends in column 21. ADATE format is specified.

Example
DATA LIST FILE=DATA1

/MODEL (F1) RATE (PCT5.2) COST (DOLLAR5) READY (ADATE10).

• In this example, the FILE subcommand is used because the data are in an external file.
• The variable definition is the same as in the preceding example except that FORTRAN-

like format specifications are used rather than column-style. Column locations are not
specified. Instead, the format specifications include a width for each format type.

• The width (w) portion of each format must specify the total number of characters in the
widest value. DOLLAR5 format for COST accepts the five-digit value 78788, which dis-

Table 1 Interpretation of values in fixed and freefield format

 Fixed Freefield

Values

Default
Two defined

decimal places Default
Two defined

decimal places

2001 2001 20.01 2001.00 2001.00
201 201 2.01 201.00 201.00
-201 -201 -2.01 -201.00 -201.00
2 2 .02 2.00 2.00
20 20 .20 20.00 20.00
2.2 2.2 2.2 2.20 2.20
.201 .201 .201 .201 .201
2 01 Undefined Undefined Two values Two values

DATA LIST 215

plays as $78,788. Thus, the specified input format DOLLAR5 generates an output format
DOLLAR7. The program automatically expands the width of the output format to accom-
modate the dollar sign and comma in displayed output.

String Formats

String (alphanumeric) variables can contain any numbers, letters, or characters, including
special characters and imbedded blanks. Numbers entered as values for string variables can-
not be used in calculations unless you convert them to numeric format (see RECODE). On
DATA LIST, a string variable is defined with an A format if data are in standard character form
or an AHEX format if data are in hexadecimal form. For further discussion of string formats,
see “String Variable Formats” on p. 30.

• For fixed-format data, the width of a string variable is either implied by the column loca-
tion specification or specified by the w on the FORTRAN-like format. For freefield data,
the width must be specified on the FORTRAN-like format.

• The string formats defined on DATA LIST are both input and output formats. You cannot
change the format of a defined string variable in this program. However, you can use the
STRING command to define a new string variable and COMPUTE to copy the values from
the old variable (see COMPUTE).

• AHEX format is available only for fixed-format data. Since each set of two hexadecimal
characters represents one standard character, the width specification must be an even
number. The output format for a variable in AHEX format is A format with half the speci-
fied width.

• If a string in the data is longer than its specified width, the string is truncated and a warn-
ing message is displayed. If the string in the data is shorter, it is right-padded with blanks
and no warning message is displayed.

• For fixed-format data, all characters within the specified or implied columns, including
leading, trailing, and imbedded blanks and punctuation marks, are read as the value of the
string.

• For freefield data without a specified delimiter, string values in the data must be enclosed
in apostrophes or quotation marks if the string contains a blank or a comma. Otherwise,
the blank or comma is treated as a delimiter between values. Apostrophes can be included
in a string by enclosing the string in quotation marks. Quotation marks can be included in
a string by enclosing the string in apostrophes.

Example
DATA LIST FILE=WINS FREE /POSTPOS NWINS * POSNAME (A24).

• POSNAME is specified as a 24-character string. The asterisk preceding POSNAME indi-
cates that POSTPOS and NWINS are read with the default format. If the asterisk was not
specified, the program would apply the A24 format to POSNAME and then issue an error
message indicating that there are more variables than specified formats.

Example
DATA LIST FILE=WINS FREE /POSTPOS * NWINS (A5) POSWINS.

216 DATA LIST

• Both POSTPOS and POSWINS receive the default numeric format F8.2.

• NWINS receives the specified format of A5.

217

DATE

DATE keyword [starting value [periodicity]]

 [keyword [starting value [periodicity]]]

 [BY increment]

Keywords for long time periods:

Keywords for short time periods:

Keywords for any time periods:

Example:
DATE Y 1960 M.

Overview

DATE generates date identification variables. You can use these variables to label plots and
other output, establish periodicity, and distinguish between historical, validation, and fore-
casting periods.

Keyword Abbreviation

Default
starting value

Default
periodicity

YEAR Y 1 none
QUARTER Q 1 4
MONTH M 1 12

Keyword Abbreviation

Default
starting value

Default
periodicity

WEEK W 1 none
DAY D 1 7
HOUR H 0 24
MINUTE MI 0 60
SECOND S 0 60

Keyword Abbreviation

Default
starting value

Default
periodicity

CYCLE C 1 none
OBS O none none

218 DATE

Options

You can specify the starting value and periodicity. You can also specify an increment for the
lowest-order keyword specified.

Basic Specification

The basic specification on DATE is a single keyword.
• For each keyword specified, DATE creates a numeric variable whose name is the keyword

with an underscore as suffix. Values for this variable are assigned to observations sequen-
tially, beginning with the specified starting value. DATE also creates a string variable
named DATE_, which combines the information from the numeric date variables and is
used for labeling.

• If no starting value is specified, either the default is used or the value is inferred from the
starting value of another DATE keyword.

• All variables created by DATE are automatically assigned variable labels that describe
periodicity and associated formats. DATE produces a list of the names of the variables it
creates and their variable labels.

Subcommand Order

• Keywords can be specified in any order.

Syntax Rules

• You can specify more than one keyword per command.

• If a keyword is specified more than once, only the last one is executed.

• Keywords that describe long time periods (YEAR, QUARTER, MONTH) cannot be used on
the same command with keywords that describe short time periods (WEEK, DAY, HOUR,
MINUTE, SECOND).

• Keywords CYCLE and OBS can be used with any other keyword.

• The lowest-order keyword specified should correspond to the level at which observations
occur. For example, if observations are daily, the lowest-order keyword should be DAY.

• Keywords (except MINUTE) can be abbreviated down to the first character. MINUTE must
have at least two characters (MI) to distinguish it from keyword MONTH.

• Keywords and additional specifications are separated by commas or spaces.

Starting Value and Periodicity

• A starting value and periodicity can be entered for any keyword except CYCLE. CYCLE
can only have a starting value.

• Starting value and periodicity must be specified for keyword OBS.

DATE 219

• The starting value is specified first, followed by the periodicity, if any.

• You cannot specify a periodicity without first specifying a starting value.

• Starting values for HOUR, MINUTE, and SECOND can range from 0 to the periodicity mi-
nus 1 (for example, 0 to 59). For all other keywords, the range is 1 to the periodicity.

• If both MONTH and QUARTER are specified, DATE can infer the starting value of one from
the other (see “Example 5” on p. 223).

• Specifying conflicting starting values for MONTH and QUARTER, such as Q 1 M 4, results
in an error.

• For keyword YEAR, the starting value can be specified as the last two digits (93) instead
of the whole year (1993) when the series and any forecasting are all within the same cen-
tury. The same format (2 digits or 4 digits) must be used in all other commands that use
year values.

• If you specify keywords that describe short time periods and skip over a level of measure-
ment (for example, if you specify HOUR and SECOND but not MINUTE), you must specify
the starting value and periodicity of the keyword after the skipped keywords. Otherwise,
inappropriate periodicities will be generated (see “Example 7” on p. 224).

BY Keyword

• Keyword BY and a positive integer can be specified after the lowest-order keyword on the
command to indicate an increment value. This value indicates how much to increment
values of the lowest-order date variable as they are assigned to observations (see “Exam-
ple 4” on p. 222).

• The increment value must divide evenly into the periodicity of the lowest-order DATE
variable specified.

Operations

• DATE creates a numeric variable for every keyword specified, plus a string variable
DATE_, which combines information from all the specified keywords.

• DATE automatically creates variable labels for each keyword specified indicating the vari-
able name and its periodicity. For the DATE_ variable, the label indicates the variable
name and format.

• If the highest-order DATE variable specified has a periodicity, the CYCLE_ variable will
automatically be created. CYCLE_ cannot have a periodicity (see “Example 3” on p. 221).

• Default periodicities are not used for the highest-order keyword specified. The exception
is QUARTER, which will always have a default periodicity.

• The periodicity of the lowest-order variable is the default periodicity used by the proce-
dures when periodicity is not defined either within the procedure or by the TSET command.

• The keyword name with an underscore is always used as the new variable name, even if
keyword abbreviations are used in the specifications.

• Each time the DATE command is used, any DATE variables already in the working data file
are deleted.

220 DATE

• The DATE command invalidates any previous USE and PREDICT commands specified.
The USE and PREDICT periods must be respecified after DATE.

Limitations

• There is no limit on the number of keywords on the DATE command. However, keywords
that describe long time periods (YEAR, QUARTER, MONTH) cannot be used on the same
command with keywords that describe short time periods (WEEK, DAY, HOUR, MINUTE,
SECOND).

• User-defined variable names must not conflict with DATE variable names.

Example 1

DATE Y 1960 M.

• This command generates variables DATE_, YEAR_, and MONTH_.

• YEAR_ has a starting value of 1960. MONTH_ starts at the default value of 1.

• By default, YEAR_ has no periodicity, and MONTH_ has a periodicity of 12.

DATE reports the following:

 Name Label

 YEAR_ YEAR, not periodic
 MONTH_ MONTH, period 12
 DATE_ DATE. FORMAT: "MMM YYYY"

The following is a partial listing of the new variables:

 YEAR_ MONTH_ DATE_

 1960 1 JAN 1960
 1960 2 FEB 1960
 1960 3 MAR 1960
 1960 4 APR 1960
 ...
 1960 10 OCT 1960
 1960 11 NOV 1960
 1960 12 DEC 1960
 1961 1 JAN 1961
 1961 2 FEB 1961
 ...
 1999 4 APR 1999
 1999 5 MAY 1999
 1999 6 JUN 1999

Example 2

DATE WEEK DAY 1 5 HOUR 1 8.

• This command creates four variables (DATE_, WEEK_, DAY_, and HOUR_) in a file where
observations occur hourly in a 5-day, 40-hour week.

• For WEEK_, the default starting value is 1 and the default periodicity is none.

DATE 221

• For DAY_, the starting value has to be specified, even though it is the same as the default,
because a periodicity is specified. The periodicity of 5 means that observations are mea-
sured in a 5-day week.

• For HOUR_, a starting value of 1 is specified. The periodicity of 8 means that observations
occur in an 8-hour day.

DATE reports the following:

 Name Label

 WEEK_ WEEK, not periodic
 DAY_ DAY, period 5
 HOUR_ HOUR, period 24
 DATE_ DATE. FORMAT: "WWW D HH"

The following is a partial listing of the new variables:

 WEEK_ DAY_ HOUR_ DATE_

 1 1 1 1 1 1
 1 1 2 1 1 2
 1 1 3 1 1 3
 1 1 4 1 1 4
 1 1 5 1 1 5
 ...
 1 1 22 1 1 22
 1 1 23 1 1 23
 1 2 0 1 2 0
 1 2 1 1 2 1
 1 2 2 1 2 2
 ...
 4 5 16 4 5 16
 4 5 17 4 5 17
 4 5 18 4 5 18

Example 3

DATE DAY 1 5 HOUR 3 8.

• This command creates four variables (DATE_, CYCLE_, DAY_, and HOUR_) in a file where
observations occur hourly.

• For HOUR_, the starting value is 3 and the periodicity is 8.

• For DAY_, the starting value is 1 and the periodicity is 5. Since DAY_ is the highest-order
variable and it has a periodicity assigned, variable CYCLE_ is automatically created.

DATE reports the following:

 Name Label

 CYCLE_ CYCLE, not periodic
 DAY_ DAY, period 5
 HOUR_ HOUR, period 8
 DATE_ DATE. FORMAT: "CCCC D H"

222 DATE

The following is a partial listing of the new variables:

 CYCLE_ DAY_ HOUR_ DATE_

 1 1 3 1 1 3
 1 1 4 1 1 4
 1 1 5 1 1 5
 1 1 6 1 1 6
 1 1 7 1 1 7
 1 2 0 1 2 0
 1 2 1 1 2 1
 ...
 12 4 6 12 4 6
 12 4 7 12 4 7
 12 5 0 12 5 0
 12 5 1 12 5 1
 12 5 2 12 5 2
 12 5 3 12 5 3
 12 5 4 12 5 4

Example 4

DATE DAY HOUR 1 24 BY 2.

• This command creates three variables (DATE_, DAY_, and HOUR_) in a file where obser-
vations occur every two hours in a 24-hour day.

• DAY_ uses the default starting value of 1. It has no periodicity, since none is specified,
and it is the highest-order keyword on the command.

• HOUR_ starts with a value of 1 and has a periodicity of 24.

• Keyword BY specifies an increment of 2 to use in assigning hour values.

DATE reports the following:

 Name Label

 DAY_ DAY, not periodic
 HOUR_ HOUR, period 24 by 2
 DATE_ DATE. FORMAT: "DDDD HH"

The following is a partial listing of the new variables:

 DAY_ HOUR_ DATE_

 1 1 1 1
 1 3 1 3
 1 5 1 5
 ...
 39 17 39 17
 39 19 39 19
 39 21 39 21
 39 23 39 23
 40 1 40 1
 40 3 40 3
 40 5 40 5
 40 7 40 7
 40 9 40 9
 40 11 40 11

DATE 223

Example 5

DATE Y 1950 Q 2 M.

• This example creates four variables (DATE_, YEAR_, QUARTER_, and MONTH_) in a file
where observations are quarterly, starting with April 1950.

• The starting value for MONTH_ is inferred from QUARTER_.

• This specification is equivalent to DATE Y 1950 Q M 4. Here, the starting value for
QUARTER_ (2) would be inferred from MONTH.

DATE reports the following:

 Name Label

 YEAR_ YEAR, not periodic
 QUARTER_ QUARTER, period 4
 MONTH_ MONTH, period 12
 DATE_ DATE. FORMAT: "MMM YYYY"

The following is a partial listing of the new variables:

 YEAR_ QUARTER_ MONTH_ DATE_

 1950 2 4 APR 1950
 1950 2 5 MAY 1950
 1950 2 6 JUN 1950
 1950 3 7 JUL 1950
 1950 3 8 AUG 1950
 ...
 1988 4 11 NOV 1988
 1988 4 12 DEC 1988
 1989 1 1 JAN 1989
 1989 1 2 FEB 1989
 1989 1 3 MAR 1989
 1989 2 4 APR 1989
 1989 2 5 MAY 1989
 1989 2 6 JUN 1989
 1989 3 7 JUL 1989
 1989 3 8 AUG 1989
 1989 3 9 SEP 1989

Example 6

DATE OBS 9 17.

• This command creates variables DATE_, CYCLE_, and OBS_ and assigns values to obser-
vations sequentially, starting with value 9. The periodicity is 17.

DATE reports the following:

 Name Label

 CYCLE_ CYCLE, not periodic
 OBS_ OBS, period 17
 DATE_ DATE. FORMAT: "CCCC OO"

224 DATE

The following is a partial listing of the new variables:

 CYCLE_ OBS_ DATE_

 1 9 1 9
 1 10 1 10
 1 11 1 11
 1 12 1 12
 1 13 1 13
 1 14 1 14
 1 15 1 15
 1 16 1 16
 1 17 1 17
 2 1 2 1
 2 2 2 2
 ...
 28 15 28 15
 28 16 28 16
 28 17 28 17
 29 1 29 1
 29 2 29 2
 29 3 29 3
 29 4 29 4
 29 5 29 5
 29 6 29 6

Example 7

DATE W H 1 168

• This example creates three variables (DATE_, WEEK_, and HOUR_) in a file where obser-
vations occur hourly.

• Since the DAY keyword is not specified, a periodicity must be specified for HOUR. The
value 168 indicates that there are 168 hours in a week.

• The starting value of HOUR is specified as 1.

DATE reports the following:

 Name Label

 WEEK_ WEEK, not periodic
 HOUR_ HOUR, period 168
 DATE_ DATE. FORMAT: "WWWW HHH"

DATE 225

The following is a partial listing of the new variables:

 WEEK_ HOUR_ DATE_

 1 1 1 1
 1 2 1 2
 1 3 1 3
 1 4 1 4
 1 5 1 5
 1 6 1 6
 ...
 1 161 1 161
 1 162 1 162
 1 163 1 163
 1 164 1 164
 1 165 1 165
 1 166 1 166
 1 167 1 167
 2 0 2 0
 2 1 2 1
 2 2 2 2
 2 3 2 3
 2 4 2 4
 2 5 2 5
 ...
 3 131 3 131
 3 132 3 132
 3 133 3 133
 3 134 3 134
 3 135 3 135
 3 136 3 136
 3 137 3 137
 3 138 3 138

226

DEFINE—!ENDDEFINE

DEFINE macro name

 ([{argument name=} [!DEFAULT (string)] [!NOEXPAND] {!TOKENS (n) }]
 {!POSITIONAL= } {!CHAREND (’char’) }
 {!ENCLOSE (’char’, ’char’)}
 {!CMDEND }

 [/{argument name=} ...])
 {!POSITIONAL= }

macro body

!ENDDEFINE

SET command controls:

PRESERVE
RESTORE

Assignment:

!LET var=expression

Conditional processing:

!IF (expression) !THEN statements
 [!ELSE statements]
!IFEND

Looping constructs:

!DO !varname=start !TO finish [BY step]
 statements [!BREAK]
!DOEND

!DO !varname !IN (list)
 statements [!BREAK]
!DOEND

Macro directives:

!OFFEXPAND
!ONEXPAND

String manipulation functions:

!LENGTH (string)
!CONCAT (string1,string2)
!SUBSTR (string,from,[length])
!INDEX (string1,string2)
!HEAD (string)
!TAIL (string)
!QUOTE (string)
!UNQUOTE (string)
!UPCASE (string)
!BLANKS (n)
!NULL
!EVAL (string)

DEFINE—!ENDDEFINE 227

Example:
DEFINE sesvars ().

age sex educ religion.
!ENDDEFINE.

Overview

DEFINE—!ENDDEFINE defines a program macro, which can then be used within a command
sequence. A macro can be useful in several different contexts. For example, it can be used to:

• Issue a series of the same or similar commands repeatedly, using looping constructs rather
than redundant specifications.

• Specify a set of variables.

• Produce output from several program procedures with a single command.

• Create complex input programs, procedure specifications, or whole sessions that can then
be executed.

A macro is defined by specifying any part of a valid command and giving it a macro name.
This name is then specified in a macro call within a command sequence. When the program
encounters the macro name, it expands the macro.

In the examples of macro definition throughout this reference, the macro name, body, and
arguments are shown in lower case for readability. Macro keywords, which are always pre-
ceded by an exclamation point (!), are shown in upper case. For additional examples of the
macro facility, see Appendix D.

Options

Macro Arguments. You can declare and use arguments in the macro definition and then assign
specific values to these arguments in the macro call. You can define defaults for the argu-
ments and indicate whether an argument should be expanded when the macro is called. (See
pp. 230–237.)

Macro Directives. You can turn macro expansion on and off (see p. 237).

String Manipulation Functions. You can process one or more character strings and produce ei-
ther a new character string or a character representation of a numeric result (see pp.
237–239).

Conditional Processing. You can build conditional and looping constructs (see p. 241).

Macro Variables. You can directly assign values to macro variables (see p. 243).

Basic Specification

All macros must start with the DEFINE command and end with the macro command
!ENDDEFINE. These commands identify the beginning and end of a macro definition and are
used to separate the macro definition from the rest of the command sequence.

228 DEFINE—!ENDDEFINE

• Immediately after DEFINE, specify the macro name. All macros must have a name. The
name is used in the macro call to refer to the macro. Macro names can begin with an
exclamation point (!), but other than this, follow the usual naming conventions. Starting
a name with an ! ensures that it will not conflict with the other text or variables in the
session.

• Immediately after the macro name, specify an optional argument definition in parenthe-
ses. This specification indicates the arguments that will be read when the macro is called.
If you do not want to include arguments, specify just the parentheses; the parentheses are
required, whether or not they enclose an argument.

• Next specify the body of the macro. The macro body can include commands, parts of
commands, or macro statements (macro directives, string manipulation statements, and
looping and conditional processing statements).

• At the end of the macro body, specify the !ENDDEFINE command.

To invoke the macro, issue a macro call in the command sequence. To call a macro, specify
the macro name and any necessary arguments. If there are no arguments, only the macro
name is required.

Operations

• When macros are used in a prompted session, the command line prompt changes to DE-
FINE> between the DEFINE and !ENDDEFINE commands.

• When the program reads the macro definition, it translates into upper case all text (except
arguments) not enclosed in quotation marks. Arguments are read in upper and lower case.

• The macro facility does not build and execute commands; rather, it expands strings in a
process called macro expansion. A macro call initiates macro expansion. After the
strings are expanded, the commands (or parts of commands) that contain the expanded
strings are executed as part of the command sequence.

• Any elements on the macro call that are not used in the macro expansion are read and
combined with the expanded strings.

• The expanded strings and the remaining elements from the macro call, if any, must con-
form to the syntax rules for the program. If not, the program generates either a warning
or an error message, depending on the nature of the syntax problem.

Limitations

• The BEGIN DATA—END DATA commands are not allowed within a macro.
• The DEFINE command is not allowed within a macro.

DEFINE—!ENDDEFINE 229

Example

* Macro without arguments: Specify a group of variables.

DEFINE sesvars ().
age sex educ religion.

!ENDDEFINE.

FREQUENCIES VARIABLES=sesvars.

• The macro name is sesvars. Because the parentheses are empty, sesvars has no arguments.
The macro body defines four variables: AGE, SEX, EDUC, and RELIGION.

• The macro call is specified on FREQUENCIES. When the call is executed, sesvars is ex-
panded into the variables AGE, SEX, EDUC, and RELIGION.

• After the macro expansion, FREQUENCIES is executed.

Example

* Macro without arguments: Repeat a sequence of commands.

DATA LIST FILE = MAC4D /GROUP 1 REACTIME 3-5 ACCURACY 7-9.
VALUE LABELS GROUP 1’normal’
 2’learning disabled’.
* Macro definition.
DEFINE check ().
split file by group.
frequencies variables = reactime accuracy

/histogram.
descriptives reactime accuracy.
list.
split file off.
regression variables = group reactime accuracy

/dependent = accuracy
/enter
/scatterplot (reactime, accuracy).

!ENDDEFINE.

check. /* First call of defined macro check

COMPUTE REACTIME = SQRT (REACTIME).
COMPUTE ACCURACY = SQRT (ACCURACY).

check. /* Second call of defined macro check

COMPUTE REACTIME = lg10 (REACTIME * REACTIME).
COMPUTE ACCURACY = lg10 (ACCURACY * ACCURACY).

check. /* Third call of defined macro check

• The name of the macro is CHECK. The empty parentheses indicate that there are no argu-
ments to the macro.

• The macro definition (between DEFINE and !ENDDEFINE) contains the command se-
quence to be repeated: SPLIT FILE, FREQUENCIES, DESCRIPTIVES, LIST, SPLIT FILE, and
REGRESSION.

230 DEFINE—!ENDDEFINE

• The macro is called three times. Every time check is encountered, it is replaced with the
command sequence SPLIT FILE, FREQUENCIES, DESCRIPTIVES, LIST, SPLIT FILE OFF,
and REGRESSION. The command sequence using the macro facility is identical to the
command sequence in which the specified commands are explicitly stated three separate
times.

Example

* Macro with an argument.

DEFINE myfreq (vars = !CHAREND(’/’)).
frequencies variables = !vars

/format = notable
/hbar = normal
/statistics = default skewness kurtosis.

!ENDDEFINE.

myfreq vars = AGE SEX EDUC RELIGION /.

• The macro definition defines vars as the macro argument. In the macro call, four variables
are specified as the argument to the macro myfreq. When the program expands the myfreq
macro, it substitutes the argument, AGE, SEX, EDUC, and RELIGION, for !vars and exe-
cutes the resulting commands.

Macro Arguments

The macro definition can include macro arguments, which can be assigned specific values in
the macro call. There are two types of arguments: keyword and positional. Keyword arguments
are assigned names in the macro definition; in the macro call, they are identified by name. Po-
sitional arguments are defined after the keyword !POSITIONAL in the macro definition; in the
macro call, they are identified by their relative position within the macro definition.
• There is no limit to the number of arguments that can be specified in a macro.

• All arguments are specified in parentheses and must be separated by slashes.

• If both keyword and positional arguments are defined in the same definition, the position-
al arguments must be defined, used in the macro body, and invoked in the macro call be-
fore the keyword arguments.

Example
* A keyword argument.

DEFINE macname (arg1 = !TOKENS(1)).
frequencies variables = !arg1.
!ENDDEFINE.

macname arg1 = V1.

• The macro definition defines macname as the macro name and arg1 as the argument. The
argument arg1 has one token and can be assigned any value in the macro call.

DEFINE—!ENDDEFINE 231

• The macro call expands the macname macro. The argument is identified by its name, arg1,
and is assigned the value V1. V1 is substituted wherever !arg1 appears in the macro body.
The macro body in this example is the FREQUENCIES command.

Example
* A positional argument.

DEFINE macname (!POSITIONAL !TOKENS(1)
/!POSITIONAL !TOKENS(2)).

frequencies variables = !1 !2.
!ENDDEFINE.

macname V1 V2 V3.

• The macro definition defines macname as the macro name with two positional arguments.
The first argument has one token and the second argument has two tokens. The tokens can
be assigned any values in the macro call.

• The macro call expands the macname macro. The arguments are identified by their posi-
tions. V1 is substituted for !1 wherever !1 appears in the macro body. V2 and V3 are sub-
stituted for !2 wherever !2 appears in the macro body. The macro body in this example is
the FREQUENCIES command.

Keyword Arguments

Keyword arguments are called with user-defined keywords that can be specified in any order.
In the macro body, the argument name is preceded by an exclamation point. On the macro
call, the argument is specified without the exclamation point.

• Keyword argument definitions contain the argument name, an equals sign, and the
!TOKENS, !ENCLOSE, !CHAREND, or !CMDEND keyword (see “Assigning Tokens to
Arguments” on p. 233).

• Argument names are limited to seven characters and cannot match the character portion
of a macro keyword, such as DEFINE, TOKENS, CHAREND, and so forth. See the syntax
chart on p. 226 for a list of macro keywords for the program.

• The keyword !POSITIONAL cannot be used in keyword argument definitions.

• Keyword arguments do not have to be called in the order they were defined.

Example
DATA LIST FILE=MAC / V1 1-2 V2 4-5 V3 7-8.

* Macro definition.
DEFINE macdef2 (arg1 = !TOKENS(1)

/arg2 = !TOKENS(1)
/arg3 = !TOKENS(1)).

frequencies variables = !arg1 !arg2 !arg3.
!ENDDEFINE.

* Macro call.
macdef2 arg1=V1 arg2=V2 arg3=V3.
macdef2 arg3=V3 arg1=V1 arg2=V2.

232 DEFINE—!ENDDEFINE

• Three arguments are defined: arg1, arg2, and arg3, each with one token. In the first macro
call, arg1 is assigned the value V1, arg2 is assigned the value V2, and arg3 is assigned the
value V3. V1, V2, and V3 are then used as the variables in the FREQUENCIES command.

• The second macro call yields the same results as the first one. With keyword arguments,
you do not need to call the arguments in the order in which they were defined.

Positional Arguments

Positional arguments must be defined in the order in which they will be specified on the mac-
ro call. In the macro body, the first positional argument is referred to by !1, the second posi-
tional argument defined is referred to by !2, and so on. Similarly, the value of the first
argument in the macro call is assigned to !1, the value of the second argument is assigned to
!2, and so on.

• Positional arguments can be collectively referred to in the macro body by specifying !*.
The !* specification concatenates arguments, separating individual arguments with a
blank.

Example
DATA LIST FILE=MAC / V1 1-2 V2 4-5 V3 7-8.

* Macro definition.
DEFINE macdef (!POS !TOKENS(1).

/!POS !TOKENS(1).
/!POS !TOKENS(1)).

frequencies variables = !1 !2 !3.
!ENDDEFINE.

* Macro call.
macdef V1 V2 V3.
macdef V3 V1 V2.

• Three positional arguments with one token each are defined. The first positional argu-
ment is referred to by !1 on the FREQUENCIES command, the second by !2, and the third
by !3.

• When the first call expands the macro, the first positional argument (!1) is assigned the
value V1, the second positional argument (!2) is assigned the value V2, and the third posi-
tional argument (!3) is assigned the value V3.

• In the second call, the first positional argument is assigned the value V3, the second posi-
tional argument is assigned the value V1, and the third positional argument is assigned the
value V2.

Example
DEFINE macdef (!POS !TOKENS(3)).
frequencies variables = !1.
!ENDDEFINE.

macdef V1 V2 V3.

DEFINE—!ENDDEFINE 233

• This example is the same as the previous one, except that it assigns three tokens to one
argument instead of assigning one token to each of three arguments. The result is the
same.

Example
DEFINE macdef (!POS !TOKENS(1)

/!POS !TOKENS(1)
/!POS !TOKENS(1)).

frequencies variables = !*.
!ENDDEFINE.

macdef V1 V2 V3.

• This is a third alternative for achieving the macro expansion shown in the previous two ex-
amples. It specifies three arguments but then joins them all together on one FREQUENCIES
command using the symbol !*.

Assigning Tokens to Arguments

A token is a character or group of characters that has a predefined function in a specified
context. The argument definition must include a keyword that indicates which tokens follow-
ing the macro name are associated with each argument.

• Any program keyword, variable name, or delimiter (a slash, comma, etc.) is a valid token.

• The arguments for a given macro can use a combination of the token keywords.

!TOKENS (n) Assign the next n tokens to the argument. The value n can be any pos-
itive integer and must be enclosed in parentheses. !TOKENS allows you
to specify exactly how many tokens are desired.

!CHAREND (’char’) Assign all tokens up to the specified character to the argument. The
character must be a one-character string specified in apostrophes and
enclosed in parentheses. !CHAREND specifies the character that ends
the argument assignment. This is useful when the number of assigned
tokens is arbitrary or not known in advance.

!ENCLOSE (’char’,’char’) Assign all tokens between the indicated characters to the argument.
The starting and ending characters can be any one-character strings,
and they do not need to be the same. The characters are each enclosed
in apostrophes and separated by a comma. The entire specification is
enclosed in parentheses. !ENCLOSE allows you to group multiple to-
kens within a specified pair of symbols. This is useful when the num-
ber of tokens to be assigned to an argument is indeterminate, or when
the use of an ending character is not sufficient.

!CMDEND Assign to the argument all the remaining text on the macro call, up to
the start of the next command. !CMDEND is useful for changing the de-
faults on an existing command. Since !CMDEND reads up to the next
command, only the last argument on the argument list can be specified
with !CMDEND. If !CMDEND is not the final argument, the arguments
following !CMDEND are read as text.

234 DEFINE—!ENDDEFINE

Example
* Keyword !TOKENS.

DEFINE macname (!POSITIONAL !TOKENS (3)).
frequencies variables = !1.
!ENDDEFINE.

macname ABC DEFG HI.

• The three tokens following macname (ABC, DEFG, and HI) are assigned to the positional
argument !1, and FREQUENCIES is then executed.

Example
* Keyword !TOKENS.

* Macro definition.
DEFINE earnrep (varrep = !TOKENS (1)).
sort cases by !varrep.
report variables = earnings

/break = !varrep
 /summary = mean.
!ENDDEFINE.

* Call the macro three times.
earnrep varrep= SALESMAN. /*First macro call
earnrep varrep = REGION. /*Second macro call
earnrep varrep = MONTH. /*Third macro call

• This macro runs a REPORT command three times, each time with a different break variable.

• The macro name is earnrep, and there is one keyword argument, varrep, which has one
token.

• In the first macro call, the token SALESMAN is substituted for !varrep when the macro is
expanded. REGION and MONTH are substituted for !varrep when the macro is expanded in
the second and third calls.

Example
* Keyword !CHAREND’.

DEFINE macname (!POSITIONAL !CHAREND (’/’)
/!POSITIONAL !TOKENS(2)).

frequencies variables = !1.
correlations variables= !2.
!ENDDEFINE.

macname A B C D / E F.

• When the macro is called, all tokens up to the slash (A, B, C, and D) are assigned to the
positional argument !1. E and F are assigned to the positional argument !2.

DEFINE—!ENDDEFINE 235

Example
* Keyword !CHAREND.

DEFINE macname (!POSITIONAL !CHAREND (’/’)).
frequencies variables = !1.
!ENDDEFINE.

macname A B C D / E F.

• Although E and F are not part of the positional argument and not used in the macro expan-
sion, the program still reads them as text and interprets them in relation to where the macro
definition ends. In this example, macro definition ends after the expanded variable list (D).
E and F are names of variables. Thus, E and F are added to the variable list and FREQUEN-
CIES is executed with six variables: A, B, C, D, E, and F.

Example
* Keyword !ENCLOSE.

DEFINE macname (!POSITIONAL !ENCLOSE(’(’,’)’)).
frequencies variables = !1

/statistics = default skewness.
!ENDDEFINE.

macname (A B C) D E.

• When the macro is called, the three tokens enclosed in parentheses, A, B, and C, are as-
signed to the positional argument !1 in the macro body.

• After macro expansion is complete, the program reads the remaining characters on the
macro call as text. In this instance, the macro definition ends with keyword SKEWNESS
on the STATISTICS subcommand. Adding variable names to the STATISTICS subcommand
is not valid syntax. The program generates a warning message but is still able to execute
the frequencies command. Frequency tables and the specified statistics are generated for
the variables A, B, and C.

Example
* Keyword !CMDEND’.

DEFINE macname (!POSITIONAL !TOKENS(2)
/!POSITIONAL !CMDEND).

frequencies variables = !1.
correlations variables= !2.
!ENDDEFINE.

macname A B C D E.

• When the macro is called, the first two tokens following macname (A and B) are assigned to
the positional argument !1. C, D, and E are assigned to the positional argument !2. Thus, the
variables used for FREQUENCIES are A and B, and the variables used for CORRELATION are
C, D, and E.

236 DEFINE—!ENDDEFINE

Example
* Incorrect order for !CMDEND.

DEFINE macname (!POSITIONAL !CMDEND
/!POSITIONAL !tokens(2)).

frequencies variables = !1.
correlations variables= !2.
!ENDDEFINE.

macname A B C D E.

• When the macro is called, all five tokens, A, B, C, D, and E, are assigned to the first posi-
tional argument. No variables are included on the variable list for CORRELATIONS, caus-
ing the program to generate an error message. The previous example declares the
arguments in the correct order.

Example
* Using !CMDEND.
SUBTITLE ’CHANGING DEFAULTS ON A COMMAND’.

DEFINE myfreq (!POSITIONAL !CMDEND).
frequencies !1

/statistics=default skewness /* Modify default statistics.
!ENDDEFINE.

myfreq VARIABLES = A B /HIST.

• The macro myfreq contains options for the FREQUENCIES command. When the macro is
called, myfreq is expanded to perform a FREQUENCIES analysis on the variables A and B.
The analysis produces default statistics and the skewness statistic, plus a histogram, as re-
quested on the macro call.

Example
* Keyword arguments: Using a combination of token keywords.

DATA LIST FREE / A B C D E.
DEFINE macdef3 (arg1 = !TOKENS(1)

/arg2 = !ENCLOSE (’(’,’)’)
/arg3 = !CHAREND(’%’)).

frequencies variables = !arg1 !arg2 !arg3.
!ENDDEFINE.
macdef arg1 = A arg2=(B C) arg3=DE %.

• Because arg1 is defined with the !TOKENS keyword, the value for arg1 is simply specified
as A. The value for arg2 is specified in parentheses, as indicated by !ENCLOSE. The value
for arg3 is followed by a percent sign, as indicated by !CHAREND.

Defining Defaults

The optional !DEFAULT keyword in the macro definition establishes default settings for
arguments.

DEFINE—!ENDDEFINE 237

!DEFAULT Default argument. After !DEFAULT, specify the value you want to use as a de-
fault for that argument. A default can be specified for each argument.

Example
DEFINE macdef (arg1 = !DEFAULT (V1) !TOKENS(1)

/arg2 = !TOKENS(1)
/arg3 = !TOKENS(1)).

frequencies variables = !arg1 !arg2 !arg3.
!ENDDEFINE.

macdef arg2=V2 arg3=V3.

• V1 is defined as the default value for argument arg1. Since arg1 is not specified on the
macro call, it is set to V1.

• If !DEFAULT (V1) were not specified, the value of arg1 would be set to a null string.

Controlling Expansion

!NOEXPAND indicates that an argument should not be expanded when the macro is called.

!NOEXPAND Do not expand the specified argument. !NOEXPAND applies to a single argu-
ment and is useful only when a macro calls another macro (imbedded macros).

Macro Directives

!ONEXPAND and !OFFEXPAND determine whether macro expansion is on or off. !ONEXPAND
activates macro expansion and !OFFEXPAND stops macro expansion. All symbols between
!OFFEXPAND and !ONEXPAND in the macro definition will not be expanded when the macro
is called.

!ONEXPAND Turn macro expansion on.

!OFFEXPAND Turn macro expansion off. !OFFEXPAND is effective only when SET
MEXPAND is ON (the default).

Macro Expansion in Comments

When macro expansion is on, a macro is expanded when its name is specified in a comment
line beginning with *. To use a macro name in a comment, specify the comment within slashes
and asterisks (/*...*/) to avoid unwanted macro expansion. (See COMMENT.)

String Manipulation Functions

String manipulation functions process one or more character strings and produce either a new
character string or a character representation of a numeric result.

• The result of any string manipulation function is treated as a character string.

238 DEFINE—!ENDDEFINE

• The arguments to string manipulation functions can be strings, variables, or even other
macros. A macro argument or another function can be used in place of a string.

• The strings within string manipulation functions must be either single tokens, such as
ABC, or delimited by apostrophes or quotation marks, as in ‘A B C’. See Table 1 for a set
of expressions and their results.

!LENGTH (str) Return the length of the specified string. The result is a character
representation of the string length. !LENGTH(abcdef) returns 6.
If the string is specified with apostrophes around it, each apos-
trophe adds 1 to the length. !LENGTH (‘abcdef’) returns 8. If an
argument is used in place of a string and it is set to null, this
function will return 0.

!CONCAT(str1,str2 . . .) Return a string that is the concatenation of the strings. For ex-
ample, !CONCAT (abc,def) returns abcdef.

!SUBSTR (str,from,[length]) Return a substring of the specified string. The substring starts at
the from position and continues for the specified length. If the
length is not specified, the substring ends at the end of the input
string. For example, !SUBSTR (abcdef, 3, 2) returns cd.

!INDEX (haystack,needle) Return the position of the first occurrence of the needle in the
haystack. If the needle is not found in the haystack, the function
returns 0. !INDEX (abcdef,def) returns 4.

Table 1 Expressions and results

Expression Result

!UPCASE(abc) ABC
!UPCASE(‘abc’) ABC
!UPCASE(a b c) error
!UPCASE(‘a b c’) A B C
!UPCASE(a/b/c) error
!UPCASE(‘a/b/c’) A/B/C
!UPCASE(!CONCAT(a,b,c)) ABC
!UPCASE(!CONCAT(‘a’,‘b’,‘c’)) ABC
!UPCASE(!CONCAT(a, b, c)) ABC
!UPCASE(!CONCAT(‘a ’,‘b ’,‘c ’)) A B C
!UPCASE(!CONCAT(‘a,b,c’)) A,B,C
!QUOTE(abc) ‘ABC’
!QUOTE(‘abc’) abc
!QUOTE(‘Bill”s’) ‘Bill”s’
!QUOTE(“Bill’s”) “Bill’s”
!QUOTE(Bill’s) error
!QUOTE(!UNQUOTE(‘Bill”s’)) ‘Bill”s’

DEFINE—!ENDDEFINE 239

!HEAD (str) Return the first token within a string. The input string is not
changed. !HEAD (‘a b c’) returns a.

!TAIL (str) Return all tokens except the head token. The input string is not
changed. !TAIL(‘a b c’) returns b c.

!QUOTE (str) Put apostrophes around the argument. !QUOTE replicates any
imbedded apostrophe. !QUOTE(abc) returns ‘abc’. If !1 equals
Bill’s, !QUOTE(!1) returns ‘Bill’’s’.

!UNQUOTE (str) Remove quotes and apostrophes from the enclosed string. If !1
equals ‘abc’, !UNQUOTE(!1) is abc. Internal paired quotes are
unpaired; if !1 equals ‘Bill”s’, !UNQUOTE(!1) is Bill’s. The spec-
ification !UNQUOTE(!QUOTE(Bill)) returns Bill.

!UPCASE (str) Convert all lowercase characters in the argument to uppercase.
!UPCASE(‘abc def’) returns ABC DEF.

!BLANKS (n) Generate a string containing the specified number of blanks.
The n specification must be a positive integer. !BLANKS(5) re-
turns a string of five blank spaces. Unless the blanks are quoted,
they cannot be processed, since the macro facility compresses
blanks.

!NULL Generate a string of length 0. This can help determine whether
an argument was ever assigned a value, as in !IF (!1 !EQ !NULL)
!THEN....

!EVAL (str) Scan the argument for macro calls. During macro definition, an
argument to a function or an operand in an expression is not
scanned for possible macro calls unless the !EVAL function is
used. It returns a string that is the expansion of its argument. For
example, if mac1 is a macro, then !EVAL(mac1) returns the ex-
pansion of mac1. If mac1 is not a macro, !EVAL(mac1) returns
mac1.

SET Subcommands for Use with Macro

Four subcommands on the SET command were designed for use with the macro facility.

MPRINT Display a list of commands after macro expansion. The specification on
MPRINT is YES or NO (alias ON or OFF). By default, the output does not in-
clude a list of commands after macro expansion (MPRINT NO). The MPRINT
subcommand on SET is independent of the PRINTBACK command.

MEXPAND Macro expansion. The specification on MEXPAND is YES or NO (alias ON or
OFF). By default, MEXPAND is on. SET MEXPAND OFF prevents macro ex-
pansion. Specifying SET MEXPAND ON reestablishes macro expansion.

MNEST Maximum nesting level for macros. The default number of levels that can be
nested is 50. The maximum number of levels depends on storage capacity.

240 DEFINE—!ENDDEFINE

MITERATE Maximum loop iterations permitted in macro expansions. The default num-
ber of iterations is 1000.

Restoring SET Specifications

The PRESERVE and RESTORE commands bring more flexibility and control over SET.
PRESERVE and RESTORE are available generally within the program but are especially
useful with macros.
• The settings of all SET subcommands—those set explicitly and those set by default (ex-

cept MEXPAND)—are saved with PRESERVE. PRESERVE has no further specifications.

• With RESTORE, all SET subcommands are changed to what they were when the PRESERVE
command was executed. RESTORE has no further specifications.

• PRESERVE...RESTORE sequences can be nested up to five levels.

PRESERVE Store the SET specifications that are in effect at this point in the session.

RESTORE Restore the SET specifications to what they were when PRESERVE was
specified.

Example
* Two nested levels of preserve and restore’.

DEFINE macdef ().
preserve.
set format F5.3.
descriptives v1 v2.
+ preserve.
set format F3.0 blanks=999.
descriptives v3 v4.
+ restore.
descriptives v5 v6.
restore.
!ENDDEFINE.

• The first PRESERVE command saves all the current SET conditions. If none have been
specified, the default settings are saved.

• Next, the format is set to F5.3 and descriptive statistics for V1 and V2 are obtained.

• The second PRESERVE command saves the F5.3 format setting and all other settings in
effect.

• The second SET command changes the format to F3.0 and sets BLANKS to 999 (the default
is SYSMIS). Descriptive statistics are then obtained for V3 and V4.

• The first RESTORE command restores the format to F5.3 and BLANKS to the default, the
setting in effect at the second PRESERVE. Descriptive statistics are then obtained for V5
and V6.

• The last RESTORE restores the settings in effect when the first PRESERVE was specified.

DEFINE—!ENDDEFINE 241

Conditional Processing

The !IF construct specifies conditions for processing. The syntax is as follows:

!IF (expression) !THEN statements
[!ELSE statements]

!IFEND

• !IF, !THEN, and !IFEND are all required. !ELSE is optional.

• If the result of the expression is true, the statements following !THEN are executed. If the
result of the expression is false and !ELSE is specified, the statements following !ELSE are
executed. Otherwise, the program continues.

• Valid operators for the expressions include !EQ, !NE, !GT, !LT, !GE, !LE, !OR, !NOT, and
!AND, or =, ~= (¬=), >, <, >=, <=, |, ~ (¬), and & (see “Relational Operators” on p. 46).

• When a macro is expanded, conditional processing constructs are interpreted after argu-
ments are substituted and functions are executed.

• !IF statements can be nested whenever necessary. Parentheses can be used to specify the
order of evaluation. The default order is the same as for transformations: !NOT has prece-
dence over !AND, which has precedence over !OR.

Looping Constructs

Looping constructs accomplish repetitive tasks. Loops can be nested to whatever depth is re-
quired, but loops cannot be crossed. The macro facility has two looping constructs: the index
loop (DO loop) and the list-processing loop (DO IN loop).

• When a macro is expanded, looping constructs are interpreted after arguments are substi-
tuted and functions are executed.

Index Loop

The syntax of an index loop is as follows:

!DO !var = start !TO finish [!BY step]
statements

!BREAK
!DOEND

• The indexing variable is !var and must begin with an exclamation point.

• The start, finish, and step values must be numbers or expressions that evaluate to numbers.

• The loop begins at the start value and continues until it reaches the finish value (unless a
!BREAK statement is encountered). The step value is optional and can be used to specify
a subset of iterations. If start is set to 1, finish to 10, and step to 3, the loop will be executed
four times with the index variable assigned values 1, 4, 7, and 10.

• The statements can be any valid commands or macro keywords. !DOEND specifies the end
of the loop.

• !BREAK is an optional specification. It can be used in conjunction with conditional pro-
cessing to exit the loop.

242 DEFINE—!ENDDEFINE

Example
DEFINE macdef (arg1 = !TOKENS(1)
 /arg2 = !TOKENS(1)).
!DO !i = !arg1 !TO !arg2.
frequencies variables = !CONCAT(var,!i).
!DOEND.
!ENDDEFINE.
macdef arg1 = 1 arg2 = 3.

• The variable !i is initially assigned the value 1 (arg1) and is incremented until it equals 3
(arg2), at which point the loop ends.

• The first loop concatenates var and the value for !I, which is 1 in the first loop. The second
loop concatenates var and 2, and the third concatenates var and 3. The result is that FREQUEN-
CIES is executed three times, with variables VAR1, VAR2, and VAR3, respectively.

List-processing Loop

The syntax of a list-processing loop is as follows:

!DO !var !IN (list)
statements

!BREAK
!DOEND

• The !DO and !DOEND statements begin and end the loop. !BREAK is used to exit the loop.

• The !IN function requires one argument, which must be a list of items. The number of
items on the list determines the number of iterations. At each iteration, the index variable
!var is set to each item on the list.

• The list can be any expression, although it is usually a string. Only one list can be speci-
fied in each list-processing loop.

Example
DEFINE macdef (!POS !CHAREND(’/’)).
!DO !i !IN (!1).
frequencies variables = !i.
!DOEND.
!ENDDEFINE.
macdef VAR1 VAR2 VAR3 /.

• The macro call assigns three variables, VAR1, VAR2, and VAR3, to the positional argument
!1. Thus, the loop completes three iterations.

• In the first iteration, !i is set to value VAR1. In the second and third iterations, !I is set to
VAR2 and VAR3, respectively. Thus, FREQUENCIES is executed three times, respectively
with VAR1, VAR2, and VAR3.

DEFINE—!ENDDEFINE 243

Example
DEFINE macdef (!POS !CHAREND(’/’)).
!DO !i !IN (!1).
sort cases by !i.
report var = earnings

/break = !i
/summary = mean.

!DOEND.
!ENDDEFINE.

macdef SALESMAN REGION MONTH /.

• The positional argument !1 is assigned the three variables SALESMAN, REGION, and
MONTH. The loop is executed three times and the index variable !i is set to each of the vari-
ables in succession. The macro creates three reports.

Direct Assignment of Macro Variables

The macro command !LET assigns values to macro variables. The syntax is as follows:

!LET !var = expression

• The expression must be either a single token or enclosed in parentheses.

• The macro variable !var cannot be a macro keyword (see the syntax chart on p. 226 for a
list of macro keywords), and it cannot be the name of one of the arguments within the
macro definition. Thus, !LET cannot be used to change the value of an argument.

• The macro variable !var can be a new variable or one previously assigned by a !DO com-
mand or another !LET command.

Example
!LET !a = 1.
!LET !b = !CONCAT(ABC,!SUBSTR(!1,3,1),DEF).
!LET !c = (!2 ~= !NULL).

• The first !LET sets !a equal to 1.

• The second !LET sets !b equal to ABC followed by 1 character taken from the third posi-
tion of !1 followed by DEF.

• The last !LET sets !c equal to 0 (false) if !2 is a null string or to 1 (true) if !2 is not a null
string.

244

DESCRIPTIVES

DESCRIPTIVES [VARIABLES=] varname[(zname)] [varname...]

 [/MISSING={VARIABLE**} [INCLUDE]]
 {LISTWISE }

 [/SAVE]

[/STATISTICS=[DEFAULT**] [MEAN**] [MIN**] [SKEWNESS]]
 [STDDEV**] [SEMEAN] [MAX**] [KURTOSIS]
 [VARIANCE] [SUM] [RANGE] [ALL]

 [/SORT=[{MEAN }] [{(A)}]]
 {SMEAN } {(D)}
 {STDDEV }
 {VARIANCE}
 {KURTOSIS}
 {SKEWNESS}
 {RANGE }
 {MIN }
 {MAX }
 {SUM }
 {NAME }

**Default if the subcommand is omitted.

Example:
DESCRIPTIVES VARIABLES=FOOD RENT, APPL TO COOK, TELLER, TEACHER

/STATISTICS=VARIANCE DEFAULT
/MISSING=LISTWISE.

Overview

DESCRIPTIVES computes univariate statistics, including the mean, standard deviation, mini-
mum, and maximum, for numeric variables. Because it does not sort values into a frequency
table, DESCRIPTIVES is an efficient means of computing descriptive statistics for continuous
variables. Other procedures that display descriptive statistics include FREQUENCIES,
MEANS, and EXAMINE.

Options

Z Scores. You can create new variables that contain Z scores (standardized deviation scores
from the mean) and add them to the working data file by specifying Z-score names on the
VARIABLES subcommand or by using the SAVE subcommand.

Statistical Display. Optional statistics available with the STATISTICS subcommand include the
standard error of the mean, variance, kurtosis, skewness, range, and sum. DESCRIPTIVES
does not compute the median or mode (see FREQUENCIES or EXAMINE).

Display Order. You can list variables in ascending or descending alphabetical order or by the
numerical value of any of the available statistics using the SORT subcommand.

DESCRIPTIVES 245

Basic Specification

The basic specification is the VARIABLES subcommand with a list of variables. The actual
keyword VARIABLES can be omitted. All cases with valid values for a variable are included
in the calculation of statistics for that variable. Statistics include the mean, standard devia-
tion, minimum, maximum, and number of cases with valid values.

Subcommand Order

• Subcommands can be used in any order.

Operations

• If a string variable is specified on the variable list, no statistics are displayed for that variable.

• If there is insufficient memory available to calculate statistics for all variables requested,
DESCRIPTIVES truncates the variable list.

Example

DESCRIPTIVES VARIABLES=FOOD RENT, APPL TO COOK, TELLER, TEACHER
/STATISTICS=VARIANCE DEFAULT
/MISSING=LISTWISE.

• DESCRIPTIVES requests statistics for the variables FOOD, RENT, TELLER, TEACHER, and
all the variables between and including APPL and COOK in the working data file.

• STATISTICS requests the variance and the default statistics: mean, standard deviation,
minimum, and maximum.

• MISSING specifies that cases with missing values for any variable on the variable list will
be omitted from the calculation of statistics for all variables.

Example

DESCRIPTIVES VARS=ALL.

• DESCRIPTIVES requests statistics for all variables in the working file.

• Because no STATISTICS subcommand is included, only the mean, standard deviation,
minimum, and maximum are displayed.

VARIABLES Subcommand

VARIABLES names the variables for which you want to compute statistics. The actual key-
word VARIABLES can be omitted.

• Keyword ALL can be used to refer to all user-defined variables in the working data file.

• Only one variable list can be specified.

246 DESCRIPTIVES

Z Scores

The Z-score transformation standardizes variables to the same scale, producing new vari-
ables with a mean of 0 and a standard deviation of 1. These variables are added to the work-
ing data file.

• To obtain Z scores for all specified variables, use the SAVE subcommand.

• To obtain Z scores for a subset of variables, name the new variable in parentheses following
the source variable on the VARIABLES subcommand and do not use the SAVE subcommand.

• Specify new names individually; a list in parentheses is not recognized.

• The new variable name can be any acceptable eight-character name that is not already
part of the working data file.

Example
DESCRIPTIVES VARIABLES=NTCSAL NTCPUR (PURCHZ) NTCPRI (PRICEZ).

• DESCRIPTIVES creates Z-score variables named PURCHZ and PRICEZ for NTCPUR and
NTCPRI, respectively. No Z-score variable is created for NTCSAL.

SAVE Subcommand

SAVE creates a Z-score variable for each variable specified on the VARIABLES subcommand.
The new variables are added to the working data file.

• When DESCRIPTIVES creates new Z-score variables, it displays the source variable
names, the new variable names, and their labels in the Notes table.

• DESCRIPTIVES automatically supplies variable names for the new variables. The new
variable name is created by prefixing the letter Z to the first seven characters of the source
variable name. For example, ZNTCPRI is the Z-score variable for NTCPRI.

• If the default naming convention duplicates variable names in the working data file,
DESCRIPTIVES uses an alternative naming convention: first ZSC001 through ZSC099,
then STDZ01 through STDZ09, then ZZZZ01 through ZZZZ09, and then ZQZQ01 through
ZQZQ09.

• Variable labels are created by prefixing ZSCORE to the first 31 characters of the source
variable label. If the alternative naming convention is used, DESCRIPTIVES prefixes
ZSCORE(varname) to the first 31 characters of the label. If the source variable does not
have a label, DESCRIPTIVES uses ZSCORE(varname) for the label.

• If you specify new names on the VARIABLES subcommand and use the SAVE subcom-
mand, DESCRIPTIVES creates one new variable for each variable on the VARIABLES sub-
command, using default names for variables not assigned names on VARIABLES.

• If at any time you want to change any of the variable names, whether those DESCRIPTIVES
created or those you previously assigned, you can do so with the RENAME VARIABLES
command.

DESCRIPTIVES 247

Example
DESCRIPTIVES VARIABLES=ALL

/SAVE.

• SAVE creates a Z-score variable for all variables in the working file. All Z-score variables
receive the default name.

Example
DESCRIPTIVES VARIABLES=NTCSAL NTCPUR (PURCHZ) NTCPRI (PRICEZ)

/SAVE.

• DESCRIPTIVES creates three Z-score variables named ZNTCSAL (the default name),
PURCHZ, and PRICEZ.

Example
DESCRIPTIVES VARIABLES=SALARY86 SALARY87 SALARY88

/SAVE.

• In this example, the default naming convention would produce duplicate names. Thus, the
names of the three Z-score variables are ZSALARY8, ZSC001, and ZSC002.

STATISTICS Subcommand

By default, DESCRIPTIVES displays the mean, standard deviation, minimum, and maximum.
Use the STATISTICS subcommand to request other statistics.

• When you use STATISTICS, DESCRIPTIVES displays only those statistics you request.

• The keyword ALL obtains all statistics.
• You can specify the keyword DEFAULT to obtain the default statistics without having to

name MEAN, STDDEV, MIN, and MAX.

• The median and mode, which are available in FREQUENCIES and EXAMINE, are not avail-
able in DESCRIPTIVES. These statistics require that values be sorted, and DESCRIPTIVES
does not sort values (the SORT subcommand does not sort values, it simply lists variables
in the order you request).

• If you request a statistic that is not available, DESCRIPTIVES issues an error message and
the command is not executed.

MEAN Mean.

SEMEAN Standard error of the mean.

STDDEV Standard deviation.

VARIANCE Variance.

KURTOSIS Kurtosis and standard error of kurtosis.

SKEWNESS Skewness and standard error of skewness.

RANGE Range.

MIN Minimum observed value.

248 DESCRIPTIVES

MAX Maximum observed value.

SUM Sum.

DEFAULT Mean, standard deviation, minimum, and maximum. These are the default
statistics.

ALL All statistics available in DESCRIPTIVES.

SORT Subcommand

By default, DESCRIPTIVES lists variables in the order they are specified on VARIABLES. Use
SORT to list variables in ascending or descending alphabetical order of variable name or in as-
cending or descending order of numeric value of any of the statistics.

• If you specify SORT without any keywords, variables are sorted in ascending order of the
mean.

• SORT can sort variables by the value of any of the statistics available with DESCRIPTIVES,
but only those statistics specified on STATISTICS (or the default statistics) are displayed.

Only one of the following keywords can be specified on SORT:

MEAN Sort by mean. This is the default when SORT is specified without a keyword.

SEMEAN Sort by standard error of the mean.

STDDEV Sort by standard deviation.

VARIANCE Sort by variance.

KURTOSIS Sort by kurtosis.

SKEWNESS Sort by skewness.

RANGE Sort by range.

MIN Sort by minimum observed value.

MAX Sort by maximum observed value.

SUM Sort by sum.

NAME Sort by variable name.

Sort order can be specified in parentheses following the specified keyword:

A Sort in ascending order. This is the default when SORT is specified without keywords.

D Sort in descending order.

DESCRIPTIVES 249

Example
DESCRIPTIVES VARIABLES=A B C
/STATISTICS=DEFAULT RANGE
/SORT=RANGE (D).

• DESCRIPTIVES sorts variables A, B, and C in descending order of range and displays the
mean, standard deviation, minimum and maximum values, range, and the number of valid
cases.

MISSING Subcommand

MISSING controls missing values.

• By default, DESCRIPTIVES deletes cases with missing values on a variable-by-variable
basis. A case with a missing value for a variable will not be included in the summary sta-
tistics for that variable, but the case will be included for variables where it is not missing.

• The VARIABLE and LISTWISE keywords are alternatives; however, each can be specified
with INCLUDE.

• When either the keyword VARIABLE or the default missing-value treatment is used,
DESCRIPTIVES reports the number of valid cases for each variable. It always displays
the number of cases that would be available if listwise deletion of missing values had
been selected.

VARIABLE Exclude cases with missing values on a variable-by-variable basis. This is
the default.

LISTWISE Exclude cases with missing values listwise. Cases with missing values for
any variable named are excluded from the computation of statistics for all
variables.

INCLUDE Include user-missing values.

250

DISCRIMINANT

DISCRIMINANT GROUPS=varname(min,max) /VARIABLES=varlist

 [/SELECT=varname(value)]

 [/ANALYSIS=varlist[(level)] [varlist...]]

 [/METHOD={DIRECT**}] [/TOLERANCE={0.001}]
 {WILKS } { n }
 {MAHAL }
 {MAXMINF }
 {MINRESID}
 {RAO }

 [/MAXSTEPS={n}]

 [/FIN={3.84**}] [/FOUT={2.71**}] [/PIN={n}]
 { n } { n }

 [/POUT={n}] [/VIN={0**}]
 { n }

 [/FUNCTIONS={g-1,100.0,1.0**}] [/PRIORS={EQUAL** }]
 {n1 , n2 ,n3 } {SIZE }
 {value list}
 [/SAVE=[CLASS[=varname]] [PROBS[=rootname]]

 [SCORES[=rootname]]]

 [/ANALYSIS=...]

 [/MISSING={EXCLUDE**}]
 {INCLUDE }

 [/MATRIX=[OUT({* })] [IN({* })]]
 {file} {file}

 [/HISTORY={STEP**}]
 {NONE }

 [/ROTATE={NONE** }]
 {COEFF }
 {STRUCTURE}

 [/CLASSIFY={NONMISSING } {POOLED } [MEANSUB]]
 {UNSELECTED } {SEPARATE}
 {UNCLASSIFIED}

 [/STATISTICS=[MEAN] [COV] [FPAIR] [RAW] [STDDEV]
 [GCOV] [UNIVF] [COEFF] [CORR] [TCOV]
 [BOXM] [TABLE] [CROSSVALID]
 [ALL]]

 [/PLOT=[MAP] [SEPARATE] [COMBINED] [CASES[(n)]] [ALL]]

**Default if subcommand or keyword is omitted.

Example:
DISCRIMINANT GROUPS=OUTCOME (1,4)

/VARIABLES=V1 TO V7
/SAVE CLASS=PREDOUT.

DISCRIMINANT 251

Overview

DISCRIMINANT performs linear discriminant analysis for two or more groups. The goal of
discriminant analysis is to classify cases into one of several mutually exclusive groups based
on their values for a set of predictor variables. In the analysis phase, a classification rule is
developed using cases for which group membership is known. In the classification phase, the
rule is used to classify cases for which group membership is not known. The grouping
variable must be categorical, and the independent (predictor) variables must be interval or
dichotomous, since they will be used in a regression-type equation.

Options

Variable Selection Method. In addition to the direct-entry method, you can specify any of
several stepwise methods for entering variables into the discriminant analysis using the
METHOD subcommand. You can set the values for the statistical criteria used to enter vari-
ables into the equation using the TOLERANCE, FIN, PIN, FOUT, POUT, and VIN subcommands,
and you can specify inclusion levels on the ANALYSIS subcommand. You can also specify the
maximum number of steps in a stepwise analysis using the MAXSTEPS subcommand.

Case Selection. You can select a subset of cases for the analysis phase using the SELECT sub-
command.

Prior Probabilities. You can specify prior probabilities for membership in a group using the
PRIORS subcommand. Prior probabilities are used in classifying cases.

New Variables. You can add new variables to the working data file containing the predicted
group membership, the probability of membership in each group, and discriminant function
scores using the SAVE subcommand.

Classification Options. With the CLASSIFY subcommand, you can classify only those cases
that were not selected for inclusion in the discriminant analysis, or only those cases whose
value for the grouping variable was missing or fell outside the range analyzed. In addition,
you can classify cases based on the separate-group covariance matrices of the functions in-
stead of the pooled within-groups covariance matrix.

Statistical Display. You can request any of a variety of statistics on the STATISTICS subcom-
mand. You can rotate the pattern or structure matrices using the ROTATE subcommand. You
can compare actual with predicted group membership using a classification results table re-
quested with the STATISTICS subcommand or compare any of several types of plots or histo-
grams using the PLOT subcommand.

Basic Specification

The basic specification requires two subcommands:
• GROUPS specifies the variable used to group cases.

• VARIABLES specifies the predictor variables.

By default, DISCRIMINANT enters all variables simultaneously into the discriminant equation
(the DIRECT method), provided that they are not so highly correlated that multicollinearity

252 DISCRIMINANT

problems arise. Default output includes analysis case processing summary, valid numbers of
cases in group statistics, variables failing tolerance test, a summary of canonical discriminant
functions, standardized canonical discriminant function coefficients, a structure matrix
showing pooled within-groups correlations between the discriminant functions and the pre-
dictor variables, and functions at group centroids.

Subcommand Order

• The GROUPS, VARIABLES, and SELECT subcommands must precede all other subcom-
mands and may be entered in any order.

• The analysis block follows, which may include ANALYSIS, METHOD, TOLERANCE,
MAXSTEPS, FIN, FOUT, PIN, POUT, VIN, FUNCTIONS, PRIORS, and SAVE. Each analysis
block performs a single analysis. To do multiple analyses, specify multiple analysis blocks.

• The keyword ANALYSIS is optional for the first analysis block. Each new analysis block
must begin with an ANALYSIS subcommand. Remaining subcommands in the block may
be used in any order and apply only to the analysis defined within the same block.

• No analysis block subcommands can be specified after any of the global subcommands,
which apply to all analysis blocks. The global subcommands are MISSING, MATRIX,
HISTORY, ROTATE, CLASSIFY, STATISTICS, and PLOT. If an analysis block subcommand
appears after a global subcommand, the program displays a warning and ignores it.

Syntax Rules

• Only one GROUPS, one SELECT, and one VARIABLES subcommand can be specified per
DISCRIMINANT command.

Operations

• DISCRIMINANT first estimates one or more discriminant functions that best distinguish
among the groups.

• Using these functions, DISCRIMINANT then classifies cases into groups (if classification
output is requested).

• If more than one analysis block is specified, the above steps are repeated for each block.

Limitations

• Pairwise deletion of missing data is not available.

Example

DISCRIMINANT GROUPS=OUTCOME (1,4)
/VARIABLES=V1 TO V7
/SAVE CLASS=PREDOUT
/STATISTICS=COV GCOV TCOV.

DISCRIMINANT 253

• Only cases with values 1, 2, 3, or 4 for the grouping variable GROUPS will be used in
computing the discriminant functions.

• The variables in the working data file between and including V1 and V7 will be used to
compute the discriminant functions and to classify cases.

• Predicted group membership will be saved in variable PREDOUT.

• In addition to the default output, the STATISTICS subcommand requests the pooled within-
groups covariance matrix and the group and total covariance matrices.

• Since SAVE is specified, DISCRIMINANT also displays a classification processing summa-
ry table and a prio probabilities for groups table.

GROUPS Subcommand

GROUPS specifies the name of the grouping variable, which defines the categories or groups,
and a range of categories.

• GROUPS is required and can be specified only once.

• The specification consists of a variable name followed by a range of values in parenthe-
ses.

• Only one grouping variable may be specified; its values must be integers. To use a string
variable as the grouping variable, first use AUTORECODE to convert the string values to
integers and then specify the recoded variable as the grouping variable.

• Empty groups are ignored and do not affect calculations. For example, if there are no
cases in group 2, the value range (1, 5) will define only four groups.

• Cases with values outside the value range or missing are ignored during the analysis phase
but are classified during the classification phase.

VARIABLES Subcommand

VARIABLES identifies the predictor variables, which are used to classify cases into the groups
defined on the GROUPS subcommand. The list of variables follows the usual conventions for
variable lists.

• VARIABLES is required and can be specified only once. Use the ANALYSIS subcommand
to obtain multiple analyses.

• Only numeric variables can be used.

• Variables should be suitable for use in a regression-type equation, either measured at the
interval level or dichotomous.

SELECT Subcommand

SELECT limits cases used in the analysis phase to those with a specified value for any one
variable.

• Only one SELECT subcommand is allowed. It can follow the GROUPS and VARIABLES
subcommands but must precede all other subcommands.

254 DISCRIMINANT

• The specification is a variable name and a single integer value in parentheses. Multiple
variables or values are not permitted.

• The selection variable does not have to be specified on the VARIABLES subcommand.

• Only cases with the specified value for the selection variable are used in the analysis
phase.

• All cases, whether selected or not, are classified by default. Use CLASSIFY=UNSELECTED
to classify only the unselected cases.

• When SELECT is used, classification statistics are reported separately for selected and
unselected cases, unless CLASSIFY=UNSELECTED is used to restrict classification.

Example
DISCRIMINANT GROUPS=APPROVAL(1,5)

/VARS=Q1 TO Q10
/SELECT=COMPLETE(1)
/CLASSIFY=UNSELECTED.

• Using only cases with value 1 for the variable COMPLETE, DISCRIMINANT estimates a
function of Q1 to Q10 that discriminates between the categories 1 to 5 of the grouping
variable APPROVAL.

• Because CLASSIFY=UNSELECTED is specified, the discriminant function will be used to
classify only the unselected cases (cases for which COMPLETE does not equal 1).

ANALYSIS Subcommand

ANALYSIS is used to request several different discriminant analyses using the same grouping
variable, or to control the order in which variables are entered into a stepwise analysis.
• ANALYSIS is optional for the first analysis block. By default, all variables specified on the

VARIABLES subcommand are included in the analysis.

• The variables named on ANALYSIS must first be specified on the VARIABLES subcom-
mand.

• The keyword ALL includes all variables on the VARIABLES subcommand.

• If the keyword TO is used to specify a list of variables on an ANALYSIS subcommand, it
refers to the order of variables on the VARIABLES subcommand, which is not necessarily
the order of variables in the working data file.

Example
DISCRIMINANT GROUPS=SUCCESS(0,1)

/VARIABLES=V10 TO V15, AGE, V5
/ANALYSIS=V15 TO V5
/ANALYSIS=ALL.

• The first analysis will use the variables V15, AGE, and V5 to discriminate between cases
where SUCCESS equals 0 and SUCCESS equals 1.

• The second analysis will use all variables named on the VARIABLES subcommand.

DISCRIMINANT 255

Inclusion Levels

When you specify a stepwise method on the METHOD subcommand (any method other than
the default direct-entry method), you can control the order in which variables are considered
for entry or removal by specifying inclusion levels on the ANALYSIS subcommand. By
default, all variables in the analysis are entered according to the criterion requested on the
METHOD subcommand.

• An inclusion level is an integer between 0 and 99, specified in parentheses after a variable
or list of variables on the ANALYSIS subcommand.

• The default inclusion level is 1.

• Variables with higher inclusion levels are considered for entry before variables with lower
inclusion levels.

• Variables with even inclusion levels are entered as a group.

• Variables with odd inclusion levels are entered individually, according to the stepwise
method specified on the METHOD subcommand.

• Only variables with an inclusion level of 1 are considered for removal. To make a variable
with a higher inclusion level eligible for removal, name it twice on the ANALYSIS subcom-
mand, first specifying the desired inclusion level and then an inclusion level of 1.

• Variables with an inclusion level of 0 are never entered. However, the statistical criterion
for entry is computed and displayed.

• Variables that fail the tolerance criterion are not entered regardless of their inclusion level.

The following are some common methods of entering variables and the inclusion levels that
could be used to achieve them. These examples assume that one of the stepwise methods is
specified on the METHOD subcommand (otherwise, inclusion levels have no effect).

Direct. ANALYSIS=ALL(2) forces all variables into the equation. (This is the default and can be
requested with METHOD=DIRECT or simply by omitting the METHOD subcommand.)

Stepwise. ANALYSIS=ALL(1) yields a stepwise solution in which variables are entered and re-
moved in stepwise fashion. (This is the default when anything other than DIRECT is specified
on the METHOD subcommand.)

Forward. ANALYSIS=ALL(3) enters variables into the equation stepwise but does not remove
variables.

Backward. ANALYSIS=ALL(2) ALL(1) forces all variables into the equation and then allows
them to be removed stepwise if they satisfy the criterion for removal.

Example
DISCRIMINANT GROUPS=SUCCESS(0,1)
 /VARIABLES=A, B, C, D, E
 /ANALYSIS=A TO C (2) D, E (1)
 /METHOD=WILKS.

• A, B, and C are entered into the analysis first, assuming that they pass the tolerance crite-
rion. Since their inclusion level is even, they are entered together.

• D and E are then entered stepwise. The one that minimizes the overall value of Wilks’
lambda is entered first.

256 DISCRIMINANT

• After entering D and E, the program checks whether the partial F for either one justifies
removal from the equation (see the FOUT and POUT subcommands on p. 257).

Example
DISCRIMINANT GROUPS=SUCCESS(0,1)
 /VARIABLES=A, B, C, D, E
 /ANALYSIS=A TO C (2) D, E (1).

• Since no stepwise method is specified, inclusion levels have no effect and all variables
are entered into the model at once.

METHOD Subcommand

METHOD is used to select a method for entering variables into an analysis.
• A variable will never be entered into the analysis if it does not pass the tolerance criterion

specified on the TOLERANCE subcommand (or the default).

• A METHOD subcommand applies only to the preceding ANALYSIS subcommand, or to an
analysis using all predictor variables if no ANALYSIS subcommand has been specified be-
fore it.

• If more than one METHOD subcommand is specified within one analysis block, the last is
used.

Any one of the following methods can be specified on the METHOD subcommand:

DIRECT All variables passing the tolerance criteria are entered simultaneously. This
is the default method.

WILKS At each step, the variable that minimizes the overall Wilks’ lambda is
entered.

MAHAL At each step, the variable that maximizes the Mahalanobis distance between
the two closest groups is entered.

MAXMINF At each step, the variable that maximizes the smallest F ratio between pairs
of groups is entered.

MINRESID At each step, the variable that minimizes the sum of the unexplained varia-
tion for all pairs of groups is entered.

RAO At each step, the variable that produces the largest increase in Rao’s V is
entered.

DISCRIMINANT 257

TOLERANCE Subcommand

TOLERANCE specifies the minimum tolerance a variable can have and still be entered into
the analysis. The tolerance of a variable that is a candidate for inclusion in the analysis is the
proportion of its within-groups variance not accounted for by other variables in the analysis.
A variable with very low tolerance is nearly a linear function of the other variables; its inclu-
sion in the analysis would make the calculations unstable.

• The default tolerance is 0.001.

• You can specify any decimal value between 0 and 1 as the minimum tolerance.

PIN and POUT Subcommands

PIN specifies the minimum probability of F that a variable can have to enter the analysis and
POUT specifies the maximum probability of F that a variable can have and not be removed
from the model.

• PIN and POUT take precedence over FIN and FOUT. That is, if all are specified, PIN and
POUT values are used.

• If PIN and POUT are omitted, FIN and FOUT are used by default.

• You can set PIN and POUT to any decimal value between 0 and 1. However, POUT should
be greater than PIN if PIN is also specified.

• PIN and POUT apply only to the stepwise methods and are ignored if the METHOD sub-
command is omitted or if DIRECT is specified on METHOD.

FIN and FOUT Subcommands

FIN specifies the minimum partial F value that a variable must have to enter the analysis. As
additional variables are entered into the analysis, the partial F for variables already in the
equation changes. FOUT specifies the smallest partial F that a variable can have and not be
removed from the model.
• PIN and POUT take precedence over FIN and FOUT. That is, if all are specified, PIN and

POUT values are used.

• If PIN and POUT are omitted, FIN and FOUT are used by default. If FOUT is specified but
FIN is omitted, the default value for FIN is 3.84. If FIN is specified, the default value for
FOUT is 2.71.

• You can set FIN and FOUT to any non-negative number. However, FOUT should be less
than FIN if FIN is also specified.

• FIN and FOUT apply only to the stepwise methods and are ignored if the METHOD sub-
command is omitted or if DIRECT is specified on METHOD.

258 DISCRIMINANT

VIN Subcommand

VIN specifies the minimum Rao’s V a variable must have to enter the analysis. When you use
METHOD=RAO, variables satisfying one of the other criteria for entering the equation may
actually cause a decrease in Rao’s V for the equation. The default VIN prevents this but does
not prevent the addition of variables that provide no additional separation between groups.

• You can specify any value for VIN. The default is 0.
• VIN should be used only when you have specified METHOD=RAO. Otherwise, it is ig-

nored.

MAXSTEPS Subcommand

MAXSTEPS is used to decrease the maximum number of steps allowed. By default, the max-
imum number of steps allowed in a stepwise analysis is the number of variables with inclu-
sion levels greater than 1 plus twice the number of variables with inclusion levels equal to 1.
This is the maximum number of steps possible without producing a loop in which a variable
is repeatedly cycled in and out.
• MAXSTEPS applies only to the stepwise methods (all except DIRECT).

• MAXSTEPS applies only to the preceding METHOD subcommand.

• The format is MAX=n, where n is the maximum number of steps desired.

• If multiple MAXSTEPS subcommands are specified, the last is used.

FUNCTIONS Subcommand

By default, DISCRIMINANT computes all possible functions. This is either the number of
groups minus 1 or the number of predictor variables, whichever is less. Use FUNCTIONS to
set more restrictive criteria for the extraction of functions.

FUNCTIONS has three parameters:

n1 Maximum number of functions. The default is the number of groups minus 1 or the
number of predictor variables, whichever is less.

n2 Cumulative percentage of the sum of the eigenvalues. The default is 100.

n3 Significance level of function. The default is 1.0.

• The parameters must always be specified in sequential order (n1, n2, n3). To specify n2,
you must explicitly specify the default for n1. Similarly, to specify n3, you must specify
the defaults for n1 and n2.

• If more than one restriction is specified, the program stops extracting functions when any
one of the restrictions is met.

• When multiple FUNCTIONS subcommands are specified, the program uses the last; how-
ever, if n2 or n3 are omitted on the last FUNCTIONS subcommand, the corresponding spec-
ifications on the previous FUNCTIONS subcommands will remain in effect.

DISCRIMINANT 259

Example
DISCRIMINANT GROUPS=CLASS(1,5)

/VARIABLES = SCORE1 TO SCORE20
/FUNCTIONS=4,100,.80.

• The first two parameters on the FUNCTIONS subcommand are defaults: the default for n1
is 4 (the number of groups minus 1), and the default for n2 is 100.

• The third parameter tells DISCRIMINANT to use fewer than four discriminant functions if
the significance level of a function is greater than 0.80.

PRIORS Subcommand

By default, DISCRIMINANT assumes equal prior probabilities for groups when classifying
cases. You can provide different prior probabilities with the PRIORS subcommand.

• Prior probabilities are used only during classification.
• If you provide unequal prior probabilities, DISCRIMINANT adjusts the classification

coefficients to reflect this.

• If adjacent groups have the same prior probability, you can use the notation n*c on the
value list to indicate that n adjacent groups have the same prior probability c.

• You can specify a prior probability of 0. No cases are classified into such a group.

• If the sum of the prior probabilities is not 1, the program rescales the probabilities to sum
to 1 and issues a warning.

EQUAL Equal prior probabilities. This is the default.

SIZE Proportion of the cases analyzed that fall into each group. If 50% of the cases
included in the analysis fall into the first group, 25% in the second, and 25%
in the third, the prior probabilities are 0.5, 0.25, and 0.25, respectively. Group
size is determined after cases with missing values for the predictor variables
are deleted.

Value list User-specified prior probabilities. The list of probabilities must sum to 1.0.
The number of prior probabilities named or implied must equal the number
of groups.

Example
DISCRIMINANT GROUPS=TYPE(1,5)

/VARIABLES=A TO H
/PRIORS = 4*.15,.4.

• The PRIORS subcommand establishes prior probabilities of 0.15 for the first four groups
and 0.4 for the fifth group.

260 DISCRIMINANT

SAVE Subcommand

SAVE allows you to save casewise information as new variables in the working data file.

• SAVE applies only to the current analysis block. To save casewise results from more than
one analysis, specify a SAVE subcommand in each analysis block.

• You can specify a variable name for CLASS and rootnames for SCORES and PROBS to
obtain descriptive names for the new variables.

• If you do not specify a variable name for CLASS, the program forms variable names using
the formula DSC_m, where m increments to distinguish group membership variables
saved on different SAVE subcommands for different analysis blocks.

• If you do not specify a rootname for SCORES or PROBS, the program forms new variable
names using the formula DSCn_m, where m increments to create unique rootnames and n
increments to create unique variable names. For example, the first set of default names
assigned to discriminant scores or probabilities are DSC1_1, DSC2_1, DSC3_1, and so
forth. The next set of default names assigned will be DSC1_2, DSC2_2, DSC3_2, and so
forth, regardless of whether discriminant scores or probabilities are being saved or
whether they are saved by the same SAVE subcommand.

• As m and/or n increase, the prefix DSC is truncated to keep variable names within eight
characters. For example, DS999_12 increases to D1000_12. The initial character D is
required.

• Keywords CLASS, SCORES, and PROBS can be used in any order, but the new variables
are always added to the end of the working data file in the following order: first the pre-
dicted group, then the discriminant scores, and finally probabilities of group membership.

• Appropriate variable labels are automatically generated. The labels describe whether the
variables contain predictor group membership, discriminant scores, or probabilities, and
for which analysis they are generated.

• The CLASS variable will use the value labels (if any) from the grouping variable specified
for the analysis.

• When SAVE is specified with any keyword, DISCRIMINANT displays a classification
processing summary table and a prior probabilities for groups table.

• You cannot use the SAVE subcommand if you are replacing the working data file with
matrix materials (see “Matrix Output” on p. 265).

CLASS [(varname)] Predicted group membership.

SCORES [(rootname)] Discriminant scores. One score is saved for each discriminant func-
tion derived. If a rootname is specified, DISCRIMINANT will append a
sequential number to the name to form new variable names for the dis-
criminant scores.

PROBS [(rootname)] For each case, the probabilities of membership in each group. As
many variables are added to each case as there are groups. If a root-
name is specified, DISCRIMINANT will append a sequential number to
the name to form new variable names.

DISCRIMINANT 261

Example
DISCRIMINANT GROUPS=WORLD(1,3)
/VARIABLES=FOOD TO FSALES
/SAVE CLASS=PRDCLASS SCORES=SCORE PROBS=PRB
 /ANALYSIS=FOOD SERVICE COOK MANAGER FSALES
 /SAVE CLASS SCORES PROBS.

• Two analyses are specified. The first uses all variables named on the VARIABLES
subcommand and the second narrows down to five variables. For each analysis, a SAVE
subcommand is specified.

• For each analysis, DISCRIMINANT displays a classification processing summary table and
a prior probabilities for groups table.

• On the first SAVE subcommand, a variable name and two rootnames are provided. With
three groups, the following variables are added to each case:

• Since no variable name or rootnames are provided on the second SAVE subcommand,
DISCRIMINANT uses default names. Note that m serves only to distinguish variables saved
as a set and does not correspond to the sequential number of an analysis. To find out what
information a new variable holds, read the variable label, as shown in the following table:

Name Variable label Description

PRDCLASS Predicted group for analysis 1 Predicted group membership
SCORE1 Function 1 for analysis 1 Discriminant score for function 1
SCORE2 Function 2 for analysis 1 Discriminant score for function 2
PRB1 Probability 1 for analysis 1 Probability of being in group 1
PRB2 Probability 2 for analysis 1 Probability of being in group 2
PRB3 Probability 3 for analysis 1 Probability of being in group 3

Name Variable label Description

DSC_1 Predicted group for analysis 2 Predicted group membership
DSC1_1 Function 1 for analysis 2 Discriminant score for function 1
DSC2_1 Function 2 for analysis 2 Discriminant score for function 2
DSC1_2 Probability 1 for analysis 2 Probability of being in group 1
DSC2_2 Probability 2 for analysis 2 Probability of being in group 2
DSC3_2 Probability 3 for analysis 2 Probability of being in group 3

262 DISCRIMINANT

STATISTICS Subcommand

By default, DISCRIMINANT produces the following statistics for each analysis: analysis case
processing summary, valid numbers of cases in group statistics, variables failing tolerance
test, a summary of canonical discriminant functions, standardized canonical discriminant
function coefficients, a structure matrix showing pooled within-groups correlations between
the discriminant functions and the predictor variables, and functions at group centroids.
• Group statistics. Only valid number of cases is reported.

• Summary of canonical discriminant functions. Displayed in two tables: an eigenvalues
table with percentage of variance, cumulative percentage of variance, and canonical
correlations and a Wilks’ Lambda table with Wilks’ Lambda, chi-square, degrees of
freedom, and significance.

• Stepwise statistics. Wilks’ lambda, equivalent F, degrees of freedom, significance of F
and number of variables are reported for each step. Tolerance, F-to-remove, and the value
of the statistic used for variable selection are reported for each variable in the equation.
Tolerance, minimum tolerance, F-to-enter, and the value of the statistic used for variable
selection are reported for each variable not in the equation. (These statistics can be sup-
pressed with HISTORY=NONE.)

• Final statistics. Standardized canonical discriminant function coefficients, the structure
matrix of discriminant functions and all variables named in the analysis (whether they
were entered into the equation or not), and functions evaluated at group means are report-
ed following the last step.

In addition, you can request optional statistics on the STATISTICS subcommand. STATISTICS
can be specified by itself or with one or more keywords.

• STATISTICS without keywords displays MEAN, STDDEV, and UNIVF. If you include a
keyword or keywords on STATISTICS, only the statistics you request are displayed.

MEAN Means. Total and group means for all variables named on the ANALYSIS sub-
command are displayed.

STDDEV Standard deviations. Total and group standard deviations for all variables
named on the ANALYSIS subcommand are displayed.

UNIVF Univariate F ratios. The analysis-of-variance F statistic for equality of group
means for each predictor variable is displayed. This is a one-way analysis-of-
variance test for equality of group means on a single discriminating variable.

COV Pooled within-groups covariance matrix.

CORR Pooled within-groups correlation matrix.

FPAIR Matrix of pairwise F ratios. The F ratio for each pair of groups is displayed.
This F is the significance test for the Mahalanobis distance between groups.
This statistic is available only with stepwise methods.

BOXM Box’s M test. This is a test for equality of group covariance matrices.

GCOV Group covariance matrices.

TCOV Total covariance matrix.

DISCRIMINANT 263

RAW Unstandardized canonical discriminant functions.

COEFF Classification function coefficients. Although DISCRIMINANT does not
directly use these coefficients to classify cases, you can use them to classify
other samples (see the CLASSIFY subcommand below).

TABLE Classification results. If both selected and unselected cases are classified, the
results are reported separately. To obtain cross-validated results for selected
cases, specify CROSSVALID.

CROSSVALID Cross-validated classification results. The cross-validation is done by treating
n-1 out of n observations as the training data set to determine the discrimi-
nation rule and using the rule to classify the one observation left out. The
results are displayed only for selected cases.

ALL All optional statistics.

ROTATE Subcommand

The coefficient and correlation matrices can be rotated to facilitate interpretation of results.
To control varimax rotation, use the ROTATE subcommand.

• Neither COEFF nor STRUCTURE affects the classification of cases.

COEFF Rotate pattern matrix. DISCRIMINANT displays a varimax transformation
matrix, a rotated standardized canonical discriminant function coefficients
table, and a correlations between variables and rotated functions table.

STRUCTURE Rotate structure matrix. DISCRIMINANT displays a varimax transformation
matrix, a rotated structure matrix, and a rotated standardized canonical dis-
criminant function coefficients table.

NONE Do not rotate. This is the default.

HISTORY Subcommand

HISTORY controls the display of stepwise and summary output.

• By default, HISTORY displays both the step-by-step output and the summary table (key-
word STEP, alias END).

STEP Display step-by-step and summary output. Alias END. This is the default. See
Stepwise statistics in “STATISTICS Subcommand” on p. 262.

NONE Suppress the step-by-step and summary table. Alias NOSTEP, NOEND.

CLASSIFY Subcommand

CLASSIFY determines how cases are handled during classification.

• By default, all cases with nonmissing values for all predictors are classified, and the
pooled within-groups covariance matrix is used to classify cases.

264 DISCRIMINANT

• The default keywords for CLASSIFY are NONMISSING and POOLED.

NONMISSING Classify all cases that do not have missing values on any predictor variables.
Two sets of classification results are produced, one for selected cases (those
specified on the SELECT subcommand) and one for unselected cases. This is
the default.

UNSELECTED Classify only unselected cases. The classification phase is suppressed for
cases selected via the SELECT subcommand. If all cases are selected (when
the SELECT subcommand is omitted), the classification phase is suppressed
for all cases and no classification results are produced.

UNCLASSIFIED Classify only unclassified cases. The classification phase is suppressed for
cases that fall within the range specified on the GROUPS subcommand.

POOLED Use the pooled within-groups covariance matrix to classify cases. This is the
default.

SEPARATE Use separate-groups covariance matrices of the discriminant functions for
classification. DISCRIMINANT displays the group covariances of canonical
discriminant functions and Box’s test of equality of covariance matrices of
canonical discriminant functions. Since classification is based on the
discriminant functions and not the original variables, this option is not
necessarily equivalent to quadratic discrimination.

MEANSUB Substitute means for missing predictor values during classification. During
classification, means are substituted for missing values and cases with
missing values are classified. Cases with missing values are not used during
analysis.

PLOT Subcommand

PLOT requests additional output to help you examine the effectiveness of the discriminant
analysis.

• If PLOT is specified without keywords, the default is COMBINED and CASES.

• If any keywords are requested on PLOT, only the requested plots are displayed.

• If PLOT is specified with any keyword except MAP, DISCRIMINANT displays a classifica-
tion processing summary table and a prior probabilities for groups table.

COMBINED All-groups plot. For each case, the first two function values are plotted.

CASES(n) Casewise statistics. For each case, classification information, squared
Mahalanobis distance to centroid for the highest and second highest groups,
and discriminant scores of all functions. Validated statistics are displayed for
selected cases if CROSSVALID is specified on STATISTICS. If n is specified,
DISCRIMINANT displays the first n cases only.

MAP Territorial map. A plot of group centroids and boundaries used for classify-
ing groups.

DISCRIMINANT 265

SEPARATE Separate-groups plots. These are the same types of plots produced by key-
word COMBINED, except that a separate plot is produced for each group. If
only one function is used, a histogram is displayed.

ALL All available plots.

MISSING Subcommand

MISSING controls the treatment of cases with missing values in the analysis phase. By
default, cases with missing values for any variable named on the VARIABLES subcommand
are not used in the analysis phase but are used in classification.
• Keyword INCLUDE includes cases with user-missing values in analysis phase.

• Cases with missing or out-of-range values for the grouping variable are always excluded.

EXCLUDE Exclude all cases with missing values. Cases with user- or system-missing
values are excluded from the analysis. This is the default.

INCLUDE Include cases with user-missing values. User-missing values are treated as
valid values. Only the system-missing value is treated as missing.

MATRIX Subcommand

MATRIX reads and writes SPSS-format matrix data files.
• Either IN or OUT and the matrix file in parentheses are required. When both IN and OUT

are used in the same DISCRIMINANT procedure, they can be specified on separate MATRIX
subcommands or on the same subcommand.

OUT (filename) Write a matrix data file. Specify either a filename or an asterisk in parenthe-
ses (*). If you specify a filename, the file is stored on disk and can be re-
trieved at any time. If you specify an asterisk (*), the matrix data file replaces
the working data file but is not stored on disk unless you use SAVE or XSAVE.

IN (filename) Read a matrix data file. If the matrix data file is the working data file, specify
an asterisk (*) in parentheses. If the matrix file is another file, specify the
filename in parentheses. A matrix file read from an external file does not
replace the working data file.

Matrix Output

• In addition to Pearson correlation coefficients, the matrix materials written by
DISCRIMINANT include weighted and unweighted numbers of cases, means, and standard
deviations. (See “Format of the Matrix Data File” on p. 266 for a description of the file.)
These materials can be used in subsequent DISCRIMINANT procedures.

• Any documents contained in the working data file are not transferred to the matrix file.

• If BOXM or GCOV is specified on the STATISTICS subcommand or SEPARATE is specified
on the CLASSIFY subcommand when a matrix file is written, the STDDEV and CORR
records in the matrix materials represent within-cell data, and separate covariance

266 DISCRIMINANT

matrices are written to the file. When the matrix file is used as input for a subsequent
DISCRIMINANT procedure, at least one of these specifications must be used on that
DISCRIMINANT command.

Matrix Input

• DISCRIMINANT can read correlation matrices written by a previous DISCRIMINANT com-
mand or by other procedures. Matrix materials read by DISCRIMINANT must contain
records with ROWTYPE_ values MEAN, N or COUNT (or both), STDDEV, and CORR.

• If the data do not include records with ROWTYPE_ value COUNT (unweighted number
of cases), DISCRIMINANT uses information from records with ROWTYPE_ value N
(weighted number of cases). Conversely, if the data do not have N values, DISCRIMINANT
uses the COUNT values. These records can appear in any order in the matrix input file
with the following exceptions: the order of split-file groups cannot be violated and all
CORR vectors must appear consecutively within each split-file group.

• If you want to use a covariance-type matrix as input to DISCRIMINANT, you must first use
the MCONVERT command to change the covariance matrix to a correlation matrix.

• DISCRIMINANT can use a matrix from a previous data set to classify data in the working
data file. the program checks to make sure that the grouping variable (specified on
GROUPS) and the predictor variables (specified on VARIABLES) are the same in the work-
ing data file as in the matrix file. If they are not, the program displays an error message
and the classification will not be executed.

• MATRIX=IN cannot be used unless a working data file has already been defined. To read
an existing matrix data file at the beginning of a session, first use GET to retrieve the
matrix file and then specify IN(*) on MATRIX.

Format of the Matrix Data File

• The matrix data file has two special variables created by the program: ROWTYPE_ and
VARNAME_. Variable ROWTYPE_ is a short string variable having values N, COUNT,
MEAN, STDDEV, and CORR (for Pearson correlation coefficient). Variable VARNAME_
is a short string variable whose values are the names of the variables used to form the
correlation matrix.

• When ROWTYPE_ is CORR, VARNAME_ gives the variable associated with that row of
the correlation matrix.

• Between ROWTYPE_ and VARNAME_ is the grouping variable, which is specified on the
GROUPS subcommand of DISCRIMINANT.

• The remaining variables are the variables used to form the correlation matrix.

Split Files

• When split-file processing is in effect, the first variables in the matrix data file will be
split variables, followed by ROWTYPE_, the grouping variable, VARNAME_, and then the
variables used to form the correlation matrix.

DISCRIMINANT 267

• A full set of matrix materials is written for each subgroup defined by the split variables.

• A split variable cannot have the same variable name as any other variable written to the
matrix data file.

• If split-file processing is in effect when a matrix is written, the same split file must be in
effect when that matrix is read by another procedure.

STDDEV and CORR Records

Records written with ROWTYPE_ values STDDEV and CORR are influenced by specifica-
tions on the STATISTICS and CLASSIFY subcommands.

• If BOXM or GCOV is specified on STATISTICS or SEPARATE is specified on CLASSIFY, the
STDDEV and CORR records represent within-cell data and receive values for the group-
ing variable.

• If none of the above specifications is in effect, the STDDEV and CORR records represent
pooled values. The STDDEV vector contains the square root of the mean square error for
each variable, and STDDEV and CORR records receive the system-missing value for the
grouping variable.

Missing Values

Missing-value treatment affects the values written to a matrix data file. When reading a
matrix data file, be sure to specify a missing-value treatment on DISCRIMINANT that is
compatible with the treatment that was in effect when the matrix materials were generated.

Example

GET FILE=UNIONBK /KEEP WORLD FOOD SERVICE BUS MECHANIC
 CONSTRUC COOK MANAGER FSALES APPL RENT.
DISCRIMINANT GROUPS=WORLD(1,3)
/VARIABLES=FOOD SERVICE BUS MECHANIC CONSTRUC COOK MANAGER FSALES
 /METHOD=WILKS
 /PRIORS=SIZE
 /MATRIX=OUT(DISCMTX).

• DISCRIMINANT reads data from the SPSS-format data file UNIONBK and writes one set of
matrix materials to the file DISCMTX.

• The working data file is still UNIONBK. Subsequent commands are executed on this file.

268 DISCRIMINANT

Example

* Use matrix output to classify data in a different file.

GET FILE=UB2 /KEEP WORLD FOOD SERVICE BUS MECHANIC
 CONSTRUC COOK MANAGER FSALES APPL RENT.
DISCRIMINANT GROUPS=WORLD(1,3)
 /VARIABLES=FOOD SERVICE BUS MECHANIC CONSTRUC COOK MANAGER FSALES
 /METHOD=WILKS
 /PRIORS=SIZE
 /MATRIX=IN(DISCMTX).

• The matrix data file created in the previous example is used to classify data from file UB2.

Example

GET FILE=UNIONBK /KEEP WORLD FOOD SERVICE BUS MECHANIC
 CONSTRUC COOK MANAGER FSALES APPL RENT.
DISCRIMINANT GROUPS=WORLD(1,3)
 /VARIABLES=FOOD SERVICE BUS MECHANIC CONSTRUC COOK MANAGER FSALES
 /METHOD=WILKS
 /PRIORS=SIZE
 /MATRIX=OUT(*).
LIST.

• DISCRIMINANT writes the same matrix as in the first example. However, the matrix data
file replaces the working data file.

• The LIST command is executed on the matrix file, not on the UNIONBK file.

Example

GET FILE=DISCMTX.
DISCRIMINANT GROUPS=WORLD(1,3)
 /VARIABLES=FOOD SERVICE BUS MECHANIC CONSTRUC COOK MANAGER FSALES
 /METHOD=RAO
 /MATRIX=IN(*).

• This example assumes you are starting a new session and want to read an existing matrix
data file. GET retrieves the matrix data file DISCMTX.

• MATRIX=IN specifies an asterisk because the matrix data file is the working data file. If
MATRIX=IN(DISCMTX) is specified, the program issues an error message.

• If the GET command is omitted, the program issues an error message.

DISCRIMINANT 269

Example

GET FILE=UNIONBK /KEEP WORLD FOOD SERVICE BUS MECHANIC
 CONSTRUC COOK MANAGER FSALES APPL RENT.
DISCRIMINANT GROUPS=WORLD(1,3)
/VARIABLES=FOOD SERVICE BUS MECHANIC CONSTRUC COOK MANAGER FSALES
 /CLASSIFY=SEPARATE
 /MATRIX=OUT(*).
DISCRIMINANT GROUPS=WORLD(1,3)
/VARIABLES=FOOD SERVICE BUS MECHANIC CONSTRUC COOK MANAGER FSALES
 /STATISTICS=BOXM
 /MATRIX=IN(*).

• The first DISCRIMINANT command creates a matrix with CLASSIFY=SEPARATE in effect.
To read this matrix, the second DISCRIMINANT command must specify either BOXM or
GCOV on STATISTICS or SEPARATE on CLASSIFY. STATISTICS=BOXM is used.

270

DISPLAY

DISPLAY [SORTED] [{NAMES** }] [/VARIABLES=varlist]
 {INDEX }
 {VARIABLES }
 {LABELS }
 {DICTIONARY}

 {[SCRATCH] }
 {[VECTOR] }
 {[MACROS] }
 {[DOCUMENTS]}

**Default if the subcommand is omitted.

Example:
DISPLAY SORTED DICTIONARY /VARIABLES=DEPT SALARY SEX TO JOBCAT.

Overview

DISPLAY exhibits information from the dictionary of the working data file. The information
can be sorted, and it can be limited to selected variables.

Basic Specification

The basic specification is simply the command keyword, which displays an unsorted list of
the variables in the working data file.

Syntax Rules

DISPLAY can be specified by itself or with one of the keywords defined below. NAMES is
the default. To specify two or more keywords, use multiple DISPLAY commands.

NAMES Variable names. A list of the variables in the working data file is displayed.
The names are not sorted and display in a compressed format, about eight
names across the page. This is the default.

DOCUMENTS Documentary text. Documentary text is provided on the DOCUMENT com-
mand. No error message is issued if there is no documentary information in
the working data file.

DICTIONARY Complete dictionary information for variables. Information includes vari-
able names, labels, sequential position of each variable in the file, print and
write formats, missing values, and value labels. Up to 60 characters can be
displayed for variable and value labels.

INDEX Variable names and positions.

DISPLAY 271

VARIABLES Variable names, positions, print and write formats, and missing values.

LABELS Variable names, positions, and variable labels.

SCRATCH Scratch variable names.

VECTOR Vector names.

MACROS Currently defined macros. The macro names are always sorted.

Operations

• DISPLAY directs information to the output.

• If SORTED is not specified, information is displayed according to the order of variables
in the working data file.

• DISPLAY is executed as soon as it is encountered in the command sequence, as long as a
dictionary has been defined.

Example

GET FILE=HUB.
DISPLAY DOCUMENTS.
DISPLAY DICTIONARY.

• Each DISPLAY command specifies only one keyword. The first requests documentary text
and the second requests complete dictionary information for the HUB file.

SORTED Keyword

SORTED alphabetizes the display by variable name. SORTED can precede keywords NAMES,
DICTIONARY, INDEX, VARIABLES, LABELS, SCRATCH, or VECTOR.

Example
DISPLAY SORTED DICTIONARY.

• This command displays complete dictionary information for variables in the working data
file, sorted alphabetically by variable name.

VARIABLES Subcommand

VARIABLES (alias NAMES) limits the displayed information to a set of specified variables.
VARIABLES must be the last specification on DISPLAY and can follow any specification that
requests information about variables (all except VECTOR, SCRATCH, DOCUMENTS, and
MACROS).

• The only specification is a slash followed by a list of variables. The slash is optional.

272 DISPLAY

• If keyword SORTED is not specified, information is displayed in the order in which vari-
ables are stored in the working data file, regardless of the order in which variables are
named on VARIABLES.

Example
DISPLAY SORTED DICTIONARY
/VARIABLES=DEPT, SALARY, SEX TO JOBCAT.

• DISPLAY exhibits dictionary information only for the variables named and implied by key-
word TO on the VARIABLES subcommand, sorted alphabetically by variable name.

273

DOCUMENT

DOCUMENT text

Example:
DOCUMENT This file contains a subset of variables from the

General Social Survey data. For each case it records
 only the age, sex, education level, marital status,
 number of children, and type of medical insurance

 coverage.

Overview

DOCUMENT saves a block of text of any length in an SPSS-format data file. The documen-
tation can be displayed with the DISPLAY command.

When GET retrieves a data file, or when ADD FILES, MATCH FILES, or UPDATE is used
to combine data files, all documents from each specified file are copied into the working
file. DROP DOCUMENTS can be used to drop those documents from the working file.
Whether or not DROP DOCUMENTS is used, new documents can be added to the working
file with the DOCUMENT command.

Basic Specification

The basic specification is DOCUMENT followed by any length of text. The text is stored in
the file dictionary when the data are saved in an SPSS-format data file.

Syntax Rules

• The text can be entered on as many lines as needed.

• Blank lines can be used to separate paragraphs.

• A period at the end of a line terminates the command, so you should not place a period
at the end of any line but the last.

• Multiple DOCUMENT commands can be used within the command sequence. However,
the DISPLAY command cannot be used to exhibit the text from a particular DOCUMENT
command. DISPLAY shows all existing documentation.

Operations

• The documentation and the date it was entered are saved in the data file’s dictionary.
New documentation is saved along with any documentation already in the working data
file.

274 DOCUMENT

• If a DROP DOCUMENTS command follows a DOCUMENT command anywhere in the com-
mand sequence, the documentation added by that DOCUMENT command is dropped from
the working file along with all other documentation.

Example

GET FILE=GENSOC /KEEP=AGE SEX EDUC MARITAL CHILDRN MED_INS.
FILE LABEL General Social Survey subset.

DOCUMENT This file contains a subset of variables from the
General Social Survey data. For each case it records

 only the age, sex, education level, marital status,
 number of children, and type of medical insurance
 coverage.

SAVE OUTFILE=SUBSOC.

• GET keeps only a subset of variables from file GENSOC. All documentation from file
GENSOC is copied into the working file.

• FILE LABEL creates a label for the new working file.

• DOCUMENT specifies the new document text. Both existing documents from file GENSOC
and the new document text are saved in file SUBSOC.

Example

GET FILE=GENSOC /KEEP=AGE SEX EDUC MARITAL CHILDRN MED_INS.

DROP DOCUMENTS.

FILE LABEL General Social Survey subset.

DOCUMENT This file contains a subset of variables from the
General Social Survey data. For each case it records

 only the age, sex, education level, marital status,
 number of children, and type of medical insurance
 coverage.

SAVE OUTFILE=SUBSOC.

• DROP DOCUMENTS drops the documentation from file GENSOC as data are copied into
the working file. Only the new documentation specified on DOCUMENT is saved in file
SUBSOC.

275

DO IF

DO IF [(]logical expression[)]

transformation commands

[ELSE IF [(]logical expression[)]]

transformation commands

[ELSE IF [(]logical expression[)]]
 .
 .
 .
[ELSE]

transformation commands

END IF

The following relational operators can be used in logical expressions:

The following logical operators can be used in logical expressions:

Example:
DO IF (YRHIRED GT 87).
COMPUTE BONUS = 0.
ELSE IF (DEPT87 EQ 3).
COMPUTE BONUS = .1*SALARY87.
ELSE IF (DEPT87 EQ 1).
COMPUTE BONUS = .12*SALARY87.
ELSE IF (DEPT87 EQ 4).
COMPUTE BONUS = .08*SALARY87.
ELSE IF (DEPT87 EQ 2).
COMPUTE BONUS = .14*SALARY87.
END IF.

Symbol Definition Symbol Definition

EQ or = Equal to NE or <>*

* On ASCII systems (for example, UNIX, VAX, and all PC’s), you can also use ~=;
on IBM EBCDIC systems (for example, IBM 360 and IBM 370), you can also use ¬=.

Not equal to
LT or < Less than LE or <= Less than or equal to
GT or > Greater than GE or >= Greater than or equal to

Symbol Definition

AND or & Both relations must be true
Or or | Either relation can be true
Not*

* On ASCII systems, you can also use ~; on IBM EBCDIC systems,
you can also use ¬ (or the symbol above number 6).

Reverses the outcome of an expression

276 DO IF

Overview

The DO IF—END IF structure conditionally executes one or more transformations on subsets
of cases based on one or more logical expressions. The ELSE command can be used within
the structure to execute one or more transformations when the logical expression on DO IF
is not true. The ELSE IF command within the structure provides further control.

The DO IF—END IF structure is best used for conditionally executing multiple transfor-
mation commands, such as COMPUTE, RECODE, and COUNT. IF is more efficient for exe-
cuting a single conditional COMPUTE-like transformation. DO IF—END IF transforms data
for subsets of cases defined by logical expressions. To perform repeated transformations on
the same case, use LOOP—END LOOP.

A DO IF—END IF structure can be used within an input program to define complex files
that cannot be handled by standard file definition facilities. See “Complex File Structures”
on p. 282 for an example.

See END FILE for information on using DO IF—END IF to instruct the program to stop read-
ing data before it encounters the end of the file or to signal the end of the file when creating
data. See p. 208 for an example of using DO IF—END IF with END FILE to concatenate raw
data files.

Basic Specification

The basic specification is DO IF followed by a logical expression, a transformation com-
mand, and the END IF command, which has no specifications.

Syntax Rules

• The ELSE IF command is optional and can be repeated as many times as needed.
• The ELSE command is optional. It can be used only once and must follow any ELSE IF

commands.

• The END IF command must follow any ELSE IF and ELSE commands.

• A logical expression must be specified on the DO IF and ELSE IF commands. Logical ex-
pressions are not used on the ELSE and END IF commands.

• String values used in expressions must be specified in quotes and must include any leading
or trailing blanks. Lowercase letters are considered distinguished from uppercase letters.

• To create a new string variable within a DO IF—END IF structure, you must first declare
the variable on the STRING command.

• DO IF—END IF structures can be nested to any level permitted by available memory. They
can be nested within LOOP—END LOOP structures, and loop structures can be nested
within DO IF structures.

Logical Expressions

• Logical expression can be simple logical variables or relations, or they can be complex
logical tests involving variables, constants, functions, relational operators, and logical op-

DO IF 277

erators. Logical expressions can use any of the numeric or string functions allowed in
COMPUTE transformations (see COMPUTE).

• Parentheses can be used to enclose the logical expression itself and to specify the order of
operations within a logical expression. Extra blanks or parentheses can be used to make
the expression easier to read.

• Blanks (not commas) are used to separate relational operators from expressions.
• A relation can include variables, constants, or more complicated arithmetic expressions.

Relations cannot be abbreviated. For example, the first relation below is valid; the second
is not:

Valid: (A EQ 2 OR A EQ 5)
Not valid: (A EQ 2 OR 5)

• A relation cannot compare a string variable to a numeric value or variable, or vice versa.
A relation cannot compare the result of a logical function (SYSMIS, MISSING, ANY, or
RANGE) to a number.

Operations

• DO IF marks the beginning of the control structure and END IF marks the end. Control for
a case is passed out of the structure as soon as a logical condition is met on a DO IF, ELSE
IF, or ELSE command.

• A logical expression is evaluated as true, false, or missing. A transformation specified for
a logical expression is executed only if the expression is true.

• Logical expressions are evaluated in the following order: functions, exponentiation, arith-
metic operations, relations, and finally, logical operators. (For strings, the order is func-
tions, relations, and then logical operators.) When more than one logical operator is used,
NOT is evaluated first, followed by AND and then OR. You can change the order of oper-
ations using parentheses.

• Numeric variables created within a DO IF structure are initially set to the system-missing
value. By default, they are assigned an F8.2 format.

• New string variables created within a DO IF structure are initially set to a blank value and
are assigned the format specified on the STRING command that creates them.

• If the transformed value of a string variable exceeds the variable’s defined format, the val-
ue is truncated. If the value is shorter than the format, the value is right-padded with
blanks.

• If WEIGHT is specified within a DO IF structure, it takes effect unconditionally.

• Commands like SET, DISPLAY, SHOW, and so forth specified within a DO IF structure are
executed when they are encountered in the command file.

• The DO IF—END IF structure (like LOOP—END LOOP) can include commands such as
DATA LIST, END CASE, END FILE, and REREAD, which define complex file structures.

278 DO IF

Flow of Control

• If the logical expression on DO IF is true, the commands immediately following DO IF are
executed up to the next ELSE IF or ELSE or END IF command. Control then passes to the
first statement following END IF.

• If the expression on DO IF is false, control passes to the following ELSE IF command.
Multiple ELSE IF commands are evaluated in the order in which they are specified until
the logical expression on one of them is true. Commands following that ELSE IF com-
mand are executed up to the ELSE or END IF command, and control passes to the first
statement following END IF.

• If none of the expressions are true on the DO IF or any of the ELSE IF commands, the com-
mands following ELSE are executed and control passes out of the structure. If there is no
ELSE command, a case goes through the entire structure with no change.

• Missing values returned by the logical expression on DO IF or on any ELSE IF cause con-
trol to pass to the END IF command at that point.

Missing Values and Logical Operators

When two or more relations are joined by logical operators AND and OR, the program
always returns missing if all of the relations in the expression are missing. However, if any
one of the relations can be determined, the program tries to return true or false according
to the logical outcomes shown in Table 1. The asterisk indicates situations where the pro-
gram can evaluate the outcome with incomplete information.

Example

DO IF (YRHIRED LT 87).
RECODE RACE(1=5)(2=4)(4=2)(5=1).
END IF.

• The RECODE command recodes RACE for those individuals hired before 1987 (YRHIRED
is less than 87). The RACE variable is not recoded for individuals hired in 1987 or later.

• The RECODE command is skipped for any case with a missing value for YRHIRED.

Table 1 Logical outcome

Expression Outcome Expression Outcome

true AND true = true true OR true = true
true AND false = false true OR false = true
false AND false = false false OR false = false
true AND missing = missing true OR missing = true*
missing AND missing = missing missing OR missing = missing
false AND missing = false* false OR missing = missing

DO IF 279

Example

DATA LIST FREE / X(F1).
NUMERIC #QINIT.
DO IF NOT #QINIT.
+ PRINT EJECT.
+ COMPUTE #QINIT = 1.
END IF.
PRINT / X.

BEGIN DATA
1 2 3 4 5
END DATA.
EXECUTE.

• This example shows how to execute a command only once.
• The NUMERIC command creates scratch variable #QINIT, which is initialized to 0.

• The NOT logical operator on DO IF reverses the outcome of a logical expression. In this
example, the logical expression is a numeric variable that takes only 0 (false) or 1 (true)
as its values. The PRINT EJECT command is executed only once, when the value of
scratch variable #QINIT equals 0. After the COMPUTE command sets #QINIT to 1, the DO
IF structure is skipped for all subsequent cases. A scratch variable is used because it is ini-
tialized to 0 and is not reinitialized after each case.

ELSE Command

ELSE executes one or more transformations when none of the logical expressions on DO IF
or any ELSE IF commands is true.

• Only one ELSE command is allowed within a DO IF—END IF structure.

• ELSE must follow all ELSE IF commands (if any) in the structure.

• If the logical expression on DO IF or any ELSE IF command is true, the program ignores
the commands following ELSE.

Example
DO IF (X EQ 0).
COMPUTE Y=1.
ELSE.
COMPUTE Y=2.
END IF.

• Y is set to 1 for all cases with value 0 for X, and Y is 2 for all cases with any other valid
value for X.

• The value of Y is not changed by this structure if X is missing.

280 DO IF

Example
DO IF (YRHIRED GT 87).
COMPUTE BONUS = 0.
ELSE.
IF (DEPT87 EQ 1) BONUS = .12*SALARY87.
IF (DEPT87 EQ 2) BONUS = .14*SALARY87.
IF (DEPT87 EQ 3) BONUS = .1*SALARY87.
IF (DEPT87 EQ 4) BONUS = .08*SALARY87.
END IF.

• If an individual was hired after 1987 (YRHIRED is greater than 87), BONUS is set to 0 and
control passes out of the structure. Otherwise, control passes to the IF commands follow-
ing ELSE.

• Each IF command evaluates every case. The value of BONUS is transformed only when
the case meets the criteria specified on IF. Compare this structure with ELSE IF in the sec-
ond example on p. 281, which performs the same task more efficiently.

Example
* Test for listwise deletion of missing values.

DATA LIST / V1 TO V6 1-6.
BEGIN DATA
123456

56
1 3456
123456
123456
END DATA.

DO IF NMISS(V1 TO V6)=0.
+ COMPUTE SELECT=’V’.
ELSE
+ COMPUTE SELECT=’M’.
END IF.

FREQUENCIES VAR=SELECT.

• If there are no missing values for any of the variables V1 to V6, COMPUTE sets the value
of SELECT equal to V (for valid). Otherwise, COMPUTE sets the value of SELECT equal
to M (for missing).

• FREQUENCIES generates a frequency table for SELECT. The table gives a count of how
many cases have missing values for one or more variables, and how many cases have
valid values for all variables. Commands in this example can be used to determine how
many cases are dropped from an analysis that uses listwise deletion of missing values.
See pp. 159 and 458 for alternative ways to check listwise deletion of missing values.

ELSE IF Command

ELSE IF executes one or more transformations when the logical expression on DO IF is not
true.

• Multiple ELSE IF commands are allowed within the DO IF—END IF structure.

DO IF 281

• If the logical expression on DO IF is true, the program executes the commands immedi-
ately following DO IF up to the first ELSE IF. Then control passes to the command follow-
ing the END IF command.

• If the result of the logical expression on DO IF is false, control passes to ELSE IF.

Example
STRING STOCK(A9).
DO IF (ITEM EQ 0).
COMPUTE STOCK=’New’.
ELSE IF (ITEM LE 9).
COMPUTE STOCK=’Old’.
ELSE.
COMPUTE STOCK=’Cancelled’.
END IF.

• STRING declares string variable STOCK and assigns it a width of nine characters.

• The first COMPUTE is executed for cases with value 0 for ITEM, and then control passes
out of the structure. Such cases are not reevaluated by ELSE IF, even though 0 is less than 9.

• When the logical expression on DO IF is false, control passes to the ELSE IF command,
where the second COMPUTE is executed only for cases with ITEM less than or equal to 9.
Then control passes out of the structure.

• If the logical expressions on both the DO IF and ELSE IF commands are false, control passes
to ELSE, where the third COMPUTE is executed.

• The DO IF—END IF structure sets STOCK equal to New when ITEM equals 0, to Old when
ITEM is less than or equal to 9 but not equal to 0 (including negative numbers if they are
valid), and to Cancelled for all valid values of ITEM greater than 9. The value of STOCK
remains blank if ITEM is missing.

Example
DO IF (YRHIRED GT 87).
COMPUTE BONUS = 0.
ELSE IF (DEPT87 EQ 3).
COMPUTE BONUS = .1*SALARY87.
ELSE IF (DEPT87 EQ 1).
COMPUTE BONUS = .12*SALARY87.
ELSE IF (DEPT87 EQ 4).
COMPUTE BONUS = .08*SALARY87.
ELSE IF (DEPT87 EQ 2).
COMPUTE BONUS = .14*SALARY87.
END IF.

• For cases hired after 1987, BONUS is set to 0 and control passes out of the structure. For
a case that was hired before 1987 with value 3 for DEPT87, BONUS equals 10% of salary.
Control then passes out of the structure. The other three ELSE IF commands are not eval-
uated for that case. This differs from the example on p. 280, where the IF command is
evaluated for every case. The DO IF—ELSE IF structure shown here is more efficient.

• If Department 3 is the largest, Department 1 the next largest, and so forth, control passes
out of the structure quickly for many cases. For a large number of cases or a command file
that will be executed frequently, these efficiency considerations can be important.

282 DO IF

Nested DO IF Structures

To perform transformations involving logical tests on two variables, you can use nested
DO IF—END IF structures.

• There must be an END IF command for every DO IF command in the structure.

Example
DO IF (RACE EQ 5). /*Do whites
+ DO IF (SEX EQ 2). /*White female
+ COMPUTE SEXRACE=3.
+ ELSE. /*White male
+ COMPUTE SEXRACE=1.
+ END IF. /*Whites done
ELSE IF (SEX EQ 2). /*Nonwhite female
COMPUTE SEXRACE=4.
ELSE. /*Nonwhite male
COMPUTE SEXRACE=2.
END IF. /*Nonwhites done

• This structure creates variable SEXRACE, which indicates both the sex and minority status
of an individual.

• An optional plus sign, minus sign, or period in the first column allows you to indent com-
mands so you can easily see the nested structures.

Complex File Structures

Some complex file structures may require you to imbed more than one DATA LIST command
inside a DO IF—END IF structure. For example, consider a data file that has been collected
from various sources. The information from each source is basically the same, but it is in dif-
ferent places on the records:

111295100FORD CHAPMAN AUTO SALES
121199005VW MIDWEST VOLKSWAGEN SALES
11 395025FORD BETTER USED CARS
11 CHEVY 195005 HUFFMAN SALES & SERVICE
11 VW 595020 MIDWEST VOLKSWAGEN SALES
11 CHEVY 295015 SAM’S AUTO REPAIR
12 CHEVY 210 20 LONGFELLOW CHEVROLET
9555032 VW HYDE PARK IMPORTS

In the above file, an automobile part number always appears in columns 1 and 2, and the auto-
mobile manufacturer always appears in columns 10 through 14. The location of other informa-
tion, such as price and quantity, depends on both the part number and the type of automobile.
The DO IF—END IF structure in the following example reads records for part type 11.

DO IF 283

Example
INPUT PROGRAM.
DATA LIST FILE=CARPARTS /PARTNO 1-2 KIND 10-14 (A).

DO IF (PARTNO EQ 11 AND KIND EQ ’FORD’).
+ REREAD.
+ DATA LIST /PRICE 3-6 (2) QUANTITY 7-9 BUYER 20-43 (A).
+ END CASE.

ELSE IF (PARTNO EQ 11 AND (KIND EQ ’CHEVY’ OR KIND EQ ’VW’)).
+ REREAD.
+ DATA LIST /PRICE 15-18 (2) QUANTITY 19-21 BUYER 30-53 (A).
+ END CASE.
END IF.
END INPUT PROGRAM.

PRINT FORMATS PRICE (DOLLAR6.2).
PRINT /PARTNO TO BUYER.
WEIGHT BY QUANTITY.
DESCRIPTIVES PRICE.

• The first DATA LIST extracts the part number and the type of automobile.

• Depending on the information from the first DATA LIST, the records are reread, pulling the
price, quantity, and buyer from different places.

• The two END CASE commands limit the working file to only those cases with Part 11 and
automobile type Ford, Chevrolet, or Volkswagen. Without the END CASE commands,
cases would be created in the working file for other part numbers and automobile types
with missing values for price, quantity, and buyer.

• The results of the PRINT command are shown in Figure 1.

Figure 1 Printed information for part 11
11 FORD $12.95 100 CHAPMAN AUTO SALES
11 FORD $3.95 25 BETTER USED CARS
11 CHEVY $1.95 5 HUFFMAN SALES & SERVICE
11 VW $5.95 20 MIDWEST VOLKSWAGEN SALES
11 CHEVY $2.95 15 SAM’S AUTO REPAIR

284

DO REPEAT—END REPEAT

DO REPEAT stand-in var={varlist } [/stand-in var=...]
 {value list}

transformation commands

END REPEAT [PRINT]

Example:
DO REPEAT R=REGION1 TO REGION5.
COMPUTE R=0.
END REPEAT.

Overview

The DO REPEAT—END REPEAT structure repeats the same transformations on a specified
set of variables, reducing the number of commands you must enter to accomplish a task.
This utility does not reduce the number of commands the program executes, just the number
of commands you enter. To display the expanded set of commands the program generates,
specify PRINT on END REPEAT.

DO REPEAT uses a stand-in variable to represent a replacement list of variables or values.
The stand-in variable is specified as a place holder on one or more transformation commands
within the structure. When the program repeats the transformation commands, the stand-in
variable is replaced, in turn, by each variable or value specified on the replacement list.

The following commands can be used within a DO REPEAT—END REPEAT structure:

• Data transformations: COMPUTE, RECODE, IF, COUNT, and SELECT IF
• Data declarations: VECTOR, STRING, NUMERIC, and LEAVE

• Data definition: DATA LIST, MISSING VALUES (but not VARIABLE LABELS or VALUE LABELS)

• Loop structure commands: LOOP, END LOOP, and BREAK

• Do-if structure commands: DO IF, ELSE IF, ELSE, and END IF

• Print and write commands: PRINT, PRINT EJECT, PRINT SPACE, and WRITE

• Format commands: PRINT FORMATS, WRITE FORMATS, and FORMATS

Basic Specification

The basic specification is DO REPEAT, a stand-in variable followed by a required equals sign
and a replacement list of variables or values, and at least one transformation command. The
structure must end with the END REPEAT command. On the transformation commands, a
single stand-in variable represents every variable or value specified on the replacement list.

DO REPEAT—END REPEAT 285

Syntax Rules

• Multiple stand-in variables can be specified on a DO REPEAT command. Each stand-in
variable must have its own equals sign and associated variable or value list and must be
separated from other stand-in variables by a slash. All lists must name or generate the
same number of items.

• Stand-in variables can be assigned any valid variable names: permanent, temporary,
scratch, system, and so forth. A stand-in variable does not exist outside the DO REPEAT—
END REPEAT structure and has no effect on variables with the same name that exist out-
side the structure. However, two stand-in variables cannot have the same name within the
same DO REPEAT structure.

• A replacement variable list can include new or existing variables, and they can be string
or numeric. Keyword TO can be used to name consecutive existing variables and to create
a set of new variables. New string variables must be declared on the STRING command
either before DO REPEAT or within the DO REPEAT structure. All replacement variable
and value lists must have the same number of items.

• A replacement value list can be a list of strings or numeric values, or it can be of the form
n1 TO n2, where n1 is less than n2 and both are integers. (Note that the keyword is TO, not
THRU.)

Operations

• DO REPEAT marks the beginning of the control structure and END REPEAT marks the end.
Once control passes out of the structure, all stand-in variables defined within the structure
cease to exist.

• The program repeats the commands between DO REPEAT and END REPEAT once for each
variable or value on the replacement list.

• Numeric variables created within the structure are initially set to the system-missing value.
By default, they are assigned an F8.2 format.

• New string variables declared within the structure are initially set to a blank value and are
assigned the format specified on the STRING command that creates them.

• If DO REPEAT is used to create new variables, the order in which they are created depends
on how the transformation commands are specified. Variables created by specifying the
TO keyword (for example, V1 TO V5) are not necessarily consecutive in the working data
file. See the PRINT subcommand on p. 287 for examples.

Example

DO REPEAT R=REGION1 TO REGION5.
COMPUTE R=0.
END REPEAT.

• DO REPEAT defines the stand-in variable R, which represents five new numeric variables:
REGION1, REGION2, REGION3, REGION4, and REGION5.

286 DO REPEAT—END REPEAT

• The five variables are initialized to 0 by a single COMPUTE specification that is repeated
for each variable on the replacement list. Thus, the program generates five COMPUTE
commands from the one specified.

• Stand-in variable R ceases to exist once control passes out of the DO REPEAT structure.

Example

* This example shows a typical application of INPUT PROGRAM, LOOP,
 and DO REPEAT. A data file containing random numbers is generated.

INPUT PROGRAM.
+ LOOP #I = 1 TO 1000.
+ DO REPEAT RESPONSE = R1 TO R400.
+ COMPUTE RESPONSE = UNIFORM(1) > 0.5.
+ END REPEAT.
+ COMPUTE AVG = MEAN(R1 TO R400).
+ END CASE.
+ END LOOP.
+ END FILE.
END INPUT PROGRAM.

FREQUENCIES VARIABLE=AVG
 /FORMAT=CONDENSE
 /HISTOGRAM
 /STATISTICS=MEAN MEDIAN MODE STDDEV MIN MAX.

• The INPUT PROGRAM—END INPUT PROGRAM structure encloses an input program that
builds cases from transformation commands.

• The indexing variable (#I) on LOOP—END LOOP indicates that the loop should be executed
1000 times.

• The DO REPEAT—END REPEAT structure generates 400 variables, each with a 50%
chance of being 0 and a 50% chance of being 1. This is accomplished by specifying a
logical expression on COMPUTE that compares the values returned by UNIFORM(1) to the
value 0.5. (UNIFORM(1) generates random numbers between 0 and 1.) Logical expres-
sions are evaluated as false (0), true (1), or missing. Thus, each random number returned
by UNIFORM that is 0.5 or less is evaluated as false and assigned the value 0, and each
random number returned by UNIFORM that is greater than 0.5 is evaluated as true and
assigned the value 1.

• The second COMPUTE creates variable AVG, which is the mean of R1 to R400 for each
case.

• END CASE builds a case with the variables created within each loop. Thus, the loop struc-
ture creates 1000 cases, each with 401 variables (R1 to R400, and AVG).

• END FILE signals the end of the data file generated by the input program. If END FILE were
not specified in this example, the input program would go into an infinite loop. No work-
ing file would be built, and the program would display an error message for every proce-
dure that follows the input program.

• FREQUENCIES produces a condensed frequency table, histogram, and statistics for AVG.
The histogram for AVG shows a normal distribution.

DO REPEAT—END REPEAT 287

PRINT Subcommand

The PRINT subcommand on END REPEAT displays the commands generated by the DO
REPEAT—END REPEAT structure. PRINT can be used to verify the order in which com-
mands are executed.

Example
DO REPEAT Q=Q1 TO Q5/ R=R1 TO R5.
COMPUTE Q=0.
COMPUTE R=1.
END REPEAT PRINT.

• The DO REPEAT—END REPEAT structure initializes one set of variables to 0 and another
set to 1.

• The output from the PRINT subcommand is shown in Figure 2. The generated commands
are preceded by plus signs.

• The COMPUTE commands are generated in such a way that variables are created in alter-
nating order: Q1, R1, Q2, R2, and so forth. If you plan to use the TO keyword to refer to
Q1 to Q5 later, you should use two separate DO REPEAT utilities; otherwise, Q1 to Q5 will
include four of the five R variables. Alternatively, use the NUMERIC command to prede-
termine the order in which variables are added to the working file, or specify the replace-
ment value lists as shown in the next example.

Example
DO REPEAT Q=Q1 TO Q5,R1 TO R5/ N=0,0,0,0,0,1,1,1,1,1.
COMPUTE Q=N.
END REPEAT PRINT.

• In this example, a series of constants are specified as a stand-in value list for N. All the Q
variables are initialized first, and then all the R variables, as shown in Figure 3.

Figure 2 Output from the PRINT subcommand
 2 0 DO REPEAT Q=Q1 TO Q5/ R=R1 TO R5
 3 0 COMPUTE Q=0
 4 0 COMPUTE R=1
 5 0 END REPEAT PRINT

 6 0 +COMPUTE Q1=0
 7 0 +COMPUTE R1=1
 8 0 +COMPUTE Q2=0
 9 0 +COMPUTE R2=1
 10 0 +COMPUTE Q3=0
 11 0 +COMPUTE R3=1
 12 0 +COMPUTE Q4=0
 13 0 +COMPUTE R4=1
 14 0 +COMPUTE Q5=0
 15 0 +COMPUTE R5=1

288 DO REPEAT—END REPEAT

Example
DO REPEAT R=REGION1 TO REGION5/ X=1 TO 5.
COMPUTE R=REGION EQ X.
END REPEAT PRINT.

• In this example, stand-in variable R represents the variable list REGION1 to REGION5.
Stand-in variable X represents the value list 1 to 5.

• The DO REPEAT—END REPEAT structure creates dummy variables REGION1 to REGION5
that equal 0 or 1 for each of 5 regions, depending on whether variable REGION equals the
current value of stand-in variable X.

• PRINT on END REPEAT causes the program to display the commands generated by the
structure, as shown in Figure 4.

Figure 3 Output from the PRINT subcommand
 2 0 DO REPEAT Q=Q1 TO Q5,R1 TO R5/ N=0,0,0,0,0,1,1,1,1,1
 3 0 COMPUTE Q=N
 4 0 END REPEAT PRINT

 5 0 +COMPUTE Q1=0
 6 0 +COMPUTE Q2=0
 7 0 +COMPUTE Q3=0
 8 0 +COMPUTE Q4=0
 9 0 +COMPUTE Q5=0
 10 0 +COMPUTE R1=1
 11 0 +COMPUTE R2=1
 12 0 +COMPUTE R3=1
 13 0 +COMPUTE R4=1
 14 0 +COMPUTE R5=1

Figure 4 Commands generated by DO REPEAT
 2 0 DO REPEAT R=REGION1 TO REGION5/ X=1 TO 5
 3 0 COMPUTE R=REGION EQ X
 4 0 END REPEAT PRINT

 5 0 +COMPUTE REGION1=REGION EQ 1
 6 0 +COMPUTE REGION2=REGION EQ 2
 7 0 +COMPUTE REGION3=REGION EQ 3
 8 0 +COMPUTE REGION4=REGION EQ 4
 9 0 +COMPUTE REGION5=REGION EQ 5

289

DROP DOCUMENTS

DROP DOCUMENTS

Overview

When GET retrieves an SPSS-format data file, or when ADD FILES, MATCH FILES, or
UPDATE are used to combine SPSS-format data files, all documents from each specified file
are copied into the working file. DROP DOCUMENTS is used to drop these or any documents
added with the DOCUMENT command from the working file. Whether or not DROP
DOCUMENTS is used, new documents can be added to the working file with the DOCUMENT
command.

Basic Specification

The only specification is DROP DOCUMENTS. There are no additional specifications.

Operations

• Documents are dropped from the working data file only. The original data file is un-
changed, unless it is resaved.

• DROP DOCUMENTS drops all documentation, including documentation added by any
DOCUMENT commands specified prior to the DROP DOCUMENTS command.

Example

GET FILE=GENSOC /KEEP=AGE SEX EDUC MARITAL CHILDRN MED_INS.

DROP DOCUMENTS.

FILE LABEL General Social Survey Subset.
DOCUMENT This file contains a subset of variables from the

General Social Survey data. For each case it records
 only the age, sex, education level, marital status,
 number of children, and type of medical insurance

 coverage.

SAVE OUTFILE=SUBSOC.

• DROP DOCUMENTS drops the documentation text from file GENSOC. Only the new doc-
umentation added with the DOCUMENT command is saved in file SUBSOC.

• The original file GENSOC is unchanged.

290

EDIT

This command is not available on all operating systems.

EDIT

Example:
EDIT.
GET FILE=QUERY.
RECODE ITEM1, ITEM2, ITEM3 (0=1) (1=0) (2=-1).
COMPUTE INDEXQ=(ITEM1 + ITEM2 + ITEM3)/3.
VARIABLE LABELS INDEXQ ’Summary Index of Questions’.
FREQUENCIES=ITEM1 ITEM2 ITEM3.

Overview

EDIT causes the program to evaluate a sequence of commands without actually running the
commands. EDIT is available only for batch mode.

Syntax Rules

The minimum specification is simply the command keyword. EDIT has no additional
specifications.
• EDIT can be positioned anywhere within the sequence of commands and checks all the

commands that follow it.

Operations

• EDIT checks for syntax errors, and it checks to see if all variables used in the commands
have been defined. EDIT will look for variable definitions in a specified SPSS-format
data file, on a DATA LIST command, and on any commands that create variables.

• EDIT cannot determine whether a DATA LIST command correctly defines the data. It can
only determine whether the syntax is correct.

• If the variable definitions are contained in an SPSS-format data file that is not available
to the program for checking, you can replicate data definitions in the EDIT session by us-
ing the DATA LIST, NUMERIC, or STRING commands. The DATA LIST does not need to
correspond exactly with the data, but it must name all the variables to be used in the re-
mainder of the session in the same order and with the same format as the variables in the
data file.

• If data are inline, the BEGIN DATA and END DATA commands must be in their appropriate
positions within the sequence of commands. However, EDIT does not check the data
records.

EDIT 291

• EDIT reports when a string variable is used where a numeric variable is required and vice
versa.

• Some program procedures create variables such as standard scores and residuals and add
them to the working data file. EDIT does not know about these variables and issues error
messages when it encounters them in subsequent commands.

• EDIT does not detect every possible error. For example, it will not recognize that a com-
putation is impossible.

Example

EDIT.
DATA LIST FILE=HUBDATA RECORDS=3
/1 EMPLOYID 1-5 MOHIRED YRHIRED 12-15 DEPT79 TO DEPT82 SEX 16-20
/2 SALARY79 TO SALARY82 6-25 HOURLY81 HOURLY82 40-53(2)

PROMO81 72 AGE 54-55 RAISE82 66-70
/3 JOBCAT 6 NAME 25-48 (A).
LIST VARIABLES=MOHIRED YRHIRED DEPT82

SALARY79 TO SALARY82 NAME /FORMAT=NUMBERED.

• EDIT ensures that syntax on DATA LIST and LIST is correct and that all variables specified
on LIST have been defined.

• The DATA LIST and LIST commands are not executed and the data are not read.

Example

EDIT.
GET FILE=HUBDATA.
COMPUTE CASESEQ2=CASESEQ+1.
LEAVE CASESEQ2.
PRINT FORMATS CASESEQ2 (F3).

SELECT IF DEPT82 EQ 4.
LIST VARIABLES=CASESEQ2 MOHIRED YRHIRED DEPT82

SALARY79 TO SALARY82 NAME /FORMAT=NUMBERED.

• All commands following EDIT are checked for syntax and variable names.

• The program reads the dictionary of the HUBDATA data file (specified on the GET com-
mand) so that it can check variables used throughout the session.

• EDIT is able to recognize CASESEQ2 when it is specified on the LIST command because
CASESEQ2 is defined on the COMPUTE command. However, CASESEQ2 is not created.

• The commands in this session are not executed and the data are not read.

292

END CASE

END CASE

Example:
* Restructure a data file to make each data item into a single case.

INPUT PROGRAM.
DATA LIST /#X1 TO #X3 (3(F1,1X)).

VECTOR V=#X1 TO #X3.

LOOP #I=1 TO 3.
- COMPUTE X=V(#I).
- END CASE.
END LOOP.
END INPUT PROGRAM.

Overview

END CASE is used in an INPUT PROGRAM—END INPUT PROGRAM structure to signal that
a case is complete. Control then passes to the commands immediately following the input
program. After these commands are executed for the newly created case, the program re-
turns to the input program and continues building cases by processing the commands im-
mediately after the last END CASE command that was executed. For more information about
the flow control in an input program, see INPUT PROGRAM—END INPUT PROGRAM.

END CASE is especially useful for restructuring files, either building a single case from
several cases or building several cases from a single case. It can also be used to generate
data without any data input (see p. 286 for an example).

Basic Specification

The basic specification is simply END CASE. There are no additional specifications.

Syntax Rules

• END CASE is available only within an input program and is generally specified within a
loop.

• Multiple END CASE commands can be used within an input program. Each builds a case
from the transformation and data definition commands executed since the last END
CASE command.

• If no END CASE is explicitly specified, an END CASE command is implied immediately
before END INPUT PROGRAM and the input program loops until an end-of-file is encoun-
tered or specified (see END FILE).

END CASE 293

Operations

• When an END CASE command is encountered, the program suspends execution of the rest
of the commands before the END INPUT PROGRAM command and passes control to the
commands after the input program. After these commands are executed for the new case,
control returns to the input program. The program continues building cases by processing
the commands immediately after the most recent END CASE command. Use a loop to
build cases from the same set of transformation and data definition commands.

• When multiple END CASE commands are specified, the program follows the flow of the
input program and builds a case whenever it encounters an END CASE command, using
the set of commands executed since the last END CASE.

• Unless LEAVE is specified, all variables are reinitialized each time the input program is
resumed.

• When transformations such as COMPUTE, definitions such as VARIABLE LABELS, and util-
ities such as PRINT are specified between the last END CASE command and END INPUT
PROGRAM, they are executed while a case is being initialized, not when it is complete. This
may produce undesirable results (see the example beginning on p. 299).

Example

* Restructuring a data file to make each data item a single case.

INPUT PROGRAM.
DATA LIST /#X1 TO #X3 (3(F1,1X)).

VECTOR V=#X1 TO #X3.

LOOP #I=1 TO 3.
- COMPUTE X=V(#I).
- END CASE.
END LOOP.
END INPUT PROGRAM.

BEGIN DATA
2 1 1
3 5 1
END DATA.
FORMAT X(F1.0).
PRINT / X.
EXECUTE.

• The input program encloses the commands that build cases from the input file. An input
program is required because END CASE is used to create multiple cases from single input
records.

• DATA LIST defines three variables. In the format specification, the number 3 is a repetition
factor that repeats the format in parentheses three times, once for each variable. The spec-
ified format is F1 and the 1X specification skips 1 column.

• VECTOR creates the vector V with the original scratch variables as its three elements. The
indexing expression on the LOOP command increments the variable #I three times to con-
trol the number of iterations per input case and to provide the index for the vector V.

294 END CASE

• COMPUTE sets X equal to each of the scratch variables. END CASE tells the program to
build a case. Thus, the first loop (for the first case) sets X equal to the first element of vec-
tor V. Since V(1) references #X1, and #X1 is 2, the value of X is 2. Variable X is then for-
matted and printed before control returns to the command END LOOP. The loop
continues, since indexing is not complete. Thus, the program then sets X to #X2, which is
1, builds the second case, and passes it to the FORMAT and PRINT commands. After the
third iteration, which sets X equal to 1, the program formats and prints the case and ter-
minates the loop. Since the end of the file has not been encountered, END INPUT PRO-
GRAM passes control to the first command in the input program, DATA LIST, to read the
next input case. After the second loop, however, the program encounters END DATA and
completes building the working data file.

• The six new cases are shown in Figure 5.

Figure 5 Outcome for multiple cases read from a single case
2
1
1
3
5
1

END CASE 295

Example

*Restructuring a data file to create a separate case for
 each book order.

INPUT PROGRAM.
DATA LIST /ORDER 1-4 #X1 TO #X22 (1X,11(F3.0,F2.0,1X)).

LEAVE ORDER.
VECTOR BOOKS=#X1 TO #X22.

LOOP #I=1 TO 21 BY 2 IF NOT SYSMIS(BOOKS(#I)).
- COMPUTE ISBN=BOOKS(#I).
- COMPUTE QUANTITY=BOOKS(#I+1).
- END CASE.
END LOOP.
END INPUT PROGRAM.
BEGIN DATA
1045 182 2 155 1 134 1 153 5
1046 155 3 153 5 163 1
1047 161 5 182 2 163 4 186 6
1048 186 2
1049 155 2 163 2 153 2 074 1 161 1
END DATA.

SORT CASES ISBN.
DO IF $CASENUM EQ 1.
- PRINT EJECT /’Order ISBN Quantity’.
- PRINT SPACE.
END IF.

FORMATS ISBN (F3)/ QUANTITY (F2).
PRINT /’ ’ ORDER ’ ’ ISBN ’ ’ QUANTITY.

EXECUTE.

• Data are extracted from a file whose records store values for an invoice number and a se-
ries of book codes and quantities ordered. For example, invoice 1045 is for four different
titles and a total of nine books: two copies of book 182, one copy each of 155 and 134,
and five copies of book 153. The task is to break each individual book order into a record,
preserving the order number on each new case.

• The input program encloses the commands that build cases from the input file. They are
required because the END CASE command is used to create multiple cases from single in-
put records.

• DATA LIST specifies ORDER as a permanent variable and defines 22 scratch variables to
hold the book numbers and quantities (this is the maximum number of numbers and quan-
tities that will fit in 72 columns). In the format specification, the first element skips 1
space after the value for the variable ORDER. The number 11 repeats the formats that fol-
low it 11 times: once for each book number and quantity pair. The specified format is F3.0
for book numbers and F2.0 for quantities. The 1X specification skips 1 column after each
quantity value.

• LEAVE preserves the value of the variable ORDER across the new cases to be generated.

296 END CASE

• VECTOR sets up the vector BOOKS with the 22 scratch variables as its elements. The first
element is #X1, the second is #X2, and so on.

• If the element for the vector BOOKS is not system missing, LOOP initiates the loop struc-
ture that moves through the vector BOOKS, picking off the book numbers and quantities.
The indexing clause initiates the indexing variable #I at 1, to be increased by 2 to a max-
imum of 21.

• The first COMPUTE command sets the variable ISBN equal to the element in the vector
BOOKS indexed by #I, which is the current book number. The second COMPUTE sets the
variable QUANTITY equal to the next element in the vector BOOKS, #I +1, which is the
quantity associated with the book number in BOOKS(#I).

• END CASE tells the program to write out a case with the current values of the three vari-
ables: ORDER, ISBN, and QUANTITY.

• END LOOP terminates the loop structure and control is returned to the LOOP command,
where #I is increased by 2 and looping continues until the entire input case is read or until
#I exceeds the maximum value of 21.

• SORT CASES sorts the new cases by book number.

• The DO IF structure encloses a PRINT EJECT command and a PRINT SPACE command to
set up titles for the output.

• FORMATS establishes dictionary formats for the new variables ISBN and QUANTITY.
PRINT displays the new cases.

• EXECUTE runs the commands. The output is shown in Figure 6.

Figure 6 PRINT output showing new cases
Order ISBN Quantity

 1049 74 1
 1045 134 1
 1045 153 5
 1046 153 5
 1049 153 2
 1045 155 1
 1046 155 3
 1049 155 2
 1047 161 5
 1049 161 1
 1046 163 1
 1047 163 4
 1049 163 2
 1045 182 2
 1047 182 2
 1047 186 6
 1048 186 2

END CASE 297

Example

* Create variable that approximates a log-normal distribution.

SET FORMAT=F8.0.

INPUT PROGRAM.
LOOP I=1 TO 1000.
+ COMPUTE SCORE=EXP(NORMAL(1)).
+ END CASE.
END LOOP.
END FILE.
END INPUT PROGRAM.

FREQUENCIES VARIABLES=SCORE /FORMAT=NOTABLE /HISTOGRAM
 /PERCENTILES=1 10 20 30 40 50 60 70 80 90 99
 /STATISTICS=ALL.

• The input program creates 1000 cases with a single variable SCORE. Values for SCORE
approximate a log-normal distribution.

Example

* Restructure a data file to create a separate case for each
 individual.
INPUT PROGRAM.
DATA LIST /#RECS 1 HEAD1 HEAD2 3-4(A). /*Read header info
LEAVE HEAD1 HEAD2.

LOOP #I=1 TO #RECS.
DATA LIST /INDIV 1-2(1). /*Read individual info
PRINT /#RECS HEAD1 HEAD2 INDIV.
END CASE. /*Create combined case
END LOOP.
END INPUT PROGRAM.
BEGIN DATA
1 AC
91
2 CC
35
43
0 XX
1 BA
34
3 BB
42
96
37
END DATA.
LIST.

• Data are in a file with header records that indicate the type of record and the number of
individual records that follow. The number of records following each header record var-
ies. For example, the 1 in the first column of the first header record (AC) says that only
one individual record (91) follows. The 2 in the first column of the second header record

298 END CASE

(CC) says that two individual records (35 and 43) follow. The next header record has no
individual records, indicated by the 0 in column 1, and so on.

• The first DATA LIST reads the expected number of individual records for each header
record into temporary variable #RECS. #RECS is then used as the terminal value in the
indexing variable to read the correct number of individual records using the second DATA
LIST.

• The variables HEAD1 and HEAD2 contain the information in columns 3 and 4, respective-
ly, in the header records. The LEAVE command retains HEAD1 and HEAD2 so that this in-
formation can be spread to the individual records.

• The variable INDIV is the information from the individual record. INDIV is combined with
#RECS, HEAD1, and HEAD2 to create the new case. Notice in the output from the PRINT
command in Figure 7 that no case is created for the header record with 0 for #RECS.

• END CASE passes each case out of the input program to the LIST command. Without END
CASE, the PRINT command would still display the cases as shown in Figure 7 because it
is inside the loop. However, only one (the last) case per header record would pass out of
the input program. The outcome for LIST will be quite different (compare Figure 8 with
Figure 9).

Figure 7 PRINT output
1 A C 9.1
2 C C 3.5
2 C C 4.3
1 B A 3.4
3 B B 4.2
3 B B 9.6
3 B B 3.7

Figure 8 LIST output when END CASE is specified
HEAD1 HEAD2 INDIV

A C 9.1
C C 3.5
C C 4.3
B A 3.4
B B 4.2
B B 9.6
B B 3.7

Figure 9 LIST output when END CASE is not specified
HEAD1 HEAD2 INDIV

A C 9.1
C C 4.3
X X .
B A 3.4
B B 3.7

END CASE 299

Example

* Note: the following is an erroneous program! The COMPUTE and
 PRINT commands that follow END CASE are misplaced. They should
 be specified after the END INPUT PROGRAM command.

INPUT PROGRAM.
DATA LIST /#X1 TO #X3 (3(F1,1X)).

VECTOR V=#X1 TO #X3.

LOOP #I=1 TO 3.
COMPUTE X=V(#I).
END CASE.
END LOOP.

COMPUTE Y=X**2. /* This should be specified after the input program
VARIABLE LABELS X ’TEST VARIABLE’ Y ’SQUARE OF X’.
PRINT FORMATS X Y (F2).
END INPUT PROGRAM.

BEGIN DATA
2 1 1
3 5 1
END DATA.

FREQUENCIES VARIABLES=X Y.

• No error or warning is issued for these commands, but the result is not what was intended.
The computed value for X is passed out of the input program when the END CASE com-
mand is encountered. Thus, Y is computed from the initialized value of X, which is the
system-missing value. As Figure 10 shows, all six cases computed for Y within the input
program have the system-missing value, represented by a period (.).

• The frequencies table for X is as expected, because X is computed from inline data and no
computation is done between END CASE and END INPUT PROGRM.

• The VARIABLE LABELS and PRINT FORMATS commands have their desired effects even
though they are executed with the COMPUTE command, because they do not act on any
data read in.

• Moving COMPUTE before END CASE will solve the problem, but the preferred solution is
to specify END INPUT PROGRAM before all commands in the transformation program,
since they operate on the cases created by the input program.

300 END CASE

Figure 10 FREQUENCIES output
X TEST VARIABLE

 VALID CUM
 VALUE LABEL VALUE FREQUENCY PERCENT PERCENT PERCENT

 1 3 50.0 50.0 50.0
 2 1 16.7 16.7 66.7
 3 1 16.7 16.7 83.3
 5 1 16.7 16.7 100.0
 ------- ------- -------
 TOTAL 6 100.0 100.0

VALID CASES 6 MISSING CASES 0
- -

Y SQUARE OF X

 VALID CUM
 VALUE LABEL VALUE FREQUENCY PERCENT PERCENT PERCENT

 . 6 100.0 MISSING
 ------- ------- -------
 TOTAL 6 100.0 100.0

301

END FILE

END FILE

Example:
INPUT PROGRAM.
DATA LIST FILE=PRICES /YEAR 1-4 QUARTER 6 PRICE 8-12(2).
DO IF (YEAR GE 1881). /*Stop reading before 1881
END FILE.
END IF.
END INPUT PROGRAM.

Overview

END FILE is used in an INPUT PROGRAM—END INPUT PROGRAM structure to tell the pro-
gram to stop reading data before it actually encounters the end of the file. END FILE can be
used with END CASE to concatenate raw data files by causing the program to delay end-of-
file processing until it has read multiple data files (see p. 208 for an example). END FILE can
also be used with LOOP and END CASE to generate data without any data input (see p. 286
for an example).

Basic Specification

The basic specification is simply END FILE. There are no additional specifications. The end
of file is defined according to the conditions specified for END FILE in the input program.

Syntax Rules

• END FILE is available only within an INPUT PROGRAM structure.

• Only one END FILE command can be executed per input program. However, multiple
END FILE commands can be specified within a conditional structure in the input pro-
gram.

Operations

• When END FILE is encountered, the program stops reading data and puts an end of file
in the working data file it was building. The case that causes the execution of END FILE
is not read. To include this case, use the END CASE command before END FILE (see the
examples below).

• END FILE has the same effect as the end of the input data file. It terminates the input pro-
gram (see INPUT PROGRAM—END INPUT PROGRAM).

302 END FILE

Example

*Select cases.

INPUT PROGRAM.
DATA LIST FILE=PRICES /YEAR 1-4 QUARTER 6 PRICE 8-12(2).

DO IF (YEAR GE 1881). /*Stop reading before 1881
END FILE.
END IF.

END INPUT PROGRAM.

LIST.

• This example assumes that data records are entered chronologically by year. The DO IF—
END IF structure specifies an end of file when the first case with a value of 1881 or later
for YEAR is reached.

• LIST executes the input program and lists cases in the working data file. The case that
causes the end of the file is not included in the working data file.

• As an alternative to an input program with END FILE, you can use N OF CASES to select
cases if you know the exact number of cases. Another alternative is to use SELECT IF to
select cases before 1881, but then the program would unnecessarily read the entire input
file.

Example

Select cases but retain the case that causes end-of-file processing.

INPUT PROGRAM.
DATA LIST FILE=PRICES /YEAR 1-4 QUARTER 6 PRICE 8-12(2).

DO IF (YEAR GE 1881). /*Stop reading before 1881 (or at end of file)
END CASE. /*Create case 1881
END FILE.

ELSE.
END CASE. /*Create all other cases
END IF.
END INPUT PROGRAM.

LIST.

• The first END CASE command forces the program to retain the case that causes end-of-
file processing.

• The second END CASE indicates the end of case for all other cases and passes them out of
the input program one at a time. It is required because the first END CASE command
causes the program to abandon default end-of-case processing (see END CASE).

303

ERASE

ERASE FILE=’file’

Example:
ERASE FILE=’PRSNL.DAT’.

Overview

ERASE removes a file from a disk.

Basic Specification

The basic specification is the keyword FILE followed by a file specification. The specified
file is erased from the disk. The file specification may vary from operating system to oper-
ating system, but enclosing the filename in apostrophes generally works.

Syntax Rules

• The keyword FILE is required but the equals sign is optional.

• ERASE allows one file specification only and does not accept wildcard characters. To
erase more than one file, specify multiple ERASE commands.

• The file to be erased must be specified in full. ERASE does not recognize any default file
extension.

Operations

ERASE deletes the specified file regardless of its type. No message is displayed unless the
command cannot be executed. Use ERASE with caution.

Example

ERASE FILE ’PRSNL.DAT’.

• The file PRSNL.SAV is deleted from the current directory. Whether it is an SPSS-format
data file or a file of any other type makes no difference.

304

EXAMINE

EXAMINE VARIABLES=varlist [[BY varlist] [varname BY varname]]

 [/COMPARE={GROUPS** }]
 {VARIABLES}

[/{TOTAL**}]

 {NOTOTAL}

 [/ID={case number**}]
 {varname }

[/PERCENTILES [[({5,10,25,50,75,90,95})=[{HAVERAGE }] [NONE]]

 {value list } {WAVERAGE }
 {ROUND }
 {AEMPIRICAL}
 {EMPIRICAL }

 [/PLOT=[STEMLEAF**] [BOXPLOT**] [NPPLOT] [SPREADLEVEL(n)] [HISTOGRAM]]

 [{ALL }]
 {NONE}

 [/STATISTICS=[DESCRIPTIVES**] [EXTREME({5})]]
 {n}
 [{ALL }]
 {NONE}

 [/CINTERVAL {95**}]

{n }

 [/MESTIMATOR=[{NONE**}]]

{ALL }

 [HUBER({1.339})] [ANDREW({1.34}]

 {c } {c }

 [HAMPEL({1.7,3.4,8.5})]

 {a ,b ,c }

 [TUKEY({4.685})]

 {c }

[/MISSING=[{LISTWISE**}] [{EXCLUDE**}] [{NOREPORT**}]]
 {PAIRWISE } {INCLUDE } {REPORT }

**Default if the subcommand is omitted.

Examples:
EXAMINE VARIABLES=ENGSIZE,COST.

EXAMINE VARIABLES=MIPERGAL BY MODEL,MODEL BY CYLINDERS.

Overview

EXAMINE provides stem-and-leaf plots, histograms, boxplots, normal plots, robust esti-
mates of location, tests of normality and other descriptive statistics. Separate analyses can
be obtained for subgroups of cases.

EXAMINE 305

Options

Cells. You can subdivide cases into cells based on their values for grouping (factor) variables
using the BY keyword on the VARIABLES subcommand.

Output. You can control the display of output using the COMPARE subcommand. You can
specify the computational method and break points for percentiles with the PERCENTILES
subcommand, and you can assign a variable to be used for labeling outliers on the ID sub-
command.

Plots. You can request stem-and-leaf plots, histograms, vertical boxplots, spread-versus-level
plots with Levene tests for homogeneity of variance, and normal and detrended probability
plots with tests for normality. These plots are available through the PLOT subcommand.

Statistics. You can request univariate statistical output with the STATISTICS subcommand
and maximum-likelihood estimators with the MESTIMATORS subcommand.

Basic Specification

• The basic specification is VARIABLES and at least one dependent variable.

• The default output includes a Descriptives table displaying univariate statistics (mean,
median, standard deviation, standard error, variance, kurtosis, kurtosis standard error,
skewness, skewness standard error, sum, interquartile range (IQR), range, minimum,
maximum, and 5% trimmed mean), a vertical boxplot and a stem-and-leaf plot. Outliers
are labeled on the boxplot with the system variable $CASENUM.

Subcommand Order

Subcommands can be named in any order.

Limitations

• When string variables are used as factors, only the first eight characters are used to form
cells. String variables cannot be specified as dependent variables.

• When more than eight crossed factors (for example, A, B, ... in the specification Y
by A by B by ...) are specified, the command is not executed.

Example

EXAMINE VARIABLES=ENGSIZE,COST.

• ENGSIZE and COST are the dependent variables.

• EXAMINE produces univariate statistics for ENGSIZE and COST in the Descriptives table,
and a vertical boxplot and a stem-and-leaf plot for each variable.

306 EXAMINE

Example

EXAMINE VARIABLES=MIPERGAL BY MODEL,MODEL BY CYLINDERS.

• MIPERGAL is the dependent variable. The cell specification follows the first BY keyword.
Cases are subdivided based on values of MODEL and also based on the combination of
values of MODEL and CYLINDERS.

• Assuming that there are three values for MODEL and two values for CYLINDERS, this ex-
ample produces a Descriptives table, a stem-and-leaf plot, and a boxplot for the total sam-
ple, a Descriptives table and a boxplot for each factor defined by the first BY (MIPERGAL
by MODEL and MIPERGAL by MODEL by CYLINDERS), and a stem-and-leaf plot for each
of the nine cells (three defined by MODEL, and six defined by MODEL and CYLINDERS
together).

VARIABLES Subcommand

VARIABLES specifies the dependent variables and the cells. The dependent variables are
specified first, followed by the keyword BY and the variables that define the cells. Repeated
models on the same EXAMINE are discarded.

• To create cells defined by the combination of values of two or more factors, specify the
factor names separated by the keyword BY.

Caution. Large amounts of output can be produced if many cells are specified. If there are
many factors or if the factors have many values, EXAMINE will produce a large number of
separate analyses.

Example
EXAMINE VARIABLES=SALARY,YRSEDUC BY RACE,SEX,DEPT,RACE BY SEX.

• SALARY and YRSEDUC are dependent variables.

• Cells are formed first for the values of SALARY and YRSEDUC individually, and then each
by values for RACE, SEX, DEPT, and the combination of RACE and SEX.

• By default, EXAMINE produces Descriptives tables, stem-and-leaf plots, and boxplots.

COMPARE Subcommand

COMPARE controls how boxplots are displayed. This subcommand is most useful if there is
more than one dependent variable and at least one factor in the design.

GROUPS For each dependent variable, boxplots for all cells are displayed together.
With this display, comparisons across cells for a single dependent variable
are easily made. This is the default.

VARIABLES For each cell, boxplots for all dependent variables are displayed together.
With this display, comparisons of several dependent variables are easily made.
This is useful in situations where the dependent variables are repeated mea-
sures of the same variable (see the following example) or have similar scales,
or when the dependent variable has very different values for different cells, and
plotting all cells on the same scale would cause information to be lost.

EXAMINE 307

Example
EXAMINE VARIABLES=GPA1 GPA2 GPA3 GPA4 BY MAJOR /COMPARE=VARIABLES.

• The four GPA variables are summarized for each value of MAJOR.

• COMPARE=VARIABLES groups the boxplots for the four GPA variables together for each
value of MAJOR.

Example
EXAMINE VARIABLES=GPA1 GPA2 GPA3 GPA4 BY MAJOR /COMPARE=GROUPS.

• COMPARE=GROUPS groups the boxplots for GPA1 for all majors together, followed by
boxplots for GPA2 for all majors, and so on.

TOTAL and NOTOTAL Subcommands

TOTAL and NOTOTAL control the amount of output produced by EXAMINE when factor vari-
ables are specified.

• TOTAL is the default. By default, or when TOTAL is specified, EXAMINE produces statis-
tics and plots for each dependent variable overall and for each cell specified by the fac-
tor variables.

• NOTOTAL suppresses overall statistics and plots.
• TOTAL and NOTOTAL are alternatives.

• NOTOTAL is ignored when the VARIABLES subcommand does not specify factor variables.

ID Subcommand

ID assigns a variable from the working data file to identify the cases in the output. By default
the case number is used for labeling outliers and extreme cases in boxplots.

• The identification variable can be either string or numeric. If it is numeric, value labels
are used to label cases. If no value labels exist, the values are used.

• Only one identification variable can be specified.

Example
EXAMINE VARIABLES=SALARY BY RACE BY SEX /ID=LASTNAME.

• ID displays the value of LASTNAME for outliers and extreme cases in the boxplots.

PERCENTILES Subcommand

PERCENTILES displays the Percentiles table. If PERCENTILES is omitted, no percentiles are
produced. If PERCENTILES is specified without keywords, HAVERAGE is used with default
break points of 5, 10, 25, 50, 75, 90, and 95.
• Values for break points are specified in parentheses following the subcommand. EXAMINE

displays up to six decimal places for user-specified percentile values.

308 EXAMINE

• The method keywords follow the specifications for break points.

In the following formulas, cases are assumed to be ranked in ascending order. The following
notation is used: w is the sum of the weights for all nonmissing cases, p is the specified per-
centile divided by 100, i is the rank of each case, and Xi is the value of the ith case.

HAVERAGE Weighted average at . The percentile value is the weighted average
of and using the formula , where is de-
composed into an integer part i and a fractional part f. This is the default if
PERCENTILES is specified without a keyword.

WAVERAGE Weighted average at . The percentile value is the weighted average of
and using the formula , where i is the integer part of
wp and f is the fractional part of wp.

ROUND Observation closest to wp. The percentile value is , where i is the integer
part of .

EMPIRICAL Empirical distribution function. The percentile value is when the frac-
tional part of wp is equal to 0. The percentile value is when the frac-
tional part of wp is greater than 0.

AEMPIRICAL Empirical distribution with averaging. The percentile value is
 when the fractional part of wp equals 0. The percentile value

is when the fractional part of wp is greater than 0.

NONE Suppress percentile output. This is the default if PERCENTILES is omitted.

Example
EXAMINE VARIABLE=SALARY /PERCENTILES(10,50,90)=EMPIRICAL.

• PERCENTILES produces the 10th, 50th, and 90th percentiles for the dependent variable
SALARY using the EMPIRICAL distribution function.

PLOT Subcommand

PLOT controls plot output. The default is a vertical boxplot and a stem-and-leaf plot for each
dependent variable for each cell in the model.

• Spread-versus-level plots can be produced only if there is at least one factor variable on
the VARIABLES subcommand. If you request a spread-versus-level plot and there are no
factor variables, the program issues a warning and no spread-versus-level plot is produced.

• If you specify the PLOT subcommand, only those plots explicitly requested are produced.

BOXPLOT Vertical boxplot. The boundaries of the box are Tukey’s hinges. The
median is identified by an asterisk. The length of the box is the inter-
quartile range (IQR) computed from Tukey’s hinges. Values more than
three IQR’s from the end of a box are labeled as extreme (E). Values
more than 1.5 IQR’s but less than 3 IQR’s from the end of the box are
labeled as outliers (O).

X w 1+()p
Xi Xi 1+ 1 f–()Xi fX+ i 1+ w 1+()p

Xwp Xi
X i 1+() 1 f–()Xi fXi 1++

Xi

wp 0.5+()

Xi

Xi 1+

Xi Xi 1++() 2⁄
Xi 1+

EXAMINE 309

STEMLEAF Stem-and-leaf plot. In a stem-and-leaf plot, each observed value is di-
vided into two components—leading digits (stem) and trailing digits
(leaf).

HISTOGRAM Histogram.

SPREADLEVEL(n) Spread-versus-level plot with the Test of Homogeneity of Variance ta-
ble. If the keyword appears alone, the natural logs of the interquartile
ranges are plotted against the natural logs of the medians for all cells.
If a power for transforming the data (n) is given, the IQR and median
of the transformed data are plotted. If 0 is specified for n, a natural log
transformation of the data is done. The slope of the regression line and
Levene tests for homogeneity of variance are also displayed. The Lev-
ene tests are based on the original data if no transformation is specified
and on the transformed data if a transformation is requested.

NPPLOT Normal and detrended Q-Q plots with the Tests of Normality table
presenting Shapiro-Wilk’s statistic and a Kolmogorov-Smirnov statis-
tic with a Lilliefors significance level for testing normality. Shapiro-
Wilk’s statistic is not calculated when the sample size exceeds 50.

ALL All available plots.

NONE No plots.

Example
EXAMINE VARIABLES=CYCLE BY TREATMNT /PLOT=NPPLOT.

• PLOT produces normal and detrended Q-Q plots for each value of TREATMNT and a Tests
of Normality table.

Example
EXAMINE VARIABLES=CYCLE BY TREATMNT /PLOT=SPREADLEVEL(.5).

• PLOT produces a spread-versus-level plot of the medians and interquartile ranges of the
square root of CYCLE. Each point on the plot represents one of the TREATMNT groups.

• A Test of Homogeneity of Variance table displays Levene statistics.

Example
EXAMINE VARIABLES=CYCLE BY TREATMNT /PLOT=SPREADLEVEL(0).

• PLOT generates a spread-versus-level plot of the medians and interquartile ranges of the
natural logs of CYCLE for each TREATMENT group.

• A Test of Homogeneity of Variance table displays Levene statistics.

Example
EXAMINE VARIABLES=CYCLE BY TREATMNT /PLOT=SPREADLEVEL.

• PLOT generates a spread-versus-level plot of the natural logs of the medians and inter-
quartile ranges of CYCLE for each TREATMNT group.

• A Test of Homogeneity of Variance table displays Levene statistics.

310 EXAMINE

STATISTICS Subcommand

STATISTICS requests univariate statistics and determines how many extreme values are dis-
played. DESCRIPTIVES is the default. If you specify keywords on STATISTICS, only the re-
quested statistics are displayed.

DESCRIPTIVES Display the Descriptives table showing univariate statistics (the mean, me-
dian, 5% trimmed mean, standard error, variance, standard deviation, min-
imum, maximum, range, interquartile range, skewness, skewness standard
error, kurtosis, and kurtosis standard error). This is the default.

EXTREME(n) Display the Extreme Values table presenting cases with the n largest and n
smallest values. If n is omitted, the five largest and five smallest values are
displayed. Extreme cases are labeled with their values for the identification
variable if the ID subcommand is used or with their values for the system
variable $CASENUM if ID is not specified.

ALL Display the Descriptives and Extreme Values tables.

NONE Display neither the Descriptives nor the Extreme Values tables.

Example
EXAMINE VARIABLE=FAILTIME /ID=BRAND

/STATISTICS=EXTREME(10) /PLOT=NONE.

• STATISTICS identifies the cases with the 10 lowest and 10 highest values for FAILTIME.
These cases are labeled with the first characters of their values for the variable BRAND.
The Descriptives table is not displayed.

CINTERVAL Subcommand

CINTERVAL controls the confidence level when the default DESCRIPTIVES statistics is dis-
played. CINTERVAL has a default value of 95.
• You can specify a CINTERVAL value (n) between 50 and 99.99 inclusive. If the value you

specify is out of range, the program issues a warning and uses the default 95% intervals.

• If you specify a keyword on STATISTICS subcommand that turns off the default
DESCRIPTIVES, the CINTERVAL subcommand is ignored.

• The confidence interval appears in the output with the label n% CI for Mean, followed by
the confidence interval in parentheses. For example,
95% CI for Mean (.0001,.00013)

The n in the label shows up to six decimal places. That is, input /CINTERVAL 95 dis-
plays as 95% CI while input /CINTERVAL 95.975 displays as 95.975% CI.

MESTIMATORS Subcommand

M-estimators are robust maximum-likelihood estimators of location. Four M-estimators are
available for display in the M-Estimators table. They differ in the weights they apply to the

EXAMINE 311

cases. MESTIMATORS with no keywords produces Huber’s M-estimator with c=1.339; An-
drews’ wave with c=1.34π; Hampel’s M-estimator with a=1.7, b=3.4, and c=8.5; and
Tukey’s biweight with c=4.685.

HUBER(c) Huber’s M-estimator. The value of weighting constant c can be specified in
parentheses following the keyword. The default is c=1.339.

ANDREW(c) Andrews’ wave estimator. The value of weighting constant c can be specified
in parentheses following the keyword. Constants are multiplied by π. The de-
fault is 1.34π.

HAMPEL(a,b,c) Hampel’s M-estimator. The values of weighting constants a, b, and c can be
specified in order in parentheses following the keyword. The default values
are a=1.7, b=3.4, and c=8.5.

TUKEY(c) Tukey’s biweight estimator. The value of weighting constant c can be speci-
fied in parentheses following the keyword. The default is c=4.685.

ALL All four above M-estimators. This is the default when MESTIMATORS is
specified with no keyword. The default values for weighting constants are
used.

NONE No M-estimators. This is the default if MESTIMATORS is omitted.

Example
EXAMINE VARIABLE=CASTTEST /MESTIMATORS.

• MESTIMATORS generates all four M-estimators computed with the default constants.

Example
EXAMINE VARIABLE=CASTTEST /MESTIMATORS=HAMPELS(2,4,8).

• MESTIMATOR produces Hampel’s M-estimator with weighting constants a=2, b=4, and c=8.

MISSING Subcommand

MISSING controls the processing of missing values in the analysis. The default is LISTWISE,
EXCLUDE, and NOREPORT.

• LISTWISE and PAIRWISE are alternatives and apply to all variables. They are modified for de-
pendent variables by INCLUDE/EXCLUDE and for factor variables by REPORT/NOREPORT.

• INCLUDE and EXCLUDE are alternatives; they apply only to dependent variables.

• REPORT and NOREPORTare alternatives; they determine if missing values for factor vari-
ables are treated as valid categories.

LISTWISE Delete cases with missing values listwise. A case with missing values for any
dependent variable or any factor in the model specification is excluded from sta-
tistics and plots unless modified by INCLUDE or REPORT. This is the default.

312 EXAMINE

PAIRWISE Delete cases with missing values pairwise. A case is deleted from the analy-
sis only if it has a missing value for the dependent variable or factor being
analyzed.

EXCLUDE Exclude user-missing values. User-missing values and system-missing values
for dependent variables are excluded. This is the default.

INCLUDE Include user-missing values. Only system-missing values for dependent
variables are excluded from the analysis.

NOREPORT Exclude user- and system-missing values for factor variables. This is the
default.

REPORT Include user- and system-missing values for factor variables. User- and sys-
tem-missing values for factors are treated as valid categories and are labeled
as missing.

Example
EXAMINE VARIABLES=RAINFALL MEANTEMP BY REGION.

• MISSING is not specified and the default is used. Any case with a user- or system-missing
value for RAINFALL, MEANTEMP, or REGION is excluded from the analysis and display.

Example
EXAMINE VARIABLES=RAINFALL MEANTEMP BY REGION

/MISSING=PAIRWISE.

• Only cases with missing values for RAINFALL are excluded from the analysis of RAINFALL,
and only cases with missing values for MEANTEMP are excluded from the analysis of
MEANTEMP. Missing values for REGION are not used.

Example
EXAMINE VARIABLES=RAINFALL MEANTEMP BY REGION

/MISSING=REPORT.

• Missing values for REGION are considered valid categories and are labeled as missing.

References

Frigge, M., D. C. Hoaglin, and B. Iglewicz. 1987. Some implementations of the boxplot. In: Com-
puter Science and Statistics Proceedings of the 19th Symposium on the Interface, R. M.
Heiberger and M. Martin, eds. Alexandria, Virginia: American Statistical Association.

Hoaglin, D. C., F. Mosteller, and J. W. Tukey. 1983. Understanding robust and exploratory data
analysis. New York: John Wiley and Sons.

_____. 1985. Exploring data tables, trends, and shapes. New York: John Wiley and Sons.
Tukey, J. W. 1977. Exploratory data analysis. Reading, Mass.: Addison-Wesley.
Velleman, P. F., and D. C. Hoaglin. 1981. Applications, basics, and computing of exploratory

data analysis. Boston: Duxbury Press.

313

EXECUTE

EXECUTE

Overview

EXECUTE forces the data to be read and executes the transformations that precede it in the
command sequence.

Basic Specification

The basic specification is simply the command keyword. EXECUTE has no additional
specifications.

Operations

• EXECUTE causes the data to be read but has no other influence on the session.

• EXECUTE is designed for use with transformation commands and facilities such as ADD
FILES, MATCH FILES, UPDATE, PRINT, and WRITE, which do not read data and are not
executed unless followed by a data-reading procedure.

Example

DATA LIST FILE=RAWDATA / 1 LNAME 1-13 (A) FNAME 15-24 (A)
MMAIDENL 40-55.

VAR LABELS MMAIDENL ’MOTHER’’S MAIDEN NAME’.
DO IF (MMAIDENL EQ ’Smith’).
WRITE OUTFILE=SMITHS/LNAME FNAME.
END IF.
EXECUTE.

• This example writes the last and first names of all people whose mother’s maiden name
was Smith to the data file SMITHS.

• DO IF—END IF and WRITE do not read data and are executed only when data are read for
a procedure. Because there is no procedure in this session, EXECUTE is used to read the
data and execute all of the preceding transformation commands. Otherwise, the com-
mands would not be executed.

314

EXPORT

EXPORT OUTFILE=file

 [/TYPE={COMM**}]
 {TAPE }

 [/UNSELECTED=[{RETAIN}]
 {DELETE}

 [/KEEP={ALL** }] [/DROP=varlist]
 {varlist}

 [/RENAME=(old varnames=new varnames)...]

 [/MAP]

 [/DIGITS=n]

**Default if the subcommand is omitted.

Example:
EXPORT OUTFILE=NEWDATA /RENAME=(V1 TO V3=ID, SEX, AGE) /MAP.

Overview

EXPORT produces a portable data file. A portable data file is a data file created used to trans-
port data between different types of computers and operating systems (such as between IBM
CMS and Digital VAX/VMS) or between SPSS, SPSS/PC+, or other software using the same
portable file format. Like an SPSS-format data file, a portable file contains all of the data and
dictionary information stored in the working data file from which it was created. (To send
data to a computer and operating system the same as your own, send an SPSS-format data
file, which is easier and faster to process than a portable file.)

EXPORT is similar to the SAVE command. It can occur in the same position in the com-
mand sequence as the SAVE command and saves the working data file. The file includes the
results of all permanent transformations and any temporary transformations made just prior
to the EXPORT command. The working data file is unchanged after the EXPORT command.

Options

Format. You can control the format of the portable file using the TYPE subcommand.

Variables. You can save a subset of variables from the working file and rename the variables
using the DROP, KEEP, and RENAME subcommands. You can also produce a record of all
variables and their names on the exported file with the MAP subcommand.

Precision. You can specify the number of decimal digits of precision for the values of all
numeric variables on the DIGITS subcommand.

EXPORT 315

Basic Specification

The basic specification is the OUTFILE subcommand with a file specification. All variables
from the working data file are written to the portable file, with variable names, variable and
value labels, missing-value flags, and print and write formats.

Subcommand Order

Subcommands can be named in any order.

Operations

• Portable files are written with 80-character record lengths.

• Portable files may contain some unprintable characters.

• The working data file is still available for transformations and procedures after the porta-
ble file is created.

• The system variables $CASENUM and $DATE are assigned when the file is read by IMPORT.
• If the WEIGHT command is used before EXPORT, the weighting variable is included in the

portable file.

Example

EXPORT OUTFILE=NEWDATA /RENAME=(V1 TO V3=ID,SEX,AGE) /MAP.

• The portable file is written to NEWDATA.

• The variables V1, V2, and V3 are renamed ID, SEX, and AGE in the portable file. Their
names remain V1, V2, and V3 in the working file. None of the other variables written to
the portable file are renamed.

• MAP requests a display of the variables in the portable file.

Methods of Transporting Portable Files

Portable files can be transported on magnetic tape or by a communications program.

Magnetic Tape

Before transporting files on a magnetic tape, make sure the receiving computer can read the
tape being sent. The following tape specifications must be known before you write the por-
table file on the tape:

• Number of tracks—either 7 or 9.
• Tape density—200, 556, 800, 1600, or 6250 bits per inch (BPI).

• Parity—even or odd. This must be known only when writing a 7-track tape.

316 EXPORT

• Tape labeling—labeled or unlabeled. Check whether the site can use tape labels. Also
make sure that the site has the ability to read multivolume tape files if the file being writ-
ten uses more than one tape.

• Blocksize—the maximum blocksize the receiving computer can accept.

A tape written with the following characteristics can be read by most computers: 9 track,
1600 BPI, unlabeled, and a blocksize of 3200 characters. However, there is no guarantee that
a tape written with these characteristics can be read successfully. The best policy is to know
the requirements of the receiving computer ahead of time.

The following advice may help ensure successful file transfers by magnetic tape:

• Unless you are certain that the receiving computer can read labels, prepare an unlabeled
tape.

• Make sure the record length of 80 is not changed.

• Do not use a separate character translation program, especially ASCII/EBCDIC transla-
tions. EXPORT/IMPORT takes care of this for you.

• Make sure the same blocking factor is used when writing and reading the tape. A block-
size of 3200 is frequently a good choice.

• If possible, write the portable file directly to tape to avoid possible interference from copy
programs. Read the file directly from the tape for the same reason.

• Use the INFO LOCAL command to find out about using the program on your particular
computer and operating system. INFO LOCAL generally includes additional information
about reading and writing portable files.

Communications Programs

Transmission of a portable file by a communications program may not be possible if the pro-
gram misinterprets any characters in the file as control characters (for example, as a line feed,
carriage return, or end of transmission). This can be prevented by specifying TYPE=COMM on
EXPORT. This specification replaces each control character with the character 0. The affected
control characters are in positions 0–60 of the IMPORT/EXPORT character set (see Appendix B).

The line length that the communications program uses must be set to 80 to match the 80-
character record length of portable files. A transmitted file must be checked for blank lines
or special characters inserted by the communications program. These must be edited out pri-
or to reading the file with the IMPORT command.

Character Translation

Portable files are character files, not binary files, and they have 80-character records so they
can be transmitted over data links. A receiving computer may not use the same character set
as the computer where the portable file was written. When it imports a portable file, the pro-
gram translates characters in the file to the character set used by the receiving computer. De-
pending on the character set in use, some characters in labels and in string data may be lost
in the translation. For example, if a file is transported from a computer using a seven-bit
ASCII character set to a computer using a six-bit ASCII character set, some characters in the

EXPORT 317

file may have no matching characters in six-bit ASCII. For a character that has no match, the
program generates an appropriate nonprintable character (the null character in most cases).

For a table of the character-set translations available with IMPORT and EXPORT, refer to
Appendix B. A blank in a column of the table means that there is no matching character for
that character set and an appropriate nonprintable character will be generated when you im-
port a file.

OUTFILE Subcommand

OUTFILE specifies the portable file. OUTFILE is the only required subcommand on EXPORT.

TYPE Subcommand

TYPE indicates whether the portable file should be formatted for magnetic tape or for a commu-
nications program. You can specify either COMM or TAPE. See “Methods of Transporting Por-
table Files” on p. 315 for more information on magnetic tapes and communications programs.

COMM Transport portable files by a communications program. When COMM is specified
on TYPE, the program removes all control characters and replaces them with the
character 0. This is the default.

TAPE Transport portable files on magnetic tape.

Example
EXPORT TYPE=TAPE /OUTFILE=HUBOUT.

• File HUBOUT is saved as a tape-formatted portable file.

UNSELECTED Subcommand

UNSELECTED determines whether cases excluded on a previous FILTER or USE command
are to be retained or deleted in the SPSS-format data file. The default is RETAIN. The
UNSELECTED subcommand has no effect when the working data file does not contain unse-
lected cases.

RETAIN Retain the unselected cases. All cases in the working data file are saved. This
is the default when UNSELECTED is specified by itself.

DELETE Delete the unselected cases. Only cases that meet the FILTER or USE criteria
are saved in the SPSS-format data file.

318 EXPORT

DROP and KEEP Subcommands

DROP and KEEP save a subset of variables in the portable file.

• DROP excludes a variable or list of variables from the portable file. All variables not
named are included in the portable file.

• KEEP includes a variable or list of variables in the portable file. All variables not named
are excluded.

• Variables can be specified on DROP and KEEP in any order. With the DROP subcom-
mand, the order of variables in the portable file is the same as their order in the working
file. With the KEEP subcommand, the order of variables in the portable file is the order in
which they are named on KEEP. Thus, KEEP can be used to reorder variables in the por-
table file.

• Both DROP and KEEP can be used on the same EXPORT command; the effect is cumula-
tive. If you specify a variable already named on a previous DROP or one not named on a
previous KEEP, the variable is considered nonexistent and the program displays an error
message. The command is aborted and no portable file is saved.

Example
EXPORT OUTFILE=NEWSUM /DROP=DEPT TO DIVISION.

• The portable file is written to file NEWSUM. Variables between and including DEPT and
DIVISION in the working file are excluded from the portable file.

• All other variables are saved in the portable file.

RENAME Subcommand

RENAME renames variables being written to the portable file. The renamed variables retain
their original variable and value labels, missing-value flags, and print formats. The names of
the variables are not changed in the working data file.
• To rename a variable, specify the name of the variable in the working data file, an equals

sign, and the new name.

• A variable list can be specified on both sides of the equals sign. The number of variables on
both sides must be the same, and the entire specification must be enclosed in parentheses.

• The keyword TO can be used for both variable lists (see “Keyword TO” on p. 20).

• If you specify a renamed variable on a subsequent DROP or KEEP subcommand, the new
variable name must be used.

Example
EXPORT OUTFILE=NEWSUM /DROP=DEPT TO DIVISION

/RENAME=(NAME,WAGE=LNAME,SALARY).

• RENAME renames NAME and WAGE to LNAME and SALARY.

• LNAME and SALARY retain the variable and value labels, missing-value flags, and print
formats assigned to NAME and WAGE.

EXPORT 319

MAP Subcommand

MAP displays any changes that have been specified by the RENAME, DROP, or KEEP sub-
commands.

• MAP can be specified as often as desired.

• Each MAP subcommand maps the results of subcommands that precede it; results of sub-
commands that follow it are not mapped.When MAP is specified last, it also produces a
description of the portable file.

Example
EXPORT OUTFILE=NEWSUM /DROP=DEPT TO DIVISION /MAP

/RENAME NAME=LNAME WAGE=SALARY /MAP.

• The first MAP subcommand produces a listing of the variables in the file after DROP has
dropped the specified variables.

• RENAME renames NAME and WAGE.

• The second MAP subcommand shows the variables in the file after renaming. Since this
is the last subcommand, the listing will show the variables as they are written in the por-
table file.

DIGITS Subcommand

DIGITS specifies the degree of precision for all noninteger numeric values written to the por-
table file.

• DIGITS has the general form DIGITS=n, where n is the number of digits of precision.
• DIGITS applies to all numbers for which rounding is required.

• Different degrees of precision cannot be specified for different variables. Thus, DIGITS
should be set according to the requirements of the variable that needs the most precision.

• Default precision methods used by EXPORT work perfectly for integers that are not too
large and for fractions whose denominators are products of 2, 3, and 5 (all decimals, quar-
ters, eighths, sixteenths, thirds, thirtieths, sixtieths, and so forth.) For other fractions and
for integers too large to be represented exactly in the working data file (usually more than
9 digits, often 15 or more), the representation used in the working file contains some error
already, so no exact way of sending these numbers is possible. The program sends enough
digits to get very close. The number of digits sent in these cases depends on the originat-
ing computer: on mainframe IBM versions of the program, it is the equivalent of 13 dec-
imal digits (integer and fractional parts combined). If many numbers on a file require this
level of precision, the file can grow quite large. If you do not need the full default preci-
sion, you can save some space in the portable file by using the DIGITS subcommand.

Example
EXPORT OUTFILE=NEWSUM /DROP=DEPT TO DIVISION /MAP /DIGITS=4.

• DIGITS guarantees the accuracy of values to four significant digits. For example,
12.34567890876 will be rounded to 12.35.

320

FACTOR

FACTOR VARIABLES=varlist† [/MISSING=[{ LISTWISE**}] [INCLUDE]]
 {PAIRWISE }
 {MEANSUB }
 { DEFAULT** }

 [/MATRIX=[IN({COR=file})] [OUT({COR=file})]]
 {COR=* } {COR=* }
 {COV=file} {COV=file}
 {COV=* } {COV=* }
 {FAC=file} {FAC=file}
 {FAC=* } {FAC=* }

 [/METHOD = { CORRELATION**}]
 {COVARIANCE }

 [/SELECT=varname(value)]

 [/ANALYSIS=varlist...]

 [/PRINT=[DEFAULT**] [INITIAL**] [EXTRACTION**] [ROTATION**]
 [UNIVARIATE] [CORRELATION] [COVARIANCE] [DET] [INV]
 [REPR] [AIC] [KMO] [FSCORE] [SIG] [ALL]]

 [/PLOT=[EIGEN] [ROTATION [(n1,n2)]]]

 [/DIAGONAL={value list}]
 { DEFAULT** }

 [/FORMAT=[SORT] [BLANK(n)] [DEFAULT**]]

 [/CRITERIA=[FACTORS(n)] [MINEIGEN({ 1.0**})] [ITERATE({ 25**})]
 {n } {n }

 [RCONVERGE({ 0.0001**})] [{ KAISER**}]
 {n } {NOKAISER}

 [ECONVERGE({ 0.001**})] [DEFAULT**]]
 {n }

 [/EXTRACTION={ PC** }] [/ROTATION={ VARIMAX** }]
 { PA1** } {EQUAMAX }
 {PAF } {QUARTIMAX }
 {ALPHA } {OBLIMIN({ 0})}
 {IMAGE } {n}
 {ULS } {PROMAX({ 4} }
 {GLS } {n}
 {ML } {NOROTATE }
 { DEFAULT**} { DEFAULT** }

 [/SAVE=[{ REG } ({ ALL}[rootname])]]
 {BART } {n }
 {AR }
 { DEFAULT}

† Omit VARIABLES with matrix input.
**Default if subcommand or keyword is omitted.

Example:
FACTOR VARIABLES=V1 TO V12.

FACTOR 321

Overview

FACTOR performs factor analysis based either on correlations or covariances and using one of
the seven extraction methods. FACTOR also accepts matrix input in the form of correlation ma-
trices, covariance matrices, or factor loading matrices and can write the matrix materials to a
matrix data file.

Options

Analysis Phase Options. You can choose to analyze a correlation or covariance matrix using
the METHOD subcommand. You can select a subset of cases for the analysis phase using
the SELECT subcommand. You can tailor the statistical display for an analysis using the
PRINT subcommand. You can sort the output in the factor pattern and structure matrices
with the FORMAT subcommand. You can also request scree plots and plots of the variables
in factor space on the PLOT subcommand.

Extraction Phase Options. With the EXTRACTION subcommand you can specify one of six ex-
traction methods in addition to the default principal components extraction: principal axis
factoring, alpha factoring, image factoring, unweighted least squares, generalized least
squares, and maximum likelihood. You can supply initial diagonal values for principal axis
factoring on the DIAGONAL subcommand. On the CRITERIA subcommand, you can alter the
default statistical criteria used in the extraction.

Rotation Phase Options. You can control the criteria for factor rotation with the CRITERIA sub-
command. On the ROTATION subcommand you can choose among four rotation methods
(equamax, quartimax, promax, and oblimin) in addition to the default varimax rotation, or
you can specify no rotation.

Factor Scores. You can save factor scores as new variables in the working data file using any
of the three methods available on the SAVE subcommand.

Matrix Input and Output. With the MATRIX subcommand, you can write a correlation matrix, a co-
variance matrix, or a factor loading matrix. You can also read matrix materials written either by
a previous FACTOR procedure or by a procedure that writes correlation or covariance matrices.

Basic Specification

The basic specification is the VARIABLES subcommand with a variable list. FACTOR per-
forms principal components analysis with a varimax rotation on all variables in the analysis
using default criteria.

• When matrix materials are used as input, do not specify VARIABLES. Use the ANALYSIS
subcommand to specify a subset of the variables in the matrix.

322 FACTOR

Subcommand Order

• METHOD and SELECT can be specified anywhere. VARIABLES must be specified before
any other subcommands, unless an input matrix is specified. MISSING must be specified
before ANALYSIS.

• The ANALYSIS, EXTRACTION, ROTATION, and SAVE subcommands must be specified in
the order they are listed here. If you specify these subcommands out of order, you may
get unpracticed results. For example, if you specify EXTRACTION before ANALYSIS and
SAVE before ROTATION, EXTRACTION and SAVE are ignored. If no EXTRACTION and
SAVE subcommands are specified in proper order, the default will be used, that is, PC for
EXTRACTION and no SAVE.

• The FORMAT subcommand can be specified anywhere after the VARIABLES subcommand.

• If an ANALYSIS subcommand is present, the statistical display options on PRINT, PLOT,
or DIAGONAL must be specified after it. PRINT, PLOT, and DIAGONAL subcommands
specified before the ANALYSIS subcommand are ignored. If no such commands are spec-
ified after the ANALYSIS subcommand, the default is used.

• The CRITERIA subcommand can be specified anywhere, but applies only to the subcom-
mands that follow. If no CRITERIA subcommand is specified before EXTRACTION or
ROTATION, the default criteria for the respective subcommand are used.

Example
FACTOR VAR=V1 TO V12

/ANALYSIS=V1 TO V8
/CRITERIA=FACTORS(3)
/EXTRACTION=PAF
/ROTATION=QUARTIMAX.

• The default CORRELATION method is used. FACTOR performs a factor analysis of the cor-
relation matrix based on the first eight variables in the working data file (V1 to V8).

• The procedure extracts three factors using the principal axis method and quartimax rota-
tion.

• LISTWISE (the default for MISSING) is in effect. Cases with missing values for any one of
the variables from V1 to V12 are omitted from the analysis. As a result, if you ask for the
factor analysis using VAR=V1 TO V8 and ANALYSIS=ALL, the results may be different even
though the variables used in the analysis are the same.

Syntax Rules

• Each FACTOR procedure performs only one analysis with one extraction and one rotation.
Use multiple FACTOR commands to perform multiple analyses.

• VARIABLES or MATRIX=IN can be specified only once. Any other subcommands can be
specified multiple times but only the last in proper order takes effect.

FACTOR 323

Operations

• VARIABLES calculates a correlation and a covariance matrix. If SELECT is specified, only
the selected cases are used.

• The correlation or covariance matrix (either calculated from the data or read in) is the ba-
sis for the factor analysis.

• Factor scores are calculated for all cases (selected and unselected).

Example

FACTOR VARIABLES=V1 TO V12.

• This example uses the default CORRELATION method.

• It produces the default principal components analysis of 12 variables. Those with eigen-
values greater than 1 (the default criterion for extraction) are rotated using varimax rotation
(the default).

VARIABLES Subcommand

VARIABLES names all the variables to be used in the FACTOR procedure.

• VARIABLES is required except when matrix input is used. When FACTOR reads a matrix
data file, the VARIABLES subcommand cannot be used.

• The specification on VARIABLES is a list of numeric variables.

• Keyword ALL on VARIABLES refers to all variables in the working data file.
• Only one VARIABLES subcommand can be specified, and it must be specified first.

MISSING Subcommand

MISSING controls the treatment of cases with missing values.

• If MISSING is omitted or included without specifications, listwise deletion is in effect.

• MISSING must precede the ANALYSIS subcommand.

• The LISTWISE, PAIRWISE, and MEANSUB keywords are alternatives, but any one of them
can be used with INCLUDE.

LISTWISE Delete cases with missing values listwise. Only cases with nonmissing val-
ues for all variables named on the VARIABLES subcommand are used. Cases
are deleted even if they have missing values only for variables listed on
VARIABLES and have valid values for all variables listed on ANALYSIS. Alias
DEFAULT.

PAIRWISE Delete cases with missing values pairwise. All cases with nonmissing values
for each pair of variables correlated are used to compute that correlation,
regardless of whether the cases have missing values for any other variable.

324 FACTOR

MEANSUB Replace missing values with the variable mean. All cases are used after the
substitution is made. If INCLUDE is also specified, user-missing values are
included in the computation of the means, and means are substituted only for
the system-missing value. If SELECT is in effect, only the values of selected
cases are used in calculating the means used to replace missing values for se-
lected cases in analysis and for all cases in computing factor scores.

INCLUDE Include user-missing values. Cases with user-missing values are treated as valid.

METHOD Subcommand

METHOD specifies whether the factor analysis is performed on a correlation matrix or a cova-
riance matrix.

• Only one METHOD subcommand is allowed. If more than one is specified, the last is in
effect.

CORRELATION Perform a correlation matrix analysis. This is the default.

COVARIANCE Perform a covariance matrix analysis. Valid only with principal compo-
nents, principal axis factoring, or image factoring methods of extraction. the
program issues an error if this keyword is specified when the input is a factor
loading matrix or a correlation matrix that does not contain standard devia-
tions (STDDEV or SD).

SELECT Subcommand

SELECT limits cases used in the analysis phase to those with a specified value for any one
variable.

• Only one SELECT subcommand is allowed. If more than one is specified, the last is in
effect.

• The specification is a variable name and a valid value in parentheses. A string value must
be specified within quotes. Multiple variables or values are not permitted.

• The selection variable does not have to be specified on the VARIABLES subcommand.
• Only cases with the specified value for the selection variable are used in computing the cor-

relation or covariance matrix. You can compute and save factor scores for the unselected
cases as well as the selected cases.

• SELECT is not valid if MATRIX = IN is specified.

Example
FACTOR VARIABLES = V1 TO V10

/SELECT=COMPLETE(1)
 /SAVE (4).

• FACTOR analyzes all ten variables named on VARIABLES, using only cases with a value
of 1 for the variable COMPLETE.

FACTOR 325

• By default, FACTOR uses the CORRELATION method and performs the principal compo-
nents analysis of the selected cases. Those with eigenvalues greater than 1 are rotated using
varimax rotation.

• Four factor scores, for both selected and unselected cases, are computed using the default
regression method and four new variables are saved in the working data file.

ANALYSIS Subcommand

The ANALYSIS subcommand specifies a subset of the variables named on VARIABLES for use
in an analysis.
• The specification on ANALYSIS is a list of variables, all of which must have been named

on the VARIABLES subcommand. For matrix input, ANALYSIS can specify a subset of the
variables in a correlation or covariance matrix.

• Only one ANALYSIS subcommand is allowed. When multiple ANALYSIS subcommands
are specified, the last is in effect.

• If no ANALYSIS is specified, all variables named on the VARIABLES subcommand (or
included in the matrix input file) are used.

• Keyword TO in a variable list on ANALYSIS refers to the order in which variables are
named on the VARIABLES subcommand, not to their order in the working data file.

• Keyword ALL refers to all variables named on the VARIABLES subcommand.

Example
FACTOR VARIABLES=V1 V2 V3 V4 V5 V6

/ANALYSIS=V4 TO V6.

• This example requests a factor analysis of V4, V5, and V6. Keyword TO on ANALYSIS re-
fers to the order of variables on VARIABLES, not the order in the working data file.

• Cases with missing values for all variables specified on VARIABLES are omitted from the
analysis. (The default setting for MISSING.)

• By default, the CORRELATION method is used and a principal components analysis with
a varimax rotation is performed.

FORMAT Subcommand

FORMAT modifies the format of factor pattern and structure matrices.

• FORMAT can be specified anywhere after VARIABLES and MISSING. If more than one
FORMAT is specified, the last is in effect.

• If FORMAT is omitted or included without specifications, variables appear in the order in
which they are named on ANALYSIS and all matrix entries are displayed.

SORT Order the factor loadings in descending order.

BLANK(n) Suppress coefficients lower than n in absolute value.

DEFAULT Turn off keywords SORT and BLANK.

326 FACTOR

Example
FACTOR VARIABLES=V1 TO V12

/MISSING=MEANSUB
/FORMAT=SORT BLANK(.3)
/EXTRACTION=ULS
/ROTATION=NOROTATE.

• This example specifies an analysis of all variables between and including V1 and V12 in
the working data file.

• The default CORRELATION method is used.

• The MISSING subcommand substitutes variable means for missing values.

• The FORMAT subcommand orders variables in factor pattern matrices by descending
value of loadings. Factor loadings with an absolute value less than 0.3 are omitted.

• Factors are extracted using unweighted least squares and are not rotated.

PRINT Subcommand

PRINT controls the statistical display in the output.

• Keywords INITIAL, EXTRACTION, and ROTATION are the defaults if PRINT is omitted or
specified without keywords.

• If any keywords are specified, only the output specifically requested is produced.

• The requested statistics are displayed only for variables specified on the last ANALYSIS
subcommand.

• If more than one PRINT subcommand is specified, the last is in effect.

• If any ANALYSIS subcommand is explicitly specified, all PRINT subcommands specified
before the last ANALYSIS subcommand are ignored. If no PRINT subcommand is specified
after the last ANALYSIS subcommand, the default takes effect.

INITIAL Initial communalities for each variable, eigenvalues of the unreduced
correlation matrix, and percentage of variance for each factor.

EXTRACTION Factor pattern matrix, revised communalities, the eigenvalue of each factor
retained, and the percentage of variance each eigenvalue represents.

ROTATION Rotated factor pattern matrix, factor transformation matrix, factor corre-
lation matrix and the post-rotation sums of squared loadings.

UNIVARIATE Valid number of cases, means, and standard deviations. (Not available with
matrix input.) If MISSING=MEANSUB or PAIRWISE, the output also includes
the number of missing cases.

CORRELATION Correlation matrix. Ignored if the input is a factor loading matrix.

COVARIANCE Covariance matrix. Ignored if the input is a factor loading matrix or a corre-
lation matrix that does not contain standard deviations (STDDEV or SD).

SIG Matrix of significance levels of correlations.

FACTOR 327

DET Determinant of the correlation or covariance matrix, depending on the spec-
ification on METHOD.

INV Inverse of the correlation or covariance matrix, depending on the specifica-
tion on METHOD.

AIC Anti-image covariance and correlation matrices (Kaiser, 1970). The measure
of sampling adequacy for the individual variable is displayed on the diagonal
of the anti-image correlation matrix.

KMO Kaiser-Meyer-Olkin measure of sampling adequacy and Bartlett’s test of
sphericity. Always based on the correlation matrix. Not computed for an in-
put matrix when it does not contain N values.

REPR Reproduced correlations and residuals or reproduced covariance and resid-
uals, depending on the specification on METHOD.

FSCORE Factor score coefficient matrix. Factor score coefficients are calculated
using the method requested on the SAVE subcommand. The default is the
regression method.

ALL All available statistics.

DEFAULT INITIAL, EXTRACTION, and ROTATION.

Example
FACTOR VARS=V1 TO V12
 /SELECT=COMPLETE (‘yes’)

/MISS=MEANSUB
/PRINT=DEF AIC KMO REPR
/EXTRACT=ULS
/ROTATE=VARIMAX.

• This example specifies a factor analysis that includes all variables between and including
V1 and V12 in the working data file.

• Only cases with the value “yes” on COMPLETE are used.

• Variable means are substituted for missing values. Only values for the selected cases are
used in computing the mean. This mean is used to substitute missing values in analyzing
the selected cases and in computing factor scores for all cases.

• The output includes the anti-image correlation and covariance matrices, the Kaiser-Meyer-
Olkin measure of sampling adequacy, the reproduced correlation and residual matrix, as
well as the default statistics.

• Factors are extracted using unweighted least squares.
• The factor pattern matrix is rotated using the varimax rotation.

PLOT Subcommand

Use PLOT to request scree plots or plots of variables in rotated factor space.
• If PLOT is omitted, no plots are produced. If PLOT is used without specifications, it is

ignored.

328 FACTOR

• If more than one PLOT subcommand is specified, only the last one is in effect.

• If any ANALYSIS subcommand is explicitly specified, all PLOT subcommands specified
before the last ANALYSIS subcommand are ignored. If no PLOT subcommand is specified
after the last ANALYSIS subcommand, no plot is produced.

EIGEN Scree plot (Cattell, 1966). The eigenvalues from each extraction are plotted
in descending order.

ROTATION Plots of variables in factor space. When used without any additional spec-
ifications, ROTATION can produce only high-resolution graphics. If three
or more factors are extracted, a 3-D plot is produced with the factor space
defined by the first three factors. You can request two-dimensional plots
by specifying pairs of factor numbers in parentheses; for example, PLOT
ROTATION(1,2)(1,3)(2,3) requests three plots, each defined by two factors.
When SET HIGHRES is OFF, ROTATION can produce only two-dimension-
al plots, and they must be explicitly requested; otherwise, the program is-
sues an error message. The ROTATION subcommand must be explicitly
specified when you enter the keyword ROTATION on the PLOT subcom-
mand.

DIAGONAL Subcommand

DIAGONAL specifies values for the diagonal in conjunction with principal axis factoring.

• If DIAGONAL is omitted or included without specifications, FACTOR uses the default
method for specifying the diagonal.

• DIAGONAL is ignored with extraction methods other than PAF. The values are automati-
cally adjusted by corresponding variances if METHOD=COVARIANCE.

• If more than one DIAGONAL subcommand is specified, only the last one is in effect.
• If any ANALYSIS subcommand is explicitly specified, DIAGONAL subcommands specified

before the last ANALYSIS subcommand are ignored. If no DIAGONAL is specified after the
last ANALYSIS subcommand, the default is used.

• Default communality estimates for PAF are squared multiple correlations. If these cannot
be computed, the maximum absolute correlation between the variable and any other vari-
able in the analysis is used.

valuelist Diagonal values. The number of values supplied must equal the number of
variables in the analysis block. Use the notation n* before a value to indicate
that the value is repeated n times.

DEFAULT Initial communality estimates.

Example
FACTOR VARIABLES=V1 TO V12

/DIAGONAL=.56 .55 .74 2*.56 .70 3*.65 .76 .64 .63
/EXTRACTION=PAF
/ROTATION=VARIMAX.

FACTOR 329

• The factor analysis includes all variables between and including V1 and V12 in the work-
ing data file.

• DIAGONAL specifies 12 values to use as initial estimates of communalities in principal
axis factoring.

• The factor pattern matrix is rotated using varimax rotation.

CRITERIA Subcommand

CRITERIA controls extraction and rotation criteria.

• CRITERIA can be specified anywhere after VARIABLES and MISSING.
• Only explicitly specified criteria are changed. Unspecified criteria keep their defaults.

• Multiple CRITERIA subcommands are allowed. Changes made by a previous CRITERIA sub-
command are overwritten by a later CRITERIA subcommand.

• Any CRITERIA subcommands specified after the last EXTRACTION subcommand have no
effect on extraction.

• Any CRITERIA subcommands specified after the last ROTATION subcommand have no ef-
fect on rotation.

The following keywords on CRITERIA apply to extractions:

FACTORS(n) Number of factors extracted. The default is the number of eigenvalues greater
than MINEIGEN. When specified, FACTORS overrides MINEIGEN.

MINEIGEN(n) Minimum eigenvalue used to control the number of factors extracted. If
METHOD=CORRELATION, the default is 1. If METHOD=COVARIANCE, the
default is computed as (Total Variance/Number of Variables)*n, where
Total Variance is the total weighted variance principal components or prin-
cipal axis factoring extraction and the total image variance for image fac-
toring extraction.

ECONVERGE(n) Convergence criterion for extraction. The default is 0.001.

The following keywords on CRITERIA apply to rotations:

RCONVERGE(n) Convergence criterion for rotation. The default is 0.0001.

KAISER Kaiser normalization in the rotation phase. This is the default. The alternative
is NOKAISER.

NOKAISER No Kaiser normalization.

The following keywords on CRITERIA apply to both extractions and rotations:

ITERATE(n) Maximum number of iterations for solutions in the extraction or rotation
phases. The default is 25.

DEFAULT Reestablish default values for all criteria.

330 FACTOR

Example
FACTOR VARIABLES=V1 TO V12

/CRITERIA=FACTORS(6)
/EXTRACTION=PC
/ROTATION=NOROTATE
/PLOT=ROTATION.

• This example analyzes all variables between and including V1 and V12 in the working
data file.

• Six factors are extracted using the default principal components method, and the factor
pattern matrix is not rotated.

• PLOT sends all extracted factors to the graphics editor and shows a 3-D plot of the first
three factors. If HIGHRES is set to OFF, the program displays an error message.

EXTRACTION Subcommand

EXTRACTION specifies the factor extraction technique.
• Only one EXTRACTION subcommand is allowed. If multiple EXTRACTION are specified,

only the last is performed.

• If any ANALYSIS subcommand is explicitly specified, all EXTRACTION subcommands be-
fore the last ANALYSIS subcommand are ignored. If no EXTRACTION subcommand is
specified after the last ANALYSIS subcommand, the default extraction is performed.

• If EXTRACTION is not specified or is included without specifications, principal components
extraction is used.

• If you specify criteria for EXTRACTION, the CRITERIA subcommand must precede the
EXTRACTION subcommand.

• When you specify EXTRACTION, you should always explicitly specify the ROTATION
subcommand. If ROTATION is not specified, the factors are not rotated.

PC Principal components analysis (Harman, 1967). This is the default. PC can also be
requested with keyword PA1 or DEFAULT.

PAF Principal axis factoring. PAF can also be requested with keyword PA2.

ALPHA Alpha factoring (Kaiser & Caffry, 1965). Invalid if METHOD=COVARIANCE.

IMAGE Image factoring (Kaiser, 1963).

ULS Unweighted least squares (Harman & Jones, 1966). Invalid if METHOD=COVARI-
ANCE.

GLS Generalized least squares. Invalid if METHOD=COVARIANCE.

ML Maximum likelihood (Jöreskog & Lawley, 1968). Invalid if METHOD=VARIANCE.

Example
FACTOR VARIABLES=V1 TO V12

/ANALYSIS=V1 TO V6
/EXTRACTION=ULS
/ROTATE=NOROTATE.

FACTOR 331

• This example analyzes variables V1 through V6 with an unweighted least-squares extrac-
tion. No rotation is performed.

ROTATION Subcommand

ROTATION specifies the factor rotation method. It can also be used to suppress the rotation
phase entirely.

• Only one ROTATION subcommand is allowed. If multiple ROTATION subcommands are
specified, only the last is performed.

• If any ANALYSIS subcommand is explicitly specified, all ROTATION subcommands before
the last ANALYSIS subcommand are ignored. If any EXTRACTION subcommand is explic-
itly specified, all ROTATION subcommands before the last EXTRACTION subcommand are
ignored.

• ROTATION is omitted together with EXTRACTION, varimax rotation is used.

• If ROTATION is omitted but EXTRACTION is not, factors are not rotated.

• Keyword NOROTATE on the ROTATION subcommand produces a plot of variables in
unrotated factor space if the PLOT subcommand is also included for the analysis.

VARIMAX Varimax rotation. This is the default if ROTATION is entered without specifi-
cations or if EXTRACTION and ROTATION are both omitted. Varimax rotation
can also be requested with keyword DEFAULT.

EQUAMAX Equamax rotation.

QUARTIMAX Quartimax rotation.

OBLIMIN(n) Direct oblimin rotation. This is a nonorthogonal rotation; thus, a factor cor-
relation matrix will also be displayed. You can specify a delta in
parentheses. The value must be less than or equal to 0.8. The default is 0.

PROMAX(n) Promax rotation. This is a nonorthogonal rotation; thus, a factor correlation
matrix will also be displayed. For this method, you can specify a real-number
value greater than 1. The default is 4.

NOROTATE No rotation.

Example
FACTOR VARIABLES=V1 TO V12

/EXTRACTION=ULS
/ROTATION
/ROTATION=OBLIMIN.

• The first ROTATION subcommand specifies the default varimax rotation.

• The second ROTATION subcommand specifies an oblimin rotation based on the same
extraction of factors.

n 0.8≤()

332 FACTOR

SAVE Subcommand

SAVE allows you to save factor scores from any rotated or unrotated extraction as new vari-
ables in the working data file. You can use any of the three methods for computing the factor
scores.

• Only one SAVE subcommand is executed. If you specify multiple SAVE subcommands,
only the last is executed.

• SAVE must follow the last ROTATION subcommand.

• If no ROTATION subcommand is specified after the last EXTRACTION subcommand, SAVE
must follow the last EXTRACTION subcommand and no rotation is used.

• If neither ROTATION nor EXTRACTION is specified, SAVE must follow the last ANALYSIS
subcommand and the default extraction and rotation are used to compute the factor
scores.

• SAVE subcommands before any explicitly specified ANALYSIS, EXTRACTION, or ROTA-
TION subcommands are ignored.

• You cannot use the SAVE subcommand if you are replacing the working data file with
matrix materials (see “Matrix Output” on p. 333).

• The new variables are added to the end of the working data file.

Keywords to specify the method of computing factor scores are:

REG Regression method. This is the default.

BART Bartlett method.

AR Anderson-Rubin method.

DEFAULT The same as REG.

• After one of the above keywords, specify in parentheses the number of scores to save and
a rootname to use in naming the variables.

• You can specify either an integer or the keyword ALL. The maximum number of scores
you can specify is the number of factors in the solution.

• FACTOR forms variable names by appending sequential numbers to the rootname you specify.
The rootname must begin with a letter and conform to the rules for variable names. It must be
short enough that the variable names formed will not exceed eight characters.

• If you do not specify a rootname, FACTOR forms unique variable names using the formula
FACn_m, where m increments to create a new rootname and n increments to create a
unique variable name. For example, FAC1_1, FAC2_1, FAC3_1, and so on will be gener-
ated for the first set of saved scores and FAC1_2, FAC2_2, FAC3_2, and so on for the sec-
ond set. As m and n increase, the prefix FAC is truncated to keep the variable names within
eight characters. For example, FAC999_12 is increased to F1000_12. The initial F is
required.

• FACTOR automatically generates variable labels for the new variables. Each label con-
tains information about the method of computing the factor score, its sequential number,
and the sequential number of the analysis.

FACTOR 333

Example
FACTOR VARIABLES=V1 TO V12

/CRITERIA FACTORS(4)
/ROTATION
/SAVE REG (4,PCOMP).

• Since there is no EXTRACTION subcommand before the ROTATION subcommand, the de-
fault principal components extraction is performed.

• The CRITERIA subcommand specifies that four principal components should be extracted.

• The ROTATION subcommand requests the default varimax rotation for the principal com-
ponents.

• The SAVE subcommand calculates scores using the regression method. Four scores will
be added to the file: PCOMP1, PCOMP2, PCOMP3, and PCOMP4.

MATRIX Subcommand

MATRIX reads and writes SPSS-format matrix data files.

• MATRIX must always be specified first.

• Only one IN and one OUT keyword can be specified on the MATRIX subcommand. If either
IN or OUT is specified more than once, the FACTOR procedure is not executed.

• The matrix type must be indicated on IN or OUT. The types are COR for a correlation ma-
trix, COV for a covariance matrix, and FAC for a factor loading matrix. Indicate the matrix
type within parentheses immediately before you identify the matrix file.

• If you use both IN and OUT on MATRIX, you can specify them in either order. You cannot
write a covariance matrix if the input matrix is a factor loading matrix or a correlation ma-
trix that does not contain standard deviations (STDDEV or SD).

• If you read in a covariance matrix and write out a factor loading matrix, the output factor
loadings are rescaled.

OUT (filename) Write a matrix data file. Specify the matrix type (COR, COV, or FAC) and
the matrix file in parentheses. For the matrix data file, specify a filename
to store the matrix materials on disk or an asterisk to replace the working
data file. If you specify an asterisk, the matrix data file is not stored on
disk unless you use SAVE or XSAVE.

IN (filename) Read a matrix data file. Specify the matrix type (COR, COV, or FAC) and the
matrix file in parentheses. For the matrix data file, specify an asterisk if the
matrix data file is the working data file. If the matrix file is another file, spec-
ify the filename in parentheses. A matrix file read from an external file does
not replace the working data file.

Matrix Output

• FACTOR can write matrix materials in the form of a correlation matrix, a covariance ma-
trix, or a factor loading matrix. The correlation and covariance matrix materials include
counts, means, and standard deviations in addition to correlations or covariances. The fac-

334 FACTOR

tor loading matrix materials contain only factor values and no additional statistics. See
“Format of the Matrix Data File” below for a description of the file.

• FACTOR generates one matrix per split file.

• Any documents contained in the working data file are not transferred to the matrix file.

Matrix Input

• FACTOR can read matrix materials written either by a previous FACTOR procedure or by
a procedure that writes correlation or covariance matrices. For more information, see
Universals on p. 1.

• MATRIX=IN cannot be used unless a working data file has already been defined. To read an
existing matrix data file at the beginning of a session, first use GET to retrieve the matrix
file and then specify IN(COR=*), IN(COV=*) or IN(FAC=*) on MATRIX.

• The VARIABLES subcommand cannot be used with matrix input.

• For correlation and covariance matrix input, the ANALYSIS subcommand can specify a
subset of the variables in the matrix. You cannot specify a subset of variables for factor
loading matrix input. By default, the ANALYSIS subcommand uses all variables in the ma-
trix.

Format of the Matrix Data File

• For correlation or covariance matrices, the matrix data file has two special variables cre-
ated by the program: ROWTYPE_ and VARNAME_. Variable ROWTYPE_ is a short string
variable with the value CORR (for Pearson correlation coefficient) or COV (for covari-
ance) for each matrix row. Variable VARNAME_ is a short string variable whose values
are the names of the variables used to form the correlation matrix.

• For factor loading matrices, the program generates two special variables named
ROWTYPE_ and FACTOR_. The value for ROWTYPE_ is always FACTOR. The values for
FACTOR_ are the ordinal numbers of the factors.

• The remaining variables are the variables used to form the matrix.

Split Files

• FACTOR can read or write split-file matrices.

• When split-file processing is in effect, the first variables in the matrix data file are the split
variables, followed by ROWTYPE_, VARNAME_ (or FACTOR_), and then the variables
used to form the matrix.

• A full set of matrix materials is written for each split-file group defined by the split variables.

• A split variable cannot have the same variable name as any other variable written to the
matrix data file.

• If split-file processing is in effect when a matrix is written, the same split file must be in
effect when that matrix is read by any other procedure.

FACTOR 335

Example

GET FILE=GSS80 /KEEP ABDEFECT TO ABSINGLE.
FACTOR VARIABLES=ABDEFECT TO ABSINGLE

/MATRIX OUT(COR=CORMTX).

• FACTOR retrieves the GSS80 file and writes a factor correlation matrix to the file
CORMTX.

• The working data file is still GSS80. Subsequent commands will be executed on this file.

Example

GET FILE=GSS80 /KEEP ABDEFECT TO ABSINGLE.
FACTOR VARIABLES=ABDEFECT TO ABSINGLE

/MATRIX OUT(COR=*).
LIST.

• FACTOR writes the same matrix as in the previous example.

• The working data file is replaced with the correlation matrix. The LIST command is
executed on the matrix file, not on GSS80.

Example

GET FILE=GSS80 /KEEP ABDEFECT TO ABSINGLE.
FACTOR VARIABLES=ABDEFECT TO ABSINGLE

/MATRIX OUT(FAC=*).

• FACTOR generates a factor loading matrix that replaces the working data file.

Example

GET FILE=COUNTRY /KEEP SAVINGS POP15 POP75 INCOME GROWTH.
REGRESSION MATRIX OUT(*)

/VARS=SAVINGS TO GROWTH
/MISS=PAIRWISE
/DEP=SAVINGS /ENTER.

FACTOR MATRIX IN(COR=*) /MISSING=PAIRWISE.

• The GET command retrieves the COUNTRY file and selects the variables needed for the
analysis.

• The REGRESSION command computes correlations among five variables with pairwise
deletion. MATRIX=OUT writes a matrix data file, which replaces the working data file.

• MATRIX IN(COR=*) on FACTOR reads the matrix materials REGRESSION has written to the
working data file. An asterisk is specified because the matrix materials are in the working
data file. FACTOR uses pairwise deletion, since this is what was in effect when the matrix
was built.

336 FACTOR

Example

GET FILE=COUNTRY /KEEP SAVINGS POP15 POP75 INCOME GROWTH.
REGRESSION

/VARS=SAVINGS TO GROWTH
/MISS=PAIRWISE
/DEP=SAVINGS /ENTER.

FACTOR MATRIX IN(COR=CORMTX).

• This example performs a regression analysis on file COUNTRY and then uses a different
file for FACTOR. The file is an existing matrix data file.

• MATRIX=IN specifies the matrix data file CORMTX.

• CORMTX does not replace COUNTRY as the working data file.

Example

GET FILE=CORMTX.
FACTOR MATRIX IN(COR=*).

• This example starts a new session and reads an existing matrix data file. GET retrieves the
matrix data file CORMTX.

• MATRIX=IN specifies an asterisk because the matrix data file is the working data file. If
MATRIX=IN(CORMTX) is specified, the program issues an error message.

• If the GET command is omitted, the program issues an error message.

337

FILE HANDLE

FILE HANDLE handle /NAME=file specifications
 [/MODE={CHARACTER }] [/RECFORM \={FIXED } [/LRECL=n]
 {BINARY } {VARIABLE}
 {MULTIPUNCH} {SPANNED }
 {IMAGE }
 {360 }

Overview

FILE HANDLE assigns a unique file handle to a file and supplies operating system specifica-
tions for the file. A defined file handle can be specified on any subsequent FILE, OUTFILE,
MATRIX, or WRITE subcommands of various procedures.

Syntax Rules

• A file handle cannot exceed eight characters and must begin with an alphabetical char-
acter (A–Z) or a $, #, or @. It can contain numeric digits (0–9) but not imbedded blanks.

• FILE HANDLE is required for reading IBM VSAM data sets, EBCDIC data files, binary
data files, and character data files that are not delimited by ASCII line feeds.

• If you specify 360 on the MODE subcommand, you must specify RECFORM.

• If you specify IMAGE on the MODE subcommand, you must specify LRECL.

Operations

A file handle is used only during the current work session. The handle is never saved as part
of an SPSS-format data file.

NAME Subcommand

NAME specifies the file you want to refer to by the file handle. The file specifications must
conform to the file naming convention for the type of computer and operating system on
which the program is run. See the documentation for your system for specific information
about the file naming convention.

MODE Subcommand

MODE specifies the type of file you want to refer to by the file handle.

CHARACTER Character file whose logical records are delimited by ASCII line feeds.

338 FILE HANDLE

BINARY Unformatted binary file generated by Microsoft FORTRAN.

MULTIPUNCH Column binary file.

IMAGE Binary file consisting of fixed-length records.

360 EBCDIC data file.

Example
FILEHANDLE ELE48 /NAME=’OSPS:[SPSSUSER]ELE48.DAT’ /MODE=MULTIPUNCH.
DATA LIST FILE=ELE48.

• FILE HANDLE defines ELE48 as the handle for the file.
• The MODE subcommand indicates that the file contains multipunch data.

• The file specification ON NAME conforms to VMS convention: the file ELE48.DAT is
located in the directory OSPS:[SPSSUSER].

• The FILE subcommand on DATA LIST refers to the handle defined on the FILE HANDLE
command.

RECFORM Subcommand

RECFORM specifies the record format and is necessary when you specify 360 on MODE.
RECFORM has no effect with other specifications on MODE.

FIXED Fixed-length record. All records have the same length. Alias F. When FIXED
is specified, the record length must be specified on the LRECL subcommand.

VARIABLE Variable-length record. No logical record is larger than one physical block.
Alias V.

SPANNED Spanned record. Records may be larger than fixed-length physical blocks.
Alias VS.

LRECL Subcommand

LRECL specifies the length of each record in the file. When you specify IMAGE under UNIX,
OS/2, or Microsoft Windows, or 360 for IBM360 EBCDIC data files, you must specify
LRECL. You can specify a record length greater than the default (8192) for an image file, a
character file, or a binary file. Do not use LRECL with MULTIPUNCH.

Example
FILE HANDLE TRGT1 /NAME=’OSPS:RGT.DAT’
 /MODE=IMAGE LRECL=16.
DATA LIST FILE=TRGT1.

• IMAGE is specified on the MODE subcommand. Subcommand LRECL must be specified.

• The file handle is used on the DATA LIST command.

339

FILE LABEL

FILE LABEL label

Overview

FILE LABEL provides a descriptive label for a data file.

Syntax Rules

The only specification is a label up to 60 characters long.

Operations

• The file label is printed on the first line of each page of output displayed by the program.

• If the specified label is longer than 60 characters, the program truncates the label to 60
characters without warning.

• If the file is saved, the label is included in the dictionary of the SPSS-format data file.

Example

FILE LABEL Hubbard Industrial Consultants Inc. employee data.
SAVE OUTFILE=HUBEMPL

/RENAME=(AGE JOBCAT=AGE80 JOBCAT82) /MAP.

• FILE LABEL assigns a file label to the Hubbard Consultants Inc. employee data.
• The SAVE command saves the file as an SPSS-format data file, renaming two variables

and mapping the results to check the renamed variables.

340

FILE TYPE—END FILE TYPE

For mixed file types:

FILE TYPE MIXED [FILE=file] RECORD=[varname] column location [(format)]

 [WILD={NOWARN}]
 {WARN }

For grouped file types:

FILE TYPE GROUPED [FILE=file] RECORD=[varname] column location [(format)]

 CASE=[varname] column location [(format)]

 [WILD={WARN }] [DUPLICATE={WARN }]
 {NOWARN} {NOWARN}

 [MISSING={WARN }] [ORDERED={YES}]
 {NOWARN} {NO }

For nested file types:

FILE TYPE NESTED [FILE=file] RECORD=[varname] column location [(format)]

 [CASE=[varname] column location [(format)]]

 [WILD={NOWARN}] [DUPLICATE={NOWARN}]
 {WARN } {WARN }
 {CASE }

 [MISSING={NOWARN}]
 {WARN }

END FILE TYPE

Example:
FILE TYPE MIXED RECORD=RECID 1-2.
RECORD TYPE 23.
DATA LIST /SEX 5 AGE 6-7 DOSAGE 8-10 RESULT 12.
END FILE TYPE.

BEGIN DATA
21 145010 1
22 257200 2
25 235 250 2
35 167 300 3
24 125150 1
23 272075 1
21 149050 2
25 134 035 3
30 138 300 3
32 229 500 3
END DATA.

FILE TYPE—END FILE TYPE 341

Overview

The FILE TYPE—END FILE TYPE structure defines data for any one of the three types of com-
plex raw data files: mixed files, which contain several types of records that define different
types of cases; hierarchical or nested files, which contain several types of records with a de-
fined relationship among the record types; or grouped files, which contain several records for
each case with some records missing or duplicated. A fourth type of complex file, files with
repeating groups of information, can be defined with the REPEATING DATA command.

FILE TYPE must be followed by at least one RECORD TYPE command and one DATA LIST
command. Each pair of RECORD TYPE and DATA LIST commands defines one type of record
in the data. END FILE TYPE signals the end of file definition.

Within the FILE TYPE structure, the lowest-level record in a nested file can be read with
a REPEATING DATA command rather than a DATA LIST command. In addition, any record in
a mixed file can be read with REPEATING DATA.

Basic Specification

The basic specification on FILE TYPE is one of the three file type keywords (MIXED,
GROUPED, or NESTED) and the RECORD subcommand. RECORD names the record identi-
fication variable and specifies its column location. If keyword GROUPED is specified, the
CASE subcommand is also required. CASE names the case identification variable and speci-
fies its column location.

The FILE TYPE—END FILE TYPE structure must enclose at least one RECORD TYPE and
one DATA LIST command. END FILE TYPE is required to signal the end of file definition.

• RECORD TYPE specifies the values of the record type identifier (see RECORD TYPE).
• DATA LIST defines variables for the record type specified on the preceding RECORD TYPE

command (see DATA LIST).

• Separate pairs of RECORD TYPE and DATA LIST commands must be used to define each
different record type.

The resulting working data file is always a rectangular file, regardless of the structure of the
original data file.

Specification Order

• FILE TYPE must be the first command in the FILE TYPE—END FILE TYPE structure. FILE
TYPE subcommands can be named in any order.

• Each RECORD TYPE command must precede its corresponding DATA LIST command.

• END FILE TYPE must be the last command in the structure.

342 FILE TYPE—END FILE TYPE

Syntax Rules

• For mixed files, if the record types have different variables or if they have the same vari-
ables recorded in different locations, separate RECORD TYPE and DATA LIST commands
are required for each record type.

• For mixed files, the same variable name can be used on different DATA LIST commands,
since each record type defines a separate case.

• For mixed files, if the same variable is defined for more than one record type, the format
type and length of the variable should be the same on all DATA LIST commands. the pro-
gram refers to the first DATA LIST command that defines a variable for the print and write
formats to include in the dictionary of the working data file.

• For grouped and nested files, the variable names on each DATA LIST must be unique, since
a case is built by combining all record types together into a single record.

• For nested files, the order of the RECORD TYPE commands defines the hierarchical struc-
ture of the file. The first RECORD TYPE defines the highest-level record type, the next
RECORD TYPE defines the next highest-level record, and so forth. The last RECORD
TYPE command defines a case in the working data file. By default, variables from higher-
level records are spread to the lowest-level record.

• For nested files, the SPREAD subcommand on RECORD TYPE can be used to spread the
values in a record type only to the first case built from each record of that type. All other
cases associated with that record are assigned the system-missing value for the variables
defined on that type. See RECORD TYPE for more information.

• String values specified on the RECORD TYPE command must be enclosed in apostrophes
or quotation marks.

Operations

• For mixed file types, the program skips all records that are not specified on one of the
RECORD TYPE commands.

• If different variables are defined for different record types in mixed files, the variables are
assigned the system-missing value for those record types on which they are not defined.

• For nested files, the first record in the file should be the type specified on the first
RECORD TYPE command—the highest level of the hierarchy. If the first record in the file
is not the highest-level type, the program skips all records until it encounters a record of
the highest-level type. If MISSING or DUPLICATE has been specified, these records may
produce warning messages but will not be used to build a case in the working file.

• When defining complex files, you are effectively building an input program and can use
only commands that are allowed in the input state. See Appendix A for information on
program states.

FILE TYPE—END FILE TYPE 343

Example

* Reading multiple record types from a mixed file.

FILE TYPE MIXED FILE=TREATMNT RECORD=RECID 1-2.
+ RECORD TYPE 21,22,23,24.
+ DATA LIST /SEX 5 AGE 6-7 DOSAGE 8-10 RESULT 12.
+ RECORD TYPE 25.
+ DATA LIST /SEX 5 AGE 6-7 DOSAGE 10-12 RESULT 15.
END FILE TYPE.

• Variable DOSAGE is read from columns 8–10 for record types 21, 22, 23, and 24 and from
columns 10–12 for record type 25. RESULT is read from column 12 for record types 21,
22, 23, and 24, and from column 15 for record type 25.

• The working data file contains values for all variables defined on the DATA LIST com-
mands for record types 21 through 25. All other record types are skipped.

Example

* Reading only one record type from a mixed file.

FILE TYPE MIXED RECORD=RECID 1-2.
RECORD TYPE 23.
DATA LIST /SEX 5 AGE 6-7 DOSAGE 8-10 RESULT 12.
END FILE TYPE.

BEGIN DATA
21 145010 1
22 257200 2
25 235 250 2
35 167 300 3
24 125150 1
23 272075 1
21 149050 2
25 134 035 3
30 138 300 3
32 229 500 3
END DATA.

• FILE TYPE begins the file definition and END FILE TYPE indicates the end of file defini-
tion. FILE TYPE specifies a mixed file type. Since the data are included between BEGIN
DATA—END DATA, the FILE subcommand is omitted. The record identification variable
RECID is located in columns 1 and 2.

• RECORD TYPE indicates that records with value 23 for variable RECID will be copied into
the working data file. All other records are skipped. the program does not issue a warning
when it skips records in mixed files.

• DATA LIST defines variables on records with the value 23 for variable RECID.

344 FILE TYPE—END FILE TYPE

Example

* A grouped file of student test scores.

FILE TYPE GROUPED RECORD=#TEST 6 CASE=STUDENT 1-4.
RECORD TYPE 1.
DATA LIST /ENGLISH 8-9 (A).
RECORD TYPE 2.
DATA LIST /READING 8-10.
RECORD TYPE 3.
DATA LIST /MATH 8-10.
END FILE TYPE.

BEGIN DATA
0001 1 B+
0001 2 74
0001 3 83
0002 1 A
0002 2 100
0002 3 71
0003 1 B-
0003 2 88
0003 3 81
0004 1 C
0004 2 94
0004 3 91
END DATA.

• FILE TYPE identifies the file as a grouped file. As required for grouped files, all records
for a single case are together in the data. The record identification variable #TEST is lo-
cated in column 6. A scratch variable is specified so it won’t be saved in the working data
file. The case identification variable STUDENT is located in columns 1–4.

• Because there are three record types, there are three RECORD TYPE commands. For each
RECORD TYPE, there is a DATA LIST to define variables on that record type.

• END FILE TYPE signals the end of file definition.

• The program builds four cases—one for each student. Each case includes the case iden-
tification variable plus the variables defined for each record type (the test scores). The
values for #TEST are not saved in the working data file. Thus, each case in the working
file has four variables: STUDENT, ENGLISH, READING, and MATH.

FILE TYPE—END FILE TYPE 345

Example

* A nested file of accident records.

FILE TYPE NESTED RECORD=6 CASE=ACCID 1-4.
RECORD TYPE 1.
DATA LIST /ACC_ID 9-11 WEATHER 12-13 STATE 15-16 (A) DATE 18-24 (A).
RECORD TYPE 2.
DATA LIST /STYLE 11 MAKE 13 OLD 14 LICENSE 15-16(A) INSURNCE 18-21 (A).
RECORD TYPE 3.
DATA LIST /PSNGR_NO 11 AGE 13-14 SEX 16 (A) INJURY 18 SEAT 20-21 (A)

COST 23-24.
END FILE TYPE.

BEGIN DATA
0001 1 322 1 IL 3/13/88 /* Type 1: accident record
0001 2 1 44MI 134M /* Type 2: vehicle record
0001 3 1 34 M 1 FR 3 /* Type 3: person record
0001 2 2 16IL 322F /* vehicle record
0001 3 1 22 F 1 FR 11 /* person record
0001 3 2 35 M 1 FR 5 /* person record
0001 3 3 59 M 1 BK 7 /* person record
0001 2 3 21IN 146M /* vehicle record
0001 3 1 46 M 0 FR 0 /* person record
END DATA.

• FILE TYPE specifies a nested file type. The record identifier, located in column 6, is not
assigned a variable name, so the default scratch variable name ####RECD is used. The
case identification variable ACCID is located in columns 1–4.

• Because there are three record types, there are three RECORD TYPE commands. For each
RECORD TYPE, there is a DATA LIST command to define variables on that record type. The
order of the RECORD TYPE commands defines the hierarchical structure of the file.

• END FILE TYPE signals the end of file definition.

• The program builds a case for each lowest-level (type 3) record, representing each person
in the file. There can be only one type 1 record for each type 2 record, and one type 2
record for each type 3 record. Each vehicle can be in only one accident, and each person
can be in only one vehicle. The variables from the type 1 and type 2 records are spread to
their corresponding type 3 records.

Types of Files

The first specification on FILE TYPE is a file type keyword, which defines the structure of the
data file. There are three file type keywords: MIXED, GROUPED, and NESTED. Only one of
the three types can be specified on FILE TYPE.

MIXED Mixed file type. MIXED specifies a file in which each record type named on a
RECORD TYPE command defines a case. You do not need to define all types
of records in the file. In fact, FILE TYPE MIXED is useful for reading only one
type of record because the program can decide whether to execute the DATA
LIST for a record by simply reading the variable that identifies the record type.

346 FILE TYPE—END FILE TYPE

GROUPED Grouped file type. GROUPED defines a file in which cases are defined by
grouping together record types with the same identification number. Each
case usually has one record of each type. All records for a single case must
be together in the file. By default, the program assumes that the records are
in the same sequence within each case.

NESTED Nested file type. NESTED defines a file in which the record types are related
to each other hierarchically. The record types are grouped together by a case
identification number that identifies the highest level—the first record
type—of the hierarchy. Usually, the last record type specified—the lowest
level of the hierarchy—defines a case. For example, in a file containing
household records and records for each person living in the household, each
person record defines a case. Information from higher record types may be
spread to each case. For example, the value for a variable on the household
record, such as CITY, can be spread to the records for each person in the
household.

Subcommands and Their Defaults for Each File Type

The specifications on the FILE TYPE differ for each type of file. Table 1 shows whether each
subcommand is required or optional and, where applicable, what the default specification is
for each file type. N/A indicates that the subcommand is not applicable to that type of file.

• FILE is required unless data are inline (included between BEGIN DATA—END DATA).

• RECORD is always required.

• CASE is required for grouped files.

• The subcommands CASE, DUPLICATE, and MISSING can also be specified on the associated
RECORD TYPE commands for grouped files. However, DUPLICATE=CASE is invalid.

• For nested files, CASE and MISSING can be specified on the associated RECORD TYPE
commands.

• If the subcommands CASE, DUPLICATE, or MISSING are specified on a RECORD TYPE
command, the specification on the FILE TYPE command (or the default) is overridden
only for the record types listed on that RECORD TYPE command. The FILE TYPE specifi-
cation or default applies to all other record types.

Table 1 Summary of FILE TYPE subcommands for different file types

Subcommand Mixed Grouped Nested

FILE Conditional Conditional Conditional
RECORD Required Required Required
CASE Not Applicable Required Optional
WILD NOWARN WARN NOWARN
DUPLICATE N/A WARN NOWARN
MISSING N/A WARN NOWARN
ORDERED N/A YES N/A

FILE TYPE—END FILE TYPE 347

FILE Subcommand

FILE specifies a text file containing the data. FILE is not used when the data are inline.

Example
FILE TYPE MIXED FILE=TREATMNT RECORD=RECID 1-2.

• Data are in file TREATMNT. The file type is mixed. The record identification variable
RECID is located in columns 1 and 2 of each record.

RECORD Subcommand

RECORD specifies the name and column location of the record identification variable.
• The column location of the record identifier is required. The variable name is optional.

• If you do not want to save the record type variable, you can assign a scratch variable name
by using the # character as the first character of the name. If a variable name is not spec-
ified on RECORD, the record identifier is defined as the scratch variable ####RECD.

• The value of the identifier for each record type must be unique and must be in the same
location on all records. However, records do not have to be sorted according to type.

• A column-style format can be specified for the record identifier. For example, the follow-
ing two specifications are valid:

RECORD=V1 1-2(N)
RECORD=V1 1-2(F,1)

FORTRAN-like formats cannot be used because the column location must be specified
explicitly.

• Specify A in parentheses after the column location to define the record type variable as a
string variable.

Example
FILE TYPE MIXED FILE=TREATMNT RECORD=RECID 1-2.

• The record identifier is variable RECID, located in columns 1 and 2 of the hospital treat-
ment data file.

CASE Subcommand

CASE specifies a name and column location for the case identification variable. CASE is re-
quired for grouped files and optional for nested files. It cannot be used with mixed files.

• For grouped files, each unique value for the case identification variable defines a case in
the working data file.

• For nested files, the case identification variable identifies the highest-level record of the
hierarchy. The program issues a warning message for each record with a case identifica-
tion number not equal to the case identification number on the last highest-level record.
However, the record with the invalid case number is used to build the case.

348 FILE TYPE—END FILE TYPE

• The column location of the case identifier is required. The variable name is optional.

• If you do not want to save the case identification variable, you can assign a scratch vari-
able name by using the # character as the first character of the name. If a variable name
is not specified on CASE, the case identifier is defined as the scratch variable ####CASE.

• A column-style format can be specified for the case identifier. For example, the following
two specifications are valid:

CASE=V1 1-2(N)
CASE=V1 1-2(F,1)

FORTRAN-like formats cannot be used because the column location must be specified
explicitly.

• Specify A in parentheses after the column location to define the case identification vari-
able as a string variable.

• If the case identification number is not in the same columns on all record types, use the
CASE subcommand on the RECORD TYPE commands as well as on the FILE TYPE com-
mand (see RECORD TYPE).

Example
* A grouped file of student test scores.

FILE TYPE GROUPED RECORD=#TEST 6 CASE=STUDENT 1-4.
RECORD TYPE 1.
DATA LIST /ENGLISH 8-9 (A).
RECORD TYPE 2.
DATA LIST /READING 8-10.
RECORD TYPE 3.
DATA LIST /MATH 8-10.
END FILE TYPE.

BEGIN DATA
0001 1 B+
0001 2 74
0001 3 83
0002 1 A
0002 2 100
0002 3 71
0003 1 B-
0003 2 88
0003 3 81
0004 1 C
0004 2 94
0004 3 91
END DATA.

• CASE is required for grouped files. CASE specifies variable STUDENT, located in columns
1–4, as the case identification variable.

• The data contain four different values for STUDENT. The working data file therefore has
four cases, one for each value of STUDENT. In a grouped file, each unique value for the
case identification variable defines a case in the working file.

FILE TYPE—END FILE TYPE 349

• Each case includes the case identification variable plus the variables defined for each
record type. The values for #TEST are not saved in the working data file. Thus, each case
in the working file has four variables: STUDENT, ENGLISH, READING, and MATH.

Example
* A nested file of accident records.

FILE TYPE NESTED RECORD=6 CASE=ACCID 1-4.
RECORD TYPE 1.
DATA LIST /ACC_ID 9-11 WEATHER 12-13 STATE 15-16 (A) DATE 18-24 (A).
RECORD TYPE 2.
DATA LIST /STYLE 11 MAKE 13 OLD 14 LICENSE 15-16 (A) INSURNCE 18-21 (A).
RECORD TYPE 3.
DATA LIST /PSNGR_NO 11 AGE 13-14 SEX 16 (A) INJURY 18 SEAT 20-21 (A)

COST 23-24.
END FILE TYPE.

BEGIN DATA
0001 1 322 1 IL 3/13/88 /* Type 1: accident record
0001 2 1 44MI 134M /* Type 2: vehicle record
0001 3 1 34 M 1 FR 3 /* Type 3: person record
0001 2 2 16IL 322F /* vehicle record
0001 3 1 22 F 1 FR 11 /* person record
0001 3 2 35 M 1 FR 5 /* person record
0001 3 3 59 M 1 BK 7 /* person record
0001 2 3 21IN 146M /* vehicle record
0001 3 1 46 M 0 FR 0 /* person record
END DATA.

• CASE specifies variable ACCID, located in columns 1–4, as the case identification vari-
able. ACCID identifies the highest level of the hierarchy: the level for the accident records.

• As each case is built, the value of the variable ACCID is checked against the value of ACCID
on the last highest-level record (record type 1). If the values do not match, a warning mes-
sage is issued. However, the record is used to build the case.

• The data in this example contain only one value for ACCID, which is spread across all cas-
es. In a nested file, the lowest-level record type determines the number of cases in the
working data file. In this example, the working file has five cases because there are five
person records.

Example
* Specifying case on the RECORD TYPE command.

FILE TYPE GROUPED FILE=HUBDATA RECORD=#RECID 80 CASE=ID 1-5.
RECORD TYPE 1.
DATA LIST /MOHIRED YRHIRED 12-15 DEPT79 TO DEPT82 SEX 16-20.
RECORD TYPE 2.
DATA LIST /SALARY79 TO SALARY82 6-25 HOURLY81 HOURLY82 40-53 (2)

PROMO81 72 AGE 54-55 RAISE82 66-70.
RECORD TYPE 3 CASE=75-79.
DATA LIST /JOBCAT 6 NAME 25-48 (A).
END FILE TYPE.

• The CASE subcommand on FILE TYPE indicates that the case identification number is
located in columns 1–5. However, for type 3 records, the case identification number is lo-

350 FILE TYPE—END FILE TYPE

cated in columns 75–79. The CASE subcommand is therefore specified on the third
RECORD TYPE command to override the case setting for type 3 records.

• The format of the case identification variable must be the same on all records. If the case
identification variable is defined as a string on the FILE TYPE command, it cannot be de-
fined as a numeric variable on the RECORD TYPE command, and vice versa.

WILD Subcommand

WILD determines whether the program issues a warning when it encounters undefined record
types in the data file. Regardless of whether the warning is issued, undefined records are not
included in the working data file.

• The only specification on WILD is keyword WARN or NOWARN.

• WARN cannot be specified if keyword OTHER is specified on the last RECORD TYPE com-
mand to indicate all other record types (see RECORD TYPE).

WARN Issue warning messages. The program displays a warning message and the
first 80 characters of the record for each record type that is not mentioned on
a RECORD TYPE command. This is the default for grouped file types.

NOWARN Suppress warning messages. The program simply skips all record types not
mentioned on a RECORD TYPE command and does not display warning mes-
sages. This is the default for mixed and nested file types.

Example
FILE TYPE MIXED FILE=TREATMNT RECORD=RECID 1-2 WILD=WARN.

• WARN is specified on the WILD subcommand. The program displays a warning message
and the first 80 characters of the record for each record type that is not mentioned on a
RECORD TYPE command.

DUPLICATE Subcommand

DUPLICATE determines how the program responds when it encounters more than one record
of each type for a single case. DUPLICATE is optional for grouped and nested files. DUPLI-
CATE cannot be used with mixed files.

• The only specification on DUPLICATE is keyword WARN, NOWARN, or CASE.

WARN Issue warning messages. The program displays a warning message and the
first 80 characters of the last record of the duplicate set of record types. Only
the last record from a set of duplicates is included in the working data file.
This is the default for grouped files.

NOWARN Suppress warning messages. The program does not display warning messag-
es when it encounters duplicate record types. Only the last record from a set
of duplicates is included in the working data file. This is the default for nest-
ed files.

CASE Build a case in the working data file for each duplicate record. The program
builds one case in the working file for each duplicate record, spreading
information from any higher-level records and assigning system-missing

FILE TYPE—END FILE TYPE 351

values to the variables defined on lower-level records. This option is avail-
able only for nested files.

Example
* A nested file of accident records.
* Issue a warning for duplicate record types.

FILE TYPE NESTED RECORD=6 CASE=ACCID 1-4 DUPLICATE=WARN.
RECORD TYPE 1.
DATA LIST /ACC_ID 9-11 WEATHER 12-13 STATE 15-16 (A) DATE 18-24 (A).
RECORD TYPE 2.
DATA LIST /STYLE 11 MAKE 13 OLD 14 LICENSE 15-16 (A) INSURNCE 18-21 (A).
RECORD TYPE 3.
DATA LIST /PSNGR_NO 11 AGE 13-14 SEX 16 (A) INJURY 18 SEAT 20-21 (A)

COST 23-24.
END FILE TYPE.

BEGIN DATA
0001 1 322 1 IL 3/13/88 /* accident record
0001 2 1 44MI 134M /* vehicle record
0001 3 1 34 M 1 FR 3 /* person record
0001 2 1 31IL 134M /* duplicate vehicle record
0001 2 2 16IL 322F /* vehicle record
0001 3 1 22 F 1 FR 11 /* person record
0001 3 2 35 M 1 FR 5 /* person record
0001 3 3 59 M 1 BK 7 /* person record
0001 2 3 21IN 146M /* vehicle record
0001 3 1 46 M 0 FR 0 /* person record
END DATA.

• In the data, there are two vehicle (type 2) records above the second set of person (type 3)
records. This implies that an empty (for example, parked) vehicle was involved, or that
each of the three persons was in two vehicles, which is impossible.

• DUPLICATE specifies keyword WARN. The program displays a warning message and the
first 80 characters of the second of the duplicate set of type 2 records. The first duplicate
record is skipped, and only the second is included in the working data file. This assumes
that no empty vehicles were involved in the accident.

• If the duplicate record represents an empty vehicle, it can be included in the working data
file by specifying keyword CASE on DUPLICATE. The program builds one case in the
working data file for the first duplicate record, spreading information to that case from the
previous type 1 record and assigning system-missing values to the variables defined for
type 3 records. The second record from the duplicate set is used to build the three cases
for the associated type 3 records.

MISSING Subcommand

MISSING determines whether The program issues a warning when it encounters a missing
record type for a case. Regardless of whether the program issues the warning, it builds the
case in the working file with system-missing values for the variables defined on the missing
record. MISSING is optional for grouped and nested files.

• MISSING cannot be used with mixed files and is optional for grouped and nested files.

352 FILE TYPE—END FILE TYPE

• For grouped and nested files, the program verifies that each defined case includes one
record of each type.

• The only specification is keyword WARN or NOWARN.

WARN Issue a warning message when a record type is missing for a case. This is
the default for grouped files.

NOWARN Suppress the warning message when a record type is missing for a case. This
is the default for nested files.

Example
* A grouped file with missing records.

FILE TYPE GROUPED RECORD=#TEST 6 CASE=STUDENT 1-4 MISSING=NOWARN.
RECORD TYPE 1.
DATA LIST /ENGLISH 8-9 (A).
RECORD TYPE 2.
DATA LIST /READING 8-10.
RECORD TYPE 3.
DATA LIST /MATH 8-10.
END FILE TYPE.

BEGIN DATA
0001 1 B+
0001 2 74
0002 1 A
0002 2 100
0002 3 71
0003 3 81
0004 1 C
0004 2 94
0004 3 91
END DATA.

• The data contain records for three tests administered to four students. However, not all
students took all tests. The first student took only the English and reading tests. The third
student took only the math test.

• One case in the working data file is built for each of the four students. If a student did not
take a test, the system-missing value is assigned in the working file to the variable for the
missing test. Thus, the first student has the system-missing value for the math test, and
the third student has missing values for the English and reading tests.

• Keyword NOWARN is specified on MISSING. Therefore, no warning messages are issued
for the missing records.

Example
* A nested file with missing records.

FILE TYPE NESTED RECORD=6 CASE=ACCID 1-4 MISSING=WARN.
RECORD TYPE 1.
DATA LIST /ACC_ID 9-11 WEATHER 12-13 STATE 15-16 (A) DATE 18-24 (A).
RECORD TYPE 2.
DATA LIST /STYLE 11 MAKE 13 OLD 14 LICENSE 15-16 (A) INSURNCE 18-21 (A).

FILE TYPE—END FILE TYPE 353

RECORD TYPE 3.
DATA LIST /PSNGR_NO 11 AGE 13-14 SEX 16 (A) INJURY 18 SEAT 20-21 (A)

COST 23-24.
END FILE TYPE.

BEGIN DATA
0001 1 322 1 IL 3/13/88 /* accident record
0001 3 1 34 M 1 FR 3 /* person record
0001 2 2 16IL 322F /* vehicle record
0001 3 1 22 F 1 FR 11 /* person record
0001 3 2 35 M 1 FR 5 /* person record
0001 3 3 59 M 1 BK 7 /* person record
0001 2 3 21IN 146M /* vehicle record
0001 3 1 46 M 0 FR 0 /* person record
END DATA.

• The data contain records for one accident. The first record is a type 1 (accident) record,
and the second record is a type 3 (person) record. However, there is no type 2 record, and
therefore no vehicle associated with the first person. The person may have been a pedes-
trian, but it is also possible that the vehicle record is missing.

• One case is built for each person record. The first case has missing values for the variables
specified on the vehicle record.

• Keyword WARN is specified on MISSING. A warning message is issued for the missing
record.

ORDERED Subcommand

ORDERED indicates whether the records are in the same order as they are defined on the
RECORD TYPE commands. Regardless of the order of the records in the data file and the
specification on ORDERED, the program builds cases in the working data file with records in
the order defined on the RECORD TYPE commands.

• ORDERED can be used only for grouped files.

• The only specification is keyword YES or NO.

• If YES is in effect but the records are not in the order defined on the RECORD TYPE com-
mands, the program issues a warning for each record that is out of order. The program still
uses these records to build cases.

YES Records for each case are in the same order as they are defined on the RECORD
TYPE commands. This is the default.

NO Records are not in the same order within each case.

Example
* A grouped file with records out of order.

FILE TYPE GROUPED RECORD=#TEST 6 CASE=STUDENT 1-4 MISSING=NOWARN
ORDERED=NO.

RECORD TYPE 1.
DATA LIST /ENGLISH 8-9 (A).

354 FILE TYPE—END FILE TYPE

RECORD TYPE 2.
DATA LIST /READING 8-10.
RECORD TYPE 3.
DATA LIST /MATH 8-10.
END FILE TYPE.

BEGIN DATA
0001 2 74
0001 1 B+
0002 3 71
0002 2 100
0002 1 A
0003 2 81
0004 2 94
0004 1 C
0004 3 91
END DATA.

• The first RECORD TYPE command specifies record type 1, the second specifies record
type 2, and the third specifies record type 3. However, records for each case are not al-
ways ordered type 1, type 2, and type 3.

• NO is specified on ORDERED. The program builds cases without issuing a warning that
they are out of order in the data.

• Regardless of whether YES or NO is in effect for ORDERED, the program builds cases in
the working data file in the same order specified on the RECORD TYPE commands.

355

FILTER

FILTER {BY var}
 {OFF }

Example:
FILTER BY SEX.
FREQUENCIES BONUS.

Overview

FILTER is used to exclude cases from program procedures without deleting them from the
working data file. When FILTER is in effect, cases with a zero or missing value for the spec-
ified variable are not used in program procedures. Those cases are not actually deleted and
are available again if the filter is turned off. To see the current filter status, use the SHOW
command.

Basic Specification

The basic specification is keyword BY followed by a variable name. Cases that have a zero
or missing value for the filter variable are excluded from subsequent procedures.

Syntax Rules

• Only one numeric variable can be specified. The variable can be one of the original vari-
ables in the data file or a variable computed with transformation commands.

• Keyword OFF turns off the filter. All cases in the working data file become available to
subsequent procedures.

• If FILTER is specified without a keyword, FILTER OFF is assumed but the program dis-
plays a warning message.

• FILTER can be specified anywhere in the command sequence. Unlike SELECT IF, FILTER
has the same effect within an input program as it does outside an input program. Attention
must be paid to the placement of any transformation command used to compute values for
the filter variable (see INPUT PROGRAM).

Operations

• FILTER performs case selection without changing the working data file. Cases that have
a zero or missing value are excluded from subsequent procedures but are not deleted
from the file.

356 FILTER

• Both system-missing and user-missing values are treated as missing. The FILTER com-
mand does not offer options for changing selection criteria. To set up different criteria for
exclusion, create a numeric variable and conditionally compute its values before specify-
ing it on FILTER.

• If FILTER is specified after TEMPORARY, FILTER affects the next procedure only. After that
procedure, the filter status reverts to whatever it was before the TEMPORARY command.

• The filter status does not change until another FILTER command is specified or the work-
ing data file is replaced.

• If the specified filter variable is renamed, it is still in effect. The SHOW command will
display the new name of the filter variable. However, the filter is turned off if the filter
variable is recoded into a string variable or is deleted from the file.

• If the working data file is replaced after a MATCH FILES, ADD FILES, or UPDATE com-
mand and the working file is one of the input files, the filter remains in effect if the new
working file has a numeric variable with the name of the filter variable. If the working
data file does not have a numeric variable with that name (for example, if the filter vari-
able was dropped or renamed), the filter is turned off.

• If the working data file is replaced by an entirely new data file (for example, by a DATA
LIST, GET, and IMPORT command), the filter is turned off.

• The FILTER command changes the filter status and takes effect when a procedure is exe-
cuted or an EXECUTE command is encountered.

Example

FILTER BY SEX.
FREQUENCIES BONUS.

• This example assumes that SEX is a numeric variable, with male and female coded as 0
and 1, respectively. The FILTER command excludes males and cases with missing values
for SEX from the subsequent procedures. The FREQUENCIES command generates a fre-
quency table of BONUS for females only.

Example

RECODE SEX (1=0)(0=1).
FILTER BY SEX.
FREQUENCIES BONUS.

• This example assumes the same coding scheme for SEX as the previous example. Before
FILTER is specified, variable SEX is recoded. The FILTER command then excludes females
and cases with missing values for SEX. The FREQUENCIES command generates a fre-
quency table of BONUS for males only.

357

FINISH

FINISH

Overview

FINISH causes the program to stop reading commands.

Basic Specification

The basic specification is keyword FINISH. There are no additional specifications.

Command Files

• FINISH is optional in a command file and is used to mark the end of a session.

• FINISH causes the program to stop reading commands. Anything following FINISH in the
command file is ignored. Any commands following FINISH in an INCLUDE file are
ignored.

• FINISH cannot be used within a DO IF structure to end a session conditionally. FINISH
within a DO IF structure will end the session unconditionally.

Prompted Sessions

• FINISH is required in a prompted session to terminate the session.

• Because FINISH is a program command, it can be used only after the command line
prompt for the program, which expects a procedure name. FINISH cannot be used to end
a prompted session from a DATA>, CONTINUE>, HELP>, or DEFINE> prompt.

Operations

• FINISH immediately causes the program to stop reading commands.

• The appearance of FINISH on the printback of commands in the display file indicates that
the session has been completed.

• When issued within the SPSS Manager (not available on all systems), FINISH terminates
command processing and causes the program to query whether you want to continue
working. If you answer yes, you can continue creating and editing files in both the input
window and the output window; however, you can no longer run commands.

358 FINISH

Example

* A command file.

DATA LIST FILE=RAWDATA /NAME 1-15(A) V1 TO V15 16-30.
LIST.
FINISH.
REPORT FORMAT=AUTO LIST /VARS=NAME V1 TO V10.

• FINISH causes the program to stop reading commands after LIST is executed. The RE-
PORT command is not executed.

Example

SPSS> * A prompted session.

SPSS> DATA LIST FILE=RAWDATA /NAME 1-15(A) V1 TO V15 16-30.
SPSS> LIST.
SPSS> FINISH.

• FINISH terminates the prompted session.

359

FIT

FIT [[ERRORS=] residual series names]

 [/OBS=observed series names]

 [/{DFE=error degrees of freedom }]
 {DFH=hypothesis degrees of freedom}

Example:
FIT ERR_4 ERR_8.

Overview

FIT displays a variety of descriptive statistics computed from the residual series as an aid in
evaluating the goodness of fit of one or more models.

Options

Statistical Output. You can produce statistics for a particular residual series by specifying the
names of the series after FIT. You can also obtain percent error statistics for specified resid-
ual series by specifying observed series on the OBS subcommand.

Degrees of Freedom. You can specify the degrees of freedom for the residual series using the
DFE or DFH subcommands.

Basic Specification

The basic specification is simply the command keyword FIT. All other specifications are
optional.

• By default, FIT calculates the mean error, mean percent error, mean absolute error, mean
absolute percent error, sum of squared errors, mean square error, root mean square error,
and the Durbin-Watson statistic for the last ERR_n (residual) series generated and the
corresponding observed series in the working data file.

• If neither residual nor observed series are specified, percent error statistics for the default
residual and observed series are included.

360 FIT

Syntax Rules

• If OBS is specified, the ERRORS subcommand naming the residual series is required.

Operations

• Observed series and degrees of freedom are matched with residual series according to the
order in which they are specified.

• If residual series are explicitly specified but observed series are not, percent error statis-
tics are not included in the output. If neither residual nor observed series are specified,
percent error statistics for the default residual and observed series are included.

• If subcommand DFH is specified, FIT calculates the DFE (error degrees of freedom) by
subtracting the DFH (hypothesis degrees of freedom) from the number of valid cases in
the series.

• If a PREDICT period (validation period) starts before the end of the observed series, sta-
tistics are reported separately for the USE period (historical period) and the PREDICT
period.

Limitations

• There is no limit on the number of residual series specified. However, the number of ob-
served series must equal the number of residual series.

Example

FIT ERR_4 ERR_5 ERR_6.

• This command requests goodness-of-fit statistics for the residual series ERR_4, ERR_5,
and ERR_6, which were generated by previous procedures. Percent error statistics are not
included in the output, since only residual series are named.

ERRORS Subcommand

ERRORS specifies the residual (error) series.

• The actual keyword ERRORS can be omitted. VARIABLES is an alias for ERRORS.

• The minimum specification on ERRORS is a residual series name.
• The ERRORS subcommand is required if the OBS subcommand is specified.

OBS Subcommand

OBS specifies the observed series to use for calculating the mean percentage error and mean
absolute percentage error.

• OBS can be used only when the residual series are explicitly specified.

• The number and order of observed series must be the same as that of the residual series.

FIT 361

• If more than one residual series was calculated from a single observed series, the observed
series is specified once for each residual series that is based on it.

Example
FIT ERRORS=ERR#1 ERR#2
 /OBS=VAR1 VAR1.

• This command requests FIT statistics for two residual series, ERR#1 and ERR#2, which
were computed from the same observed series, VAR1.

DFE and DFH Subcommands

DFE and DFH specify the degrees of freedom for each residual series. With DFE, error degrees
of freedom are entered directly. DFH specifies hypothesis degrees of freedom so FIT can com-
pute the DFE.

• Only one DFE or DFH subcommand should be specified. If both are specified, only the last
one is in effect.

• The specification on DFE or DFH is a list of numeric values. The order of these values
should correspond to the order of the residual series list.

• The error degrees of freedom specified on DFE are used to compute the mean square error
(MSE) and root mean square (RMS).

• The value specified for DFH should equal the number of parameters in the model (includ-
ing the constant if it is present). Differencing is not considered in calculating DFH, since
any observations lost due to differencing are system-missing.

• If neither DFE or DFH are specified, FIT sets DFE equal to the number of observations.

Example
FIT ERR#1 ERR#2
 /OBS=VAR1 VAR2
 /DFE=47 46.

• In this example, the error degrees of freedom for the first residual series, ERR#1, is 47.
The error degrees of freedom for the second residual series, ERR#2, is 46.

Output Considerations for SSE

The sum of squared errors (SSE) reported by FIT may not be the same as the SSE reported
by the estimation procedure. The SSE from the procedure is an estimate of sigma squared for
that model. The SSE from FIT is simply the sum of the squared residuals.

References

Makridakis, S., S. C. Wheelwright, and V. E. McGee. 1983. Forecasting: Methods and applica-
tions. New York: John Wiley and Sons.

McLaughlin, R. L. 1984. Forecasting techniques for decision making. Rockville, Md.: Control
Data Management Institute.

362 FIT

363

FLIP

FLIP [[VARIABLES=] {ALL }]
 {varlist}

 [/NEWNAMES=variable]

Example:
FLIP VARIABLES=WEEK1 TO WEEK52 /NEWNAMES=DEPT.

Overview

The program requires a file structure in which the variables are the columns and observations
(cases) are the rows. If a file is organized such that variables are in rows and observations are
in columns, you need to use FLIP to reorganize it. FLIP transposes the rows and columns of the
data in the working data file so that, for example, row 1, column 2 becomes row 2, column 1,
and so forth.

Options

Variable Subsets. You can transpose specific variables (columns) from the original file using
the VARIABLES subcommand.

Variable Names. You can use the values of one of the variables from the original file as the
variable names in the new file, using the NEWNAMES subcommand.

Basic Specification

The basic specification is the command keyword FLIP, which transposes all rows and col-
umns.

• By default, FLIP assigns variable names VAR001 to VARn to the variables in the new file.
It also creates the new variable CASE_LBL, whose values are the variable names that ex-
isted before transposition.

Subcommand Order

VARIABLES must precede NEWNAMES.

Operations

• FLIP replaces the working data file with the transposed file and displays a list of variable
names in the transposed file.

364 FLIP

• FLIP discards any previous VARIABLE LABELS, VALUE LABELS, and WEIGHT settings.
Values defined as user-missing in the original file are translated to system-missing in the
transposed file.

• FLIP obeys any SELECT IF, N, and SAMPLE commands in effect.
• FLIP does not obey the TEMPORARY command. Any transformations become permanent

when followed by FLIP.

• String variables in the original file are assigned system-missing values after transposition.

• Numeric variables are assigned a default format of F8.2 after transposition (with the ex-
ceptions of CASE_LBL and the variable specified on NEWNAMES).

• The variable CASE_LBL is created and added to the working data file each time FLIP is
executed.

• If CASE_LBL already exists as the result of a previous FLIP, its current values are used as
the names of variables in the new file (if NEWNAMES is not specified).

Example

The following is the LIST output for a data file arranged in a typical spreadsheet format, with
variables in rows and observations in columns:
A B C D

Income 22.00 31.00 43.00
Price 34.00 29.00 50.00
Year 1970.00 1971.00 1972.00

The command

FLIP.

transposes all variables in the file. The LIST output for the transposed file is as follows:
CASE_LBL VAR001 VAR002 VAR003

A . . .
B 22.00 34.00 1970.00
C 31.00 29.00 1971.00
D 43.00 50.00 1972.00

• The values for the new variable CASE_LBL are the variable names from the original file.

• Case A has system-missing values, since variable A had the string values Income, Price,
and Year.

• The names of the variables in the new file are CASE_LBL, VAR001, VAR002, and VAR003.

VARIABLES Subcommand

VARIABLES names one or more variables (columns) to be transposed. The specified variables
become observations (rows) in the new working file.

• The VARIABLES subcommand is optional. If it is not used, all variables are transposed.

• The actual keyword VARIABLES can be omitted.

• If the VARIABLES subcommand is specified, variables that are not named are discarded.

FLIP 365

Example

Using the untransposed file from the previous example, the command

FLIP VARIABLES=A TO C.

transposes only variables A through C. Variable D is not transposed and is discarded from the
working data file. The LIST output for the transposed file is as follows:
CASE_LBL VAR001 VAR002 VAR003

A . . .
B 22.00 34.00 1970.00
C 31.00 29.00 1971.00

NEWNAMES Subcommand

NEWNAMES specifies a variable whose values are used as the new variable names.
• The NEWNAMES subcommand is optional. If it is not used, the new variable names are

either VAR001 to VARn, or the values of CASE_LBL if it exists.

• Only one variable can be specified on NEWNAMES.

• The variable specified on NEWNAMES does not become an observation (case) in the new
working data file, regardless of whether it is specified on the VARIABLES subcommand.

• If the variable specified is numeric, its values become a character string beginning with
the letter V.

• If the variable specified is a long string, only the first eight characters are used.

• Lowercase character values of a string variable are converted to upper case, and any bad
character values, such as blank spaces, are replaced with underscore (_) characters.

• If the variable’s values are not unique, a numeric extension n is added to the end of a value
after its first occurrence, with n increasing by 1 at each subsequent occurrence.

Example

Using the untransposed file from the first example, the command

FLIP NEWNAMES=A.

uses the values for variable A as variable names in the new file. The LIST output for the trans-
posed file is as follows:
CASE_LBL INCOME PRICE YEAR

B 22.00 34.00 1970.00
C 31.00 29.00 1971.00
D 43.00 50.00 1972.00

• Variable A does not become an observation in the new file. The string values for A are
converted to upper case.

The following command transposes this file back to a form resembling its original structure:

FLIP.

366 FLIP

The LIST output for the transposed file is as follows:
CASE_LBL B C D

INCOME 22.00 31.00 43.00
PRICE 34.00 29.00 50.00
YEAR 1970.00 1971.00 1972.00

• Since the NEWNAMES subcommand is not used, the values of CASE_LBL from the previ-
ous FLIP (B, C, and D) are used as variable names in the new file.

• The values of CASE_LBL are now INCOME, PRICE, and YEAR.

367

FORMATS

FORMATS varlist(format) [varlist...]

Example:
FORMATS SALARY (DOLLAR8) / HOURLY (DOLLAR7.2) / RAISE BONUS (PCT2).

Overview

FORMATS changes variable print and write formats. In this program, print and write formats
are output formats. Print formats, also called display formats, control the form in which val-
ues are displayed by a procedure or by the PRINT command; write formats control the form
in which values are written by the WRITE command.

FORMATS changes both print and write formats. To change only print formats, use
PRINT FORMATS. To change only write formats, use WRITE FORMATS. For information on
assigning input formats during data definition, see DATA LIST.

Table 1 shows the output formats that can be assigned with the FORMATS, PRINT
FORMATS, and WRITE FORMATS commands. For additional information on formats, see
“Variable Formats” on p. 22.

Basic Specification

The basic specification is a variable list followed by a format specification in parentheses.
All variables on the list receive the new format.

Syntax Rules

• You can specify more than one variable or variable list, followed by a format in paren-
theses. Only one format can be specified after each variable list. For clarity, each set of
specifications can be separated by a slash.

• You can use keyword TO to refer to consecutive variables in the working data file.

• The specified width of a format must include enough positions to accommodate any punc-
tuation characters such as decimal points, commas, dollar signs, or date and time delimit-
ers. (This differs from assigning an input format on DATA LIST, where the program
automatically expands the input format to accommodate punctuation characters in output.)

• Custom currency formats (CCw, CCw.d) must first be defined on the SET command be-
fore they can be used on FORMATS.

• FORMATS cannot be used with string variables. To change the length of a string variable,
declare a new variable of the desired length with the STRING command and then use
COMPUTE to copy values from the existing string into the new variable.

• To save the new print and write formats, you must save the working data file as an SPSS-
format data file with the SAVE or XSAVE command.

368 FORMATS

Table 1 shows the formats that can be assigned by FORMATS, PRINT FORMATS, or WRITE
FORMATS. The first column of the table lists the FORTRAN-like specification. The column
labeled PRINT indicates whether the format can be used to display values. The columns la-
beled Min w and Max w refer to the minimum and maximum widths allowed for the format
type. The column labeled Max d refers to the maximum decimal places.

Table 1 Output data formats

Type PRINT Min w Max w Max d

Numeric
Fw, Fw.d yes 1* 40 16
COMMAw, COMMAw.d yes 1* 40 16
DOTw, DOTw.d yes 1* 40 16
DOLLARw, DOLLARw.d yes 2* 40 16
CCw, CCw.d yes 2* 40 16
PCTw, PCTw.d yes 1* 40 16
PIBHEXw yes 2† 16†
RBHEXw yes 4† 16†
Zw, Zw.d yes 1 40 16
IBw, IBw.d no 1 8 16
PIBw, PIBw.d no 1 8 16
Nw.d yes 1 40 16
Pw, Pw.d no 1 16 16
Ew, Ew.d yes 6 40
PKw, PKw.d no 1 16 16
RBw no 2 8

String
Aw yes 1 254
AHEXw yes 2† 510

Date and time Resulting form
DATEw yes 9 40 dd-mmm-yy
 11 dd-mmm-yyyy
ADATEw yes 8 40 mm/dd/yy
 10 mm/dd/yyyy
EDATEw yes 8 40 dd/mm/yy

10 dd/mm/yyyy
JDATEw yes 5 40 yyddd
 7 yyyyddd
SDATEw yes 8 40 yy/mm/dd

10 yyyy/mm/dd
QYRw yes 6 40 q Q yy

FORMATS 369

*Add number of decimals plus 1 if number of decimals is more than 0. Total width cannot exceed 40
characters.
†Must be multiple of 2.
**As the field width is expanded, the output string is expanded until the entire name of the day or month
is produced.
††Add 3 to display seconds.

Operations

• Unlike most transformations, FORMATS takes effect as soon as it is encountered in the
command sequence. Special attention should be paid to its position among commands.
For more information, see “Command Order” on p. 6.

• Variables not specified on FORMATS retain their current print and write formats in the
working file. To see the current formats, use the DISPLAY command.

• The new formats are changed only in the working file and are in effect for the duration of
the current session or until changed again with a FORMATS, PRINT FORMATS, or WRITE
FORMATS command. Formats in the original data file (if one exists) are not changed un-
less the file is resaved with the SAVE or XSAVE command.

• New numeric variables created with transformation commands are assigned default print
and write formats of F8.2 (or the format specified on the FORMAT subcommand of SET).
The FORMATS command can be used to change the new variable’s print and write formats.

• New string variables created with transformation commands are assigned the format
specified on the STRING command that declares the variable. FORMATS cannot be used
to change the format of a new string variable.

• If a numeric data value exceeds its width specification, the program attempts to display
some value nevertheless. The program first rounds decimal values, then removes punctu-
ation characters, then tries scientific notation, and finally, if there is still not enough space,
produces asterisks indicating that a value is present but cannot be displayed in the
assigned width.

 8 q Q yyyy
MOYRw yes 6 40 mmm yy
 8 mmm yyyy
WKYRw yes 8 40 ww WK yy
 10 ww WK yyyy
WKDAYw yes 2** 40
MONTHw yes 3** 40
TIMEw yes 5†† 40 hh:mm
TIMEw.d yes 10 40 16 hh:mm:ss.s
DTIMEw yes 8†† 40 dd hh:mm
DTIMEw.d yes 13 40 16 dd hh:mm:ss.s
DATETIMEw yes 17†† 40 dd-mmm-yyyy hh:mm
DATETIMEw.d yes 22 40 16 dd-mmm-yyyy hh:mm:ss.s

Table 1 Output data formats (Continued)

Type PRINT Min w Max w Max d

370 FORMATS

Example

FORMATS SALARY (DOLLAR8) /HOURLY (DOLLAR7.2)
/RAISE BONUS (PCT2).

• The print and write formats for SALARY are changed to DOLLAR format with eight posi-
tions, including the dollar sign and comma when appropriate. The value 11550 is dis-
played as $11,550. An eight-digit number would require a DOLLAR11 format: eight
characters for the digits, two characters for commas, and one character for the dollar sign.

• The print and write formats for HOURLY are changed to DOLLAR format with seven posi-
tions, including the dollar sign, decimal point, and two decimal places. The value 115 is
displayed as $115.00. If DOLLAR6.2 had been specified, the value 115 would be displayed
as $115.0. The program would truncate the last 0 because a width of 6 is not enough to
display the full value.

• The print and write formats for both RAISE and BONUS are changed to PCT with two po-
sitions: one position for the percentage and one position for the percent sign. The value 9
is displayed as 9%. Since the width allows for only two positions, the value 10 is displayed
as 10, since the percent sign is truncated.

Example

COMPUTE V3=V1 + V2.
FORMATS V3 (F3.1).

• COMPUTE creates the new numeric variable V3. By default, V3 is assigned an F8.2 format
(or the default format specified on SET).

• FORMATS changes both the print and write formats for V3 to F3.1.

Example

SET CCA=’-/-.Dfl ..-’.
FORMATS COST (CCA14.2).

• SET defines a European currency format for the custom currency format type CCA.

• FORMATS assigns format CCA to variable COST. With the format defined for CCA on
SET, the value 37419 is displayed as Dfl 37.419,00. See the SET command for more in-
formation on custom currency formats.

371

FREQUENCIES

FREQUENCIES [VARIABLES=]varlist [varlist...]

 [/FORMAT= [{NOTABLE }] [{AVALUE}]
{LIMIT(n)} {DVALUE}

{AFREQ }
 {DFREQ }

[/MISSING=INCLUDE]

 [/BARCHART=[MINIMUM(n)] [MAXIMUM(n)] [{FREQ(n) }]]
 {PERCENT(n)}

 [/PIECHART=[MINIMUM(n)] [MAXIMUM(n)] [{FREQ }] [{MISSING }]]
 {PERCENT} {NOMISSING}

 [/HISTOGRAM=[MINIMUM(n)] [MAXIMUM(n)] [{FREQ(n) }] [{NONORMAL}]]
 {NORMAL }

[/GROUPED=varlist [{(width) }]]
 {(boundary list)}

 [/NTILES=n]

 [/PERCENTILES=value list]

 [/STATISTICS=[DEFAULT] [MEAN] [STDDEV] [MINIMUM] [MAXIMUM]
 [SEMEAN] [VARIANCE] [SKEWNESS] [SESKEW] [RANGE]
 [MODE] [KURTOSIS] [SEKURT] [MEDIAN] [SUM] [ALL]
 [NONE]]

 [/ORDER=[{ANALYSIS}] [{VARIABLE}]

Example:
FREQUENCIES VAR=RACE /STATISTICS=ALL.

Overview

FREQUENCIES produces Frequency tables showing frequency counts and percentages of the
values of individual variables. You can also use FREQUENCIES to obtain Statistics tables for
categorical variables and to obtain Statistics tables and graphical displays for continuous
variables.

Options

Display Format. You can suppress tables and alter the order of values within tables using the
FORMAT subcommand.

Statistical Display. Percentiles and ntiles are available for numeric variables with the
PERCENTILES and NTILES subcommands. The following statistics are available with
the STATISTICS subcommand: mean, median, mode, standard deviation, variance, skew-
ness, kurtosis, and sum.

372 FREQUENCIES

Plots. Histograms can be specified for numeric variables on the HISTOGRAM subcommand.
Bar charts can be specified for numeric or string variables on the BARCHART subcommand.

Input Data. On the GROUPED subcommand, you can indicate whether the input data are
grouped (or collapsed) so that a better estimate can be made of percentiles.

Basic Specification

The basic specification is the VARIABLES subcommand and the name of at least one variable.
By default, FREQUENCIES produces a Frequency table.

Subcommand Order

Subcommands can be named in any order.

Syntax Rules

• You can specify multiple NTILES subcommands.

• BARCHART and HISTOGRAM are mutually exclusive.

• You can specify numeric variables (with or without decimal values) or string variables.
Only the short-string portion of long string variables are tabulated.

• Keyword ALL can be used on VARIABLES to refer to all user-defined variables in the work-
ing data file.

Operations

• Variables are tabulated in the order they are mentioned on the VARIABLES subcommand.
• If a requested ntile or percentile cannot be calculated, a period (.) is displayed.

• FREQUENCIES dynamically builds the table, setting up one cell for each unique value
encountered in the data.

Limitations

• Maximum 500 variables total per FREQUENCIES command.

• Maximum of 32,767 observed values over all variables.

Example

FREQUENCIES VAR=RACE /STATISTICS=ALL.

• FREQUENCIES requests a Frequency table and a Statistics table showing all statistics for
the categorical variable RACE.

FREQUENCIES 373

Example

FREQUENCIES STATISTICS=ALL /HISTOGRAM
/VARIABLES=SEX TVHOURS SCALE1 TO SCALE5
/FORMAT=NOTABLE.

• FREQUENCIES requests statistics and histograms for SEX, TVHOURS, and all variables
between and including SCALE1 and SCALE5 in the working data file.

• FORMAT suppresses the Frequency tables, which are not useful for continuous variables.

VARIABLES Subcommand

VARIABLES names the variables to be tabulated and is the only required subcommand. The
actual keyword VARIABLES can be omitted.

FORMAT Subcommand

FORMAT controls various features of the output, including order of categories and suppression
of tables.

• The minimum specification is a single keyword.

• By default, FREQUENCIES displays the Frequency table and sort categories in ascending
order of values for numeric variables and in alphabetical order for string variables.

Table Order

AVALUE Sort categories in ascending order of values (numeric variables) or in alpha-
betical order (string variables). This is the default.

DVALUE Sort categories in descending order of values (numeric variables) or in reverse
alphabetical order (string variables). This is ignored when HISTOGRAM,
NTILES, or PERCENTILES is requested.

AFREQ Sort categories in ascending order of frequency. This is ignored when
HISTOGRAM, NTILES, or PERCENTILES is requested.

DFREQ Sort categories in descending order of frequency. This is ignored when
HISTOGRAM, NTILES, or PERCENTILES is requested.

Table Suppression

LIMIT(n) Suppress frequency tables with more than n categories. The number of miss-
ing and valid cases and requested statistics are displayed for suppressed tables.

NOTABLE Suppress all frequency tables. The number of missing and valid cases are
displayed for suppressed tables. NOTABLE overrides LIMIT.

374 FREQUENCIES

BARCHART Subcommand

BARCHART produces a bar chart for each variable named on the VARIABLES subcommand.
By default, the horizontal axis for each bar chart is scaled in frequencies, and the interval
width is determined by the largest frequency count for the variable being plotted. Bar charts
are labeled with value labels or with the value if no label is defined.

• The minimum specification is the BARCHART keyword, which generates default bar charts.
• BARCHART cannot be used with HISTOGRAM.

MIN(n) Lower bound below which values are not plotted.

MAX(n) Upper bound above which values are not plotted.

FREQ(n) Vertical axis scaled in frequencies, where optional n is the maximum. If n is
not specified or if it is too small, FREQUENCIES chooses 5, 10, 20, 50, 100,
200, 500, 1000, 2000, and so forth, depending on the largest category. This
is the default.

PERCENT(n) Vertical axis scaled in percentages, where optional n is the maximum. If n is
not specified or if it is too small, FREQUENCIES chooses 5, 10, 25, 50, or
100, depending on the frequency count for the largest category.

Example
FREQUENCIES VAR=RACE /BARCHART.

• FREQUENCIES produces a frequency table and the default bar chart for variable RACE.

Example
FREQUENCIES VAR=V1 V2 /BAR=MAX(10).

• FREQUENCIES produces a frequency table and bar chart with values through 10 for each
of variables V1 and V2.

PIECHART Subcommand

PIECHART produces a pie chart for each variable named on the VARIABLES subcommand. By
default, one slice corresponds to each category defined by the variable with one slice repre-
senting all missing values. Pie charts are labeled with value labels or with the value if no la-
bel is defined.
• The minimum specification is the PIECHART keyword, which generates default pie charts.

• PIECHART can be requested together with either BARCHART or HISTOGRAM.

• FREQ and PERCENT are mutually exclusive. If both are specified, only the first specifi-
cation is in effect.

• MISSING and NOMISSING are mutually exclusive. If both are specified, only the first spec-
ification is in effect.

MIN(n) Lower bound below which values are not plotted.

MAX(n) Upper bound above which values are not plotted.

FREQUENCIES 375

FREQ The pie charts are based on frequencies. Frequencies are displayed when
you request values in the Chart Editor. This is the default.

PERCENT The pie charts are based on percentage. Percentage is displayed when you
request values in the Chart Editor.

MISSING User-missing and system-missing values are treated as one category. This is
the default. Specify INCLUDE on the MISSING subcommand to display sys-
tem- and user-missing values as separate slices.

NOMISSING Missing values are excluded from the chart. If you specify INCLUDE on the
MISSING subcommand, each user-missing value is represented by one slice.

Example
FREQUENCIES VAR=RACE /PIECHART.

• FREQUENCIES produces a frequency table and the default pie chart for variable RACE.

Example
FREQUENCIES VAR=V1 V2 /PIE=MAX(10).

• For each variable V1 and V2, FREQUENCIES produces a frequency table and a pie chart
with values through 10.

HISTOGRAM Subcommand

HISTOGRAM displays a plot for each numeric variable named on the VARIABLES subcommand.
By default, the horizontal axis of each histogram is scaled in frequencies and the interval width
is determined by the largest frequency count of the variable being plotted.

• The minimum specification is the HISTOGRAM keyword, which generates default
histograms.

• HISTOGRAM cannot be used with BARCHART.

MIN(n) Lower bound below which values are not plotted.

MAX(n) Upper bound above which values are not plotted.

FREQ(n) Vertical axis scaled in frequencies, where optional n is the scale. If n is not
specified or if it is too small, FREQUENCIES chooses 5, 10, 20, 50, 100, 200,
500, 1000, 2000, and so forth, depending on the largest category. This is the
default.

NORMAL Superimpose a normal curve. The curve is based on all valid values for the
variable, including values excluded by MIN and MAX.

NONORMAL Suppress the normal curve. This is the default.

Example
FREQUENCIES VAR=V1 /HIST=NORMAL.

• FREQUENCIES requests a histogram with a superimposed normal curve.

376 FREQUENCIES

GROUPED Subcommand

When the values of a variable represent grouped or collapsed data, it is possible to estimate
percentiles for the original, ungrouped data from the grouped data. The GROUPED sub-
command specifies which variables have been grouped. It affects only the output from the
PERCENTILES and NTILES subcommands and the MEDIAN statistic from the STATISTICS
subcommand.
• Multiple GROUPED subcommands can be used on a single FREQUENCIES command. Mul-

tiple variable lists, separated by slashes, can appear on a single GROUPED subcommand.

• The variables named on GROUPED must have been named on the VARIABLES subcommand.

• The value or value list in the parentheses is optional. When it is omitted, the program
treats the values of the variables listed on GROUPED as midpoints. If the values are not
midpoints, they must first be recoded with the RECODE command.

• A single value in parentheses specifies the width of each grouped interval. The data val-
ues must be group midpoints, but there can be empty categories. For example, if you have
data values of 10, 20, and 30 and specify an interval width of 5, the categories are

 and The categories and are empty.

• A value list in the parentheses specifies interval boundaries. The data values do not have
to represent midpoints, but the lowest boundary must be lower than any value in the data.
If any data values exceed the highest boundary specified (the last value within the paren-
theses), they will be assigned to an open-ended interval. In this case, some percentiles
cannot be calculated.

Example
RECODE AGE (1=15) (2=25) (3=35) (4=45) (5=55)

(6=65) (7=75) (8=85) (9=95)
/INCOME (1=5) (2=15) (3=25) (4=35) (5=45)

(6=55) (7=65) (8=75) (9=100).

FREQUENCIES VARIABLES=AGE, SEX, RACE, INCOME
/GROUPED=AGE, INCOME
/PERCENTILES=5,25,50,75,95.

• The AGE and INCOME categories of 1, 2, 3, and so forth are recoded to category mid-
points. Note that data can be recoded to category midpoints on any scale; here AGE is
recoded in years, but INCOME is recoded in thousands of dollars.

• The GROUPED subcommand on FREQUENCIES allows more accurate estimates of the
requested percentiles.

Example
FREQUENCIES VARIABLES=TEMP

/GROUPED=TEMP (0.5)
/NTILES=10.

• The values of TEMP (temperature) in this example were recorded using an inexpensive
thermometer whose readings are precise only to the nearest half degree.

• The observed values of 97.5, 98, 98.5, 99, and so on, are treated as group midpoints,
smoothing out the discrete distribution. This yields more accurate estimates of the deciles.

10 2.5,± 20 2.5,± 30 2.5.± 15 2.5± 25 2.5±

FREQUENCIES 377

Example
FREQUENCIES VARIABLES=AGE

/GROUPED=AGE (17.5, 22.5, 27.5, 32.5, 37.5, 42.5, 47.5
52.5, 57.5, 62.5, 67.5, 72.5, 77.5, 82.5)

/PERCENTILES=5, 10, 25, 50, 75, 90, 95.

• The values of AGE in this example have been estimated to the nearest five years. The first
category is 17.5 to 22.5, the second is 22.5 to 27.5, and so forth. The artificial clustering
of age estimates at multiples of five years is smoothed out by treating AGE as grouped
data.

• It is not necessary to recode the ages to category midpoints, since the interval boundaries
are explicitly given.

PERCENTILES Subcommand

PERCENTILES displays the value below which the specified percentage of cases falls. The
desired percentiles must be explicitly requested. There are no defaults.

Example
FREQUENCIES VAR=V1 /PERCENTILES=10 25 33.3 66.7 75.

• FREQUENCIES requests the values for percentiles 10, 25, 33.3, 66.7, and 75 for V1.

NTILES Subcommand

NTILES calculates the percentages that divide the distribution into the specified number of
categories and displays the values below which the requested percentages of cases fall. There
are no default ntiles.

• Multiple NTILES subcommands are allowed. Each NTILES subcommand generates sepa-
rate percentiles. Any duplicate percentiles generated by different NTILES subcommands
are consolidated in the output.

Example
FREQUENCIES VARIABLE=V1 /NTILES=4.

• FREQUENCIES requests quartiles (percentiles 25, 50, and 75) for V1.

Example
FREQUENCIES VARIABLE=V1 /NTILES=4 /NTILES=10.

• The first NTILES subcommand requests percentiles 25, 50, and 75.

• The second NTILES subcommand requests percentiles 10 through 90 in increments of 10.

• The 50th percentile is produced by both specifications but is displayed only once in the
output.

378 FREQUENCIES

STATISTICS Subcommand

STATISTICS controls the display of statistics. By default, cases with missing values are
excluded from the calculation of statistics.

• The minimum specification is the keyword STATISTICS, which generates the mean, stan-
dard deviation, minimum, and maximum (these statistics are also produced by keyword
DEFAULT).

MEAN Mean.

SEMEAN Standard error of the mean.

MEDIAN Median. Ignored when AFREQ or DFREQ are specified on the FORMAT sub-
command.

MODE Mode. If there is more than one mode, only the first mode is displayed.

STDDEV Standard deviation.

VARIANCE Variance.

SKEWNESS Skewness.

SESKEW Standard error of the skewness statistic.

KURTOSIS Kurtosis.

SEKURT Standard error of the kurtosis statistic.

RANGE Range.

MINIMUM Minimum.

MAXIMUM Maximum.

SUM Sum.

DEFAULT Mean, standard deviation, minimum, and maximum.

ALL All available statistics.

NONE No statistics.

FREQUENCIES 379

Example
FREQUENCIES VAR=AGE /STATS=MODE.

• STATISTICS requests the mode of AGE.

Example
FREQUENCIES VAR=AGE /STATS=DEF MODE.

• STATISTICS requests the default statistics (mean, standard deviation, minimum, and
maximum) plus the mode of AGE.

MISSING Subcommand

By default, both user- and system-missing values are labeled as missing in the table but are
not included in the valid and cumulative percentages, in the calculation of descriptive statis-
tics, or in charts and histograms.

INCLUDE Include cases with user-missing values. Cases with user-missing values are
included in statistics and plots.

ORDER Subcommand

You can organize your output by variable or by analysis. Frequencies output that is organized
by analysis has a single statistics table for all variables. Output organized by variable has a
statistics table and a frequency table for each variable.

ANALYSIS Organize output by analysis. Displays a single statistics table for all vari-
ables. This is the default.

VARIABLE Organize output by variable. Displays a statistics table and a frequency table
for each variable.

380

GET

GET FILE=file

 [/KEEP={ALL** }] [/DROP=varlist]
 {varlist}

 [/RENAME=(old varnames=new varnames)...]

 [/MAP]

**Default if the subcommand is omitted.

Example:
GET FILE=EMPL.

Overview

GET reads an SPSS-format data file that was created by the SAVE or XSAVE command. An
SPSS-format data file data plus a dictionary. The dictionary contains a name for each vari-
able in the data file, plus any assigned variable and value labels, missing-value flags, and
variable print and write formats. The dictionary also contains document text created with
the DOCUMENTS command.

GET is used only for reading SPSS-format data files. See DATA LIST for information on
reading and defining data in a text data file. See MATRIX DATA for information on defining
matrix materials in a text data file. For information on defining complex data files that can-
not be defined with DATA LIST alone, see FILE TYPE and REPEATING DATA.

The program can also read data files created for other software applications. See IMPORT
for information on reading portable files created with EXPORT. See commands such as GET
TRANSLATE, GET SCSS, GET SAS, GET BMDP, and GET OSIRIS for information on reading
files created by other software programs.

Options

Variable Subsets and Order. You can read a subset of variables and reorder the variables that
are copied into the working data file using the DROP and KEEP subcommands.

Variable Names. You can rename variables as they are copied into the working data file with
the RENAME subcommand.

Variable Map. To confirm the names and order of variables in the working data file, use the
MAP subcommand. MAP displays the variables in the working file next to their correspond-
ing names in the SPSS-format data file.

GET 381

Basic Specification

• The basic specification is the FILE subcommand, which specifies the SPSS-format data
file to be read.

• By default, GET copies all variables from the SPSS-format data file into the working data
file. Variables in the working file are in the same order and have the same names as vari-
ables in the SPSS-format data file. Documentary text from the SPSS-format data file is
copied into the dictionary of the working file.

Subcommand Order

• FILE must be specified first.

• The remaining subcommands can be specified in any order.

Syntax Rules

• FILE is required and can be specified only once.
• KEEP, DROP, RENAME, and MAP can be used as many times as needed.

• Documentary text copied from the SPSS-format data file can be dropped from the work-
ing data file with the DROP DOCUMENTS command.

• GET cannot be used inside a DO IF—END IF or LOOP—END LOOP structure.

Operations

• GET reads the dictionary of the SPSS-format data file.

• If KEEP is not specified, variables in the working data file are in the same order as variables
in the SPSS-format data file.

• A file saved with weighting in effect maintains the values of the variable $WEIGHT. For
a discussion of turning off weights, see WEIGHT.

• The order of cases in the working data file is the same as their order in the SPSS-format
data file. The values of $CASENUM are those from the original text data file before any
selecting (see SELECT IF) or sorting (see SORT). The value of $CASENUM may differ
from the actual number of a case after selecting or sorting.

FILE Subcommand

FILE specifies the SPSS-format data file to be read. FILE is required and can be specified only
once. It must be the first specification on GET.

382 GET

DROP and KEEP Subcommands

DROP and KEEP are used to copy a subset of variables into the working data file. DROP
specifies variables that should not be copied into the working file. KEEP specifies variables
that should be copied. Variables not specified on KEEP are dropped.

• Variables can be specified in any order. The order of variables on KEEP determines the
order of variables in the working file. The order on DROP does not affect the order of vari-
ables in the working file.

• The keyword ALL on KEEP refers to all remaining variables not previously specified on
KEEP. ALL must be the last specification on KEEP.

• If a variable is specified twice on the same subcommand, only the first mention is recognized.

• Multiple DROP and KEEP subcommands are allowed. However, specifying a variable
named on a previous DROP or not named on a previous KEEP results in an error and the
GET command is not executed.

• The keyword TO can be used to specify a group of consecutive variables in the SPSS-
format data file.

Example
GET FILE=HUBTEMP /DROP=DEPT79 TO DEPT84 SALARY79.

• The working data file is copied from SPSS-format file HUBTEMP. All variables between
and including DEPT79 and DEPT84, as well as SALARY79, are excluded from the working
file. All other variables are copied into the working file.

• Variables in the working data file are in the same order as the variables in the HUBTEMP
file.

Example
GET FILE=PRSNL /DROP=GRADE STORE
 /KEEP=LNAME NAME TENURE JTENURE ALL.

• The variables GRADE and STORE are dropped when the file PRSNL is copied into the
working data file.

• KEEP specifies that LNAME, NAME, TENURE, and JTENURE are the first four variables in
the working file, followed by all remaining variables (except those dropped by the previ-
ous DROP). These remaining variables are copied into the working file in the same se-
quence in which they appear in the PRSNL file.

RENAME Subcommand

RENAME changes the names of variables as they are copied into the working data file.

• The specification on RENAME is a list of old variable names followed by an equals sign
and a list of new variable names. The same number of variables must be specified on both
lists. The keyword TO can be used on the first list to refer to consecutive variables in the
SPSS-format data file and on the second list to generate new variable names (see “Key-
word TO” on p. 20). The entire specification must be enclosed in parentheses.

GET 383

• Alternatively, you can specify each old variable name individually, followed by an equals
sign and the new variable name. Multiple sets of variable specifications are allowed. The
parentheses around each set of specifications are optional.

• Old variable names do not need to be specified according to their order in the SPSS-
format data file.

• Name changes take place in one operation. Therefore, variable names can be exchanged
between two variables.

• Variables cannot be renamed to scratch variables.

• Multiple RENAME subcommands are allowed.

• On a subsequent DROP or KEEP subcommand, variables are referred to by their new
names.

Example
GET FILE=EMPL88 /RENAME AGE=AGE88 JOBCAT=JOBCAT88.

• RENAME specifies two name changes for the working data file. AGE is renamed to AGE88
and JOBCAT is renamed to JOBCAT88.

Example
GET FILE=EMPL88 /RENAME (AGE JOBCAT=AGE88 JOBCAT88).

• The name changes are identical to those in the previous example. AGE is renamed to
AGE88 and JOBCAT is renamed to JOBCAT88. The parentheses are required with this
method.

MAP Subcommand

MAP displays a list of the variables in the working data file and their corresponding names in
the SPSS-format data file.

• The only specification is the keyword MAP. There are no additional specifications.

• Multiple MAP subcommands are allowed. Each MAP subcommand maps the results of
subcommands that precede it; results of subcommands that follow it are not mapped.

Example
GET FILE=EMPL88 /RENAME=(AGE=AGE88) (JOBCAT=JOBCAT88)
/KEEP=LNAME NAME JOBCAT88 ALL /MAP.

• MAP is specified to confirm the new names for the variables AGE and JOBCAT and the
order of variables in the working data file (LNAME, NAME, and JOBCAT88, followed by
all remaining variables in the SPSS-format data file).

384

GET BMDP

This command is not available on all operating systems.

GET BMDP FILE=file

 [/SCAN={YES }] [/CODE=name]
 {ONLY}

 [/CONTENT=name] [/LABEL=quoted string]

 [/KEEP={ALL** }] [/DROP=varlist]
 {varlist}

 [/RENAME=(old varnames=new varnames)...]

 [/MAP]

**Default if the subcommand is omitted.

Example:
GET BMDP FILE=BMDPFIL3.

Overview

GET BMDP reads a save file from a BMDP data set. The specified save file from the data
set becomes the working data file. If necessary, BMDP variable names and missing values
are automatically converted to comply with SPSS conventions.

Options

Save Files. You can read a particular save file within the data set to read using the CONTENT,
CODE, and LABEL subcommands.

Variable Subsets and Order. You can read a subset of variables and reorder the variables that
are copied into the working data file using the DROP and KEEP subcommands.

Variable Names. You can rename variables as they are copied into the working data file with
the RENAME subcommand.

Variable Map. To confirm the names and order of variables copied into the working data file,
use the MAP subcommand. MAP displays the variables in the working file next to their cor-
responding names in the BMDP save file.

Basic Specification

• The basic specification is the FILE subcommand, which specifies the BMDP data set.

GET BMDP 385

• By default, the program reads the first save file within the data set with the content field
DATA. All variables from the BMDP save file are copied into the working data file. How-
ever, the program may have to rename BMDP variables so that they conform to specific
naming conventions (see “BMDP to SPSS Data Conversion” below).

Subcommand Order

• FILE is required and must be specified first.

• If specified, SCAN must immediately follow FILE.

• CONTENT, CODE, and LABEL can appear in any order but must follow FILE and SCAN.
• KEEP, DROP, RENAME, and MAP can be specified more than once and in any order but

must follow all other subcommands.

Operations

• If KEEP is not specified, variables in the working data file are in the same order as vari-
ables in the BMDP save file.

• The program makes assumptions about the record format and other characteristics of the
BMDP data set based on your computer and operating system. See the SPSS Base User’s
Guide for your version of SPSS for information.

• Although it is possible for the program to read files with content other than DATA, such
files are likely to be interpreted incorrectly. A certain amount of trial and error may be
necessary to read and redefine such files.

• Information generated by the BMDP GROUPS paragraph is ignored.

Case Selection

In a BMDP save file, each case includes an automatic variable USE, whose value determines
whether the case is included in an analysis. Only cases in which USE has a positive, nonmiss-
ing value are included in BMDP analyses. GET BMDP retains all cases, and it retains the vari-
able USE unless the KEEP or DROP subcommands indicate otherwise. The program can use
the same case selection if the SELECT IF command is used before an analysis, as in SELECT
IF USE > 0.

BMDP to SPSS Data Conversion

The program makes the following conversions to force BMDP data to comply with SPSS con-
ventions:

Variable Names
• Initial blanks and special characters are changed to @. For example, $VAR, .VAR, /VAR,

and VAR preceded by a blank all become @VAR (see below about duplicate names).

386 GET BMDP

• Internal blanks and special characters are changed to underscores. VAR ONE and VAR/ONE
both become VAR_ONE.

• Parentheses are removed. X(1) becomes X1.

• If a reserved keyword is used as a BMDP variable name, the program appends the # sym-
bol to the name and issues a warning message. The reserved keywords are ALL, AND, BY,
GE, GT, LE, LT, NE, NOT, OR, TO, and WITH. A BMDP variable named AND, for example,
would be converted to AND#.

• If conversion produces duplicate variable names, the program creates names of the form
Vn, in which n is an integer.

Missing Values

All three BMDP missing values (missing, lower than the minimum, and higher than the max-
imum) are converted to the system-missing value.

Print and Write Formats
• GET BMDP supplies print and write formats of F8.2 for all numeric variables and A4 for

all string variables. FORMATS, PRINT FORMATS, and WRITE FORMATS can be used to
change these numeric formats if they are inappropriate.

• The program recognizes as string variables only those identified by the LABEL clause of
BMDP’s VARIABLE paragraph. Other string variables might not be detected and may be
read as numeric. You can change these variables back to string using the REFORMAT
command (see REFORMAT).

FILE Subcommand

FILE specifies the BMDP data set, which can include more than one BMDP save file. Unless
the CODE, CONTENT, or LABEL subcommands are specified, the program reads the first save
file within the specified data set with the content field DATA.

• FILE is required and must be the first specification on GET BMDP.

SCAN Subcommand

SCAN displays information about the save files within the BMDP data set. The information
includes the content, code, and label fields for the save files. Code and label are specified by
the user within BMDP; content is supplied by BMDP to identify the type of file (data, cor-
relation matrix, and so on).
• When used, SCAN must immediately follow FILE.

YES Read the save file and display the code, content, and label fields and other infor-
mation from the file.

ONLY Do not read the save file but display the code, content, and label fields and other
information from the file.

GET BMDP 387

Example
GET BMDP FILE=BMDPFIL3 /SCAN ONLY.

• FILE specifies the BMDPFIL3 data set.

• SCAN displays information about the save files within the data set. However, no files are
read. Information about the save file can be used on the CONTENT, CODE, or LABEL sub-
commands of another GET BMDP command.

CONTENT, CODE, and LABEL Subcommands

CONTENT, CODE, and LABEL are used to specify a particular save file within a single data
set. The specification is a name or a string enclosed in apostrophes, according to BMDP
conventions.

• If CONTENT is not specified, the program assumes DATA.

• If CODE or LABEL are not specified, the program reads the first save file with the specified
content (DATA by default).

• If CODE or LABEL are specified, the program reads the first file that matches all of the in-
formation provided.

Example
GET BMDP FILE=BMDPFIL /LABEL= ’OLD DATA’.

• The program reads the first save file in data set BMDPFIL with content DATA and label OLD
DATA.

DROP and KEEP Subcommands

DROP and KEEP are used to copy a subset of variables into the working data file. DROP spec-
ifies variables that should not be copied into the working file. KEEP specifies variables that
should be copied. Variables not specified on KEEP are dropped.

• DROP and KEEP cannot precede the FILE, CONTENT, CODE, or LABEL subcommands.
• DROP and KEEP must use SPSS variable names, not BMDP variable names (see “BMDP

to SPSS Data Conversion” on p. 385).

• Variables can be specified in any order. The order of variables on KEEP determines the
order of variables in the working file. The order on DROP does not affect the order of vari-
ables in the working file.

• The keyword ALL on KEEP refers to all remaining variables not previously specified. ALL
must be the last specification on KEEP.

• If a variable is specified twice on the same subcommand, only the first mention is recognized.

• Multiple DROP and KEEP subcommands are allowed. However, specifying a variable
named on a previous DROP or not named on a previous KEEP results in an error and the
command is not executed.

• The keyword TO can be used to specify a group of consecutive variables in the BMDP
save file.

388 GET BMDP

Example
GET BMDP FILE=BMDPFIL /DROP=X1 TO X4, X9 /KEEP=X7 X6 ALL.

• GET BMDP reads the BMDP data set BMDPFIL; the first save file with content DATA is
copied into the working data file. The save file contains variables X(1) to X(20). Note that
DROP and KEEP use the SPSS variable names, not the BMDP variable names: the paren-
theses are dropped from the variable names.

• DROP excludes from the working data file all variables between and including X1 and X4,
as well as X9. All other variables are copied into the working file.

• KEEP specifies that X7 and X6 are the first two variables in the working data file, followed
by all remaining variables (except those specified on DROP). The remaining variables are
copied into the working file in the same sequence they appear in the original BMDP save
file.

RENAME Subcommand

RENAME changes the names of variables as they are copied into the working data file.

• RENAME cannot precede the FILE, CONTENT, CODE, or LABEL subcommands.

• The specification on RENAME is a list of old variable names followed by an equals sign
and a list of new variable names. The same number of variables must be specified on
both lists, and you can use the keyword TO. The entire specification must be enclosed
in parentheses.

• Alternatively, you can specify each old variable name individually, followed by an equals
sign and the new variable name. Multiple sets of variable specifications are allowed. The
parentheses around each set of specifications are optional.

• The list of old variable names must use SPSS variable names, not BMDP variable names
(see “BMDP to SPSS Data Conversion” on p. 385).

• Old variable names do not need to be specified according to their order in the BMDP save
file.

• Name changes take place in one operation. Therefore, variable names can be exchanged
between two variables.

• Variables cannot be renamed to scratch variables.

• Multiple RENAME subcommands are allowed.

• On a subsequent DROP or KEEP subcommand, variables are referred to by their new
names.

Example
GET BMDP FILE= BMDPFIL4 /SCAN YES

/KEEP = X1 X2 V1 V2
/RENAME = (X1 X2 V1 V2 = X1_A X2_A X1_B X2_B).

• Assume that the save file within the data set BMDPFIL4 contains variables named X(1),
X(2), X1, and X2 (and some others), in that order. The program converts the variable names
X(1) and X(2) to X1 and X2. Then, because of duplication, it converts X1 and X2 to V1 and

GET BMDP 389

V2 (see “BMDP to SPSS Data Conversion” on p. 385). Note that the KEEP and RENAME
specifications use the SPSS names.

• RENAME changes variable names X1 to X1_A, X2 to X2_A, V1 to X1_B, and V2 to X2_B.

MAP Subcommand

MAP displays a list of the variables in the working data file and their corresponding names in
the BMDP save file.

• MAP cannot precede the FILE, CONTENT, CODE, or LABEL subcommands.

• The only specification is the keyword MAP. There are no additional specifications.
• Multiple MAP subcommands are allowed. Each MAP subcommand maps the results of

subcommands that precede it; results of subcommands that follow it are not mapped.

Example
GET BMDP FILE=BMDPFIL4 /SCAN YES

/KEEP=X1 X2 V1 V2 ALL
/RENAME=(X1 X2 V1 V2 = X1_A X2_A X1_B X2_B)
/MAP.

• MAP is specified to confirm the new names and the order of variables in the working data file
(X1_A, X2_A, X1_B, and X2_B, followed by all remaining variables in the BMDP save file).

390

GET CAPTURE

GET CAPTURE {ODBC }*

 [/CONNECT=’connection string’]
 [/LOGIN=login] [/PASSWORD=password]
 [/SERVER=host] [/DATABASE=database name]†

 /SELECT any select statement

* You can import data from any database for which you have an ODBC driver installed.
† Optional subcommands are database-specific. See “Syntax Rules” on p. 390 for the subcommand(s)
required by a database type.

Example:
GET CAPTURE ODBC
 /CONNECT=’DSN=Sample DBASE files;CollatingSequence=ASCII;’
 ‘DBQ=C:\CRW; DefaultDir=C:\CRW; Deleted=1;’
 ‘Driverid=21;Fil=dBaseIII;PageTimeout=600;’
 ‘Statistics=0;UID=admin;’
 /SELECT EMPLOYEE.LASTNAE,EMPLOYEE.FIRSTNAME,EMPLOYEE.ADDRESS,
 EMPDATA.DATA FROM {oj employee LEFT OUTER JOIN EMPDATA ON
 ‘EMPLOYEE’,’LASTNAME’=’EMPDATA’,’LASTNAME’}.

Overview

GET CAPTURE retrieves data from a database and converts them to a format that can be used
by program procedures. GET CAPTURE retrieves data and data information and builds a
working data file for the current session.

Basic Specification

The basic specification is one of the subcommands specifying the database type followed
by the SELECT subcommand and any SQL select statement.

Subcommand Order

The subcommand specifying the type of database must be the first specification. The SELECT
subcommand must be the last.

Syntax Rules

• Only one subcommand specifying the database type can be used.

• The CONNECT�subcommand must be specified if you use the Microsoft ODBC (Open
Database Connectivity) driver.

GET CAPTURE 391

Operations

• GET CAPTURE retrieves the data specified on SELECT.
• The variables are in the same order in which they are specified on the SELECT subcommand.

• The data definition information captured from the database is stored in the working data
file dictionary.

Limitations

• Maximum 3800 characters (approximately) can be specified on the SELECT subcom-
mand. This translates to 76 lines of 50 characters. Characters beyond the limit are ignored.

CONNECT Subcommand

CONNECT is required to access any database that has an installed Microsoft ODBC driver.

• You cannot specify the connection string directly in the syntax window, but you can paste
it with the rest of the command from the Results dialog box, which is the last of the series
of dialog boxes opened with the Database Capture command from the File menu.

SELECT Subcommand

SELECT specifies any SQL select statement accepted by the database you access. With
ODBC, you can now select columns from more than one related table in an ODBC data
source using either the inner join or the outer join.

Example

GET CAPTURE ODBC
 /CONNECT=’DSN=Sample DBASE files;CollatingSequence=ASCII;’
 ‘DBQ=C:\CRW; DefaultDir=C:\CRW; Deleted=1;’
 ‘Driverid=21;Fil=dBaseIII;PageTimeout=600;’
 ‘Statistics=0;UID=admin;’
 /SELECT EMPLOYEE.LASTNAE,EMPLOYEE.FIRSTNAME,EMPLOYEE.ADDRESS,
 EMPDATA.DATA FROM {oj EMPLOYEE LEFT OUTER JOIN EMPDATA ON
 ‘EMPLOYEE’.’LASTNAME’=’EMPDATA’.’LASTNAME’}.

• This example retrieves data from two related tables in a dBase III database.

• The SQL select statement retrieves the customer’s first names, last names, and their ad-
dresses from the EMPLOYEE table and if the last name is also in the EMPDATA table,
the DATA column of the employee’s data table will be retrieved.

• GET CAPTURE converts the data to a format used by program procedures and builds a
working data file.

Data Conversion

GET CAPTURE converts variable names, labels, missing values, and data types, wherever
necessary, to a format that conforms to SPSS-format conventions.

392 GET CAPTURE

Variable Names and Labels

Database columns are read as variables.

• A column name is converted to a variable name if it conforms to SPSS-format naming
conventions and is different from all other names created for the working data file. If not,
GET CAPTURE gives the column a name formed from the first few letters of the column
and its column number. If this is not possible, the letters COL followed by the column
number are used. For example, the seventh column specified in the select statement could
be COL7.

• GET CAPTURE labels each variable with its full column name specified in the original
database.

• You can display a table of variable names with their original database column names using
the DISPLAY LABELS command.

Missing Values

Null values in the database are transformed into the system-missing value in numeric variables
or into blanks in string variables.

Example
GET CAPTURE ORACLE
 /LOGIN=SCOTT /PASSWORD=TIGER
 /SELECT EMP.ENAME, EMP.JOB,
 EMP.HIREDATE, EMP.SAL,
 DEPT.DNAME
 FROM EMP, DEPT, DEPT_SAL
 WHERE EMP.DEPTNO = DEPT.DEPTNO
 AND EMP.DEPTNO = DEPT_SAL.DEPTNO
 AND EMP.SAL = DEPT_SAL.HISAL.
LIST.

• The indentation of the select statement illustrates how GET CAPTURE considers every-
thing after the word SELECT to be part of the database statement. These lines are passed
directly to the database, including all spaces and punctuation, except for the command
terminator (.). The LIST output from these commands may look like the following:
FILE: File built with ORACLE Capture

ENAME JOB HIREDATE SAL DNAME

KING PRESIDENT 17-NOV-1981 5500.00 ACCOUNTING
MASON ANALYST 24-APR-1982 3910.00 RESEARCH
BLAKE MANAGER 01-MAY-1981 2992.50 SALES

GET CAPTURE 393

394

GET OSIRIS

This command is not available on all operating systems.

GET OSIRIS DICTIONARY=dictionary file DATA=data file

 [/RENAME=(old varnames=new varnames)...]

 [KEEP={ALL** }] [DROP=varlist]
 {varlist}

 [/MAP]

**Default if the subcommand is omitted.

Example:
GET OSIRIS DATA=DATA48 DICTIONARY=DICT48.

Overview

GET OSIRIS generates an SPSS working data file from an OSIRIS EBCDIC data set. OSIRIS
variable numbers are converted into SPSS variable names. Print and write formats are automat-
ically assigned using SPSS conventions. Variable label information is read from the OSIRIS
dictionary.

Options

Variable Subsets and Order. You can read a subset of variables and reorder the variables that
are copied into the working data file using the DROP and KEEP subcommands.

Variable Names. You can rename variables as they are copied into the working data file with
the RENAME subcommand.

Variable Map. To confirm the names and order of variables in the working data file, use the
MAP subcommand. MAP displays the variables in the working file next to their corresponding
names in the OSIRIS data set.

Basic Specification

• The basic specification uses two subcommands: DATA and DICTIONARY. DATA specifies
the OSIRIS data file. DICTIONARY specifies the OSIRIS dictionary file.

• The OSIRIS dictionary is converted into an SPSS working data file dictionary, and a
transformation program is generated to read cases in the OSIRIS data set. By default,
all variable numbers from the OSIRIS data set are converted to SPSS variable names
(see “OSIRIS to SPSS Data Conversion” on p. 395) and are copied into the working
data file.

GET OSIRIS 395

Subcommand Order

• DATA and DICTIONARY must precede all other subcommands.
• KEEP, DROP, RENAME, and MAP can be specified in any order but must follow DATA and

DICTIONARY.

Syntax Rules

• DATA and DICTIONARY are required and are not separated by a slash.

• KEEP, DROP, RENAME, and MAP can be specified as many times as needed and must be
separated by a slash.

Operations

• If KEEP is not specified, variables in the working data file are in the same order as variables
in the OSIRIS data set.

• There are three types of OSIRIS data sets: types 1, 3, and 5. The program can currently
read only types 1 and 3. Type 1 data sets are the usual form for distribution; they are pro-
duced only by the OSIRIS system after many edit checks have been made. Type 3 data
sets may be produced using ordinary text-editing software (or a card punch). Each data
set consists of a fixed-format text data file and a dictionary file containing data definitions
associated with OSIRIS variables.

• Variable label information is read from the OSIRIS dictionary. Type 1 data sets may in-
clude a dictionary codebook containing value label information, which GET OSIRIS auto-
matically converts into SPSS value labels. Missing-value specifications are read from the
OSIRIS data set.

OSIRIS to SPSS Data Conversion

The program makes the following conversions to force OSIRIS data sets to comply with
SPSS conventions:

Variable Types

Both SPSS and OSIRIS recognize two variable types: numeric and string. OSIRIS numeric
variables become SPSS numeric variables, and OSIRIS string variables become SPSS string
variables of the same length.

Variable Names

OSIRIS variable numbers refer to responses to single or multiple response survey questions.
The program converts a single response variable with the number n to the SPSS variable
name Vn, and a multiple response variable n with k possible responses to k variables named
Mn.1 through Mn.k. An SPSS variable name is limited to eight characters. Thus, with the
form Mn.k, if n has four digits, k can have no more than two, and if n has five digits, k can

396 GET OSIRIS

have only one. The form Mnk is used, without the decimal point, when n has five digits and
k has two.

Variable Labels

In OSIRIS, the term variable name has the same meaning as the term variable label in SPSS.
OSIRIS variable names are converted to SPSS variable labels of the same length.

Missing Values
• For missing values, OSIRIS allows single values or size limits to be specified. Single

values, if specified, are used as missing values for the corresponding variables in SPSS.
• An OSIRIS negative size limit x becomes the SPSS missing range (LO THRU x), and a

positive size limit y becomes the SPSS missing range (y THRU HI).

• Range-missing values are not used for string variables. No missing values are used for
long string variables. Warnings are issued if missing values occur in violation of these
rules.

Value Labels

The dictionary codebook in an OSIRIS type 1 data set may include value label information.
This information will be associated with the corresponding SPSS variables using the same
values. When converted, labels longer than 60 characters are truncated.

Print and Write Formats
• OSIRIS string variables with length l are given an A format with width w for print and

write formats.

• OSIRIS numeric variables are assigned one of three formats corresponding to the three
forms of OSIRIS data values: numeric character, fixed-point binary, and floating-point
binary.

Table 1 shows the assignment of numeric print and write formats. The width w and the number
of decimal places d are taken from the OSIRIS data set.

Limitations

• Type 3 OSIRIS data sets can contain multiple logical records per case and values that span
logical records. GET OSIRIS can handle type 3 data sets when there is only one logical
record per case.

Table 1 Print and write formats for numeric variables

OSIRIS
data format

SPSS
print format

SPSS
write format

Numeric character Fw.d Fw.d
Fixed-point binary Fw.d IBw.d
Floating-point binary Ew.d RBw

GET OSIRIS 397

• GET OSIRIS can handle a logical record length of 80.

• Because the program treats OSIRIS multiple response variables as separate variables,
GET OSIRIS can handle a multiple response variable that spans different logical records
provided no corresponding individual SPSS variable spans different logical records.

DATA and DICTIONARY Subcommands

DATA and DICTIONARY together specify the OSIRIS data set. DATA identifies the OSIRIS
data file. DICTIONARY identifies the OSIRIS dictionary file.

• DATA and DICTIONARY are required and must be the first specifications on GET OSIRIS.
• A slash cannot be used between the DATA and DICTIONARY specifications. However,

slashes are used to separate any other subcommands used on GET OSIRIS.

Example
GET OSIRIS DATA=DATA48 DICTIONARY=DICT48.

• DATA identifies DATA48 as the OSIRIS data file and DICTIONARY identifies DICT48 as the
OSIRIS dictionary file.

DROP and KEEP Subcommands

DROP and KEEP are used to copy a subset of variables into the working data file. DROP spec-
ifies variables that should not be copied into the working file. KEEP specifies variables that
should be copied. Variables not specified on KEEP are dropped.

• DROP and KEEP cannot precede the DATA or DICTIONARY subcommands.

• DROP and KEEP specifications must use SPSS variable names, not OSIRIS variable num-
bers (see “OSIRIS to SPSS Data Conversion” on p. 395).

• Variables can be specified in any order. The order of variables on KEEP determines the
order of variables in the working file. The order on DROP does not affect the order of vari-
ables in the working file.

• The keyword ALL on KEEP refers to all remaining variables not previously specified. ALL
must be the last specification on KEEP.

• If a variable is specified twice on the same subcommand, only the first mention is recognized.

• Multiple DROP and KEEP subcommands are allowed. However, specifying a variable
named on a previous DROP or not named on a previous KEEP results in an error and the
command is not executed.

• The keyword TO can be used to specify a group of consecutive variables in the OSIRIS
file.

Example

GET OSIRIS DATA=DATA48 DICTIONARY=DICT48
/DROP=M5.1 TO M5.3 M5.9 /KEEP=M5.7 M5.6 ALL.

398 GET OSIRIS

• DROP excludes from the working data file all variables between and including M5.1 to
M5.3, as well as M5.9. All other variables are copied into the working data file.

• KEEP specifies that M5.7 and M5.6 are the first two variables in the working file, followed
by all remaining variables (except those specified on DROP). The remaining variables are
copied into the working file in the same sequence in which they appear in the original
OSIRIS data set.

• Note that DROP and KEEP use the SPSS variable names, not the OSIRIS variable numbers.

RENAME Subcommand

RENAME changes the names of variables as they are copied into the working data file. RENAME
can be used to change the default names assigned by GET OSIRIS (see “OSIRIS to SPSS Data
Conversion” on p. 395).

• The specification on RENAME is a list of old variable names followed by an equals sign
and a list of new variable names. The same number of variables must be specified on
both lists, and you can use the keyword TO. The entire specification must be enclosed
in parentheses.

• Alternatively, you can specify each old variable name individually, followed by an equals
sign and the new variable name. Multiple sets of variable specifications are allowed. The
parentheses around each set of specifications are optional.

• The list of old names must use the SPSS variable names, not OSIRIS variable names.

• Old variable names do not need to be specified according to their order in the OSIRIS data
set.

• Name changes take place in one operation. Therefore, variable names can be exchanged
between two variables.

• Variables cannot be renamed to scratch variables.
• Multiple RENAME subcommands are allowed.

• On a subsequent DROP or KEEP, variables are referred to by their new names.

Example
GET OSIRIS DATA=DATA48 DICTIONARY=DICT48

/DROP=M5.1 TO M5.3 M5.9 /KEEP=M5.7 M5.6 ALL
/RENAME (M5.7 M5.6=CHOICE1 CHOICE2).

• RENAME changes the variable name M5.7 to CHOICE1 and M5.6 to CHOICE2.

MAP Subcommand

MAP prints a list of the variables in the working data file and their corresponding names in
the OSIRIS data set.

• The only specification is the keyword MAP. There are no additional specifications.

• Multiple MAP subcommands are allowed. Each MAP subcommand maps the results of
subcommands that precede it; results of subcommands that follow it are not mapped.

GET OSIRIS 399

Example
GET OSIRIS DATA=DATA48 DICTIONARY=DICT48

/DROP=M5.1 TO M5.3 M5.9 /KEEP=M5.7 M5.6 ALL
/RENAME (M5.7 M5.6=CHOICE1 CHOICE2)
/MAP.

• MAP is specified to confirm the new names and the order of variables in the working data
file (CHOICE1 and CHOICE2, followed by the remaining variables that are copied from the
OSIRIS data set).

400

GET SAS

GET SAS DATA=file [DSET(data set)]

 [/FORMATS=file [FSET(data set)]]

Example:
GET SAS DATA=’ELECT’ DSET(Y1948).

Overview

GET SAS builds an SPSS working data file from a data set contained in a SAS transport file.
A SAS transport file is a sequential file written in SAS transport format and can be created
by the SAS export engine available in SAS Versions 6.06 plus or by the EXPORT option on
the COPY or XCOPY procedure in earlier versions. (See “Tips for Creating and Moving a
SAS Transport File” on p. 406.) In most instances, GET SAS retrieves data and data defini-
tion items stored in the SAS transport file, including variable labels, print and write formats,
missing values, and, optionally, value labels. GET SAS automatically modifies these data
definition items where necessary to conform with SPSS conventions.

Note that the terms “file” and “data set” used to describe GET SAS follow the SAS con-
vention. A SAS data set is approximately equivalent to an SPSS data file that contains both
the data values and the descriptor information.

Options

Retrieving User-defined Formats in SAS. You can specify a SAS transport file on the FORMATS
subcommand to retrieve user-defined formats associated with the data being read. GET SAS
retrieves user-defined formats from a data set contained in the file, either applying them as
output formats or using them as value labels.

Specifying the Data Set. You can name a data set contained in a specified SAS transport file,
using DSET on the DATA subcommand or FSET on the FORMATS subcommand. GET SAS
reads the specified data set from the SAS transport file.

Basic Specification

The basic specification is the DATA subcommand followed by the name of the SAS transport
file to read. By default, the first SAS data set is copied into the working data file and any
necessary data conversions are made (see “SAS to SPSS Data Conversion” on p. 402).

GET SAS 401

Syntax Rules

• The subcommand DATA and the SAS transport file are required and must be specified
first.

• The subcommand FORMATS is optional. When specified, it requires a file specification
whether it is the same as or different from the file specification on the DATA subcommand.

• GET SAS does not allow KEEP, DROP, RENAME, and MAP subcommands. To use a subset
of the variables, rename them, or display the file content, you can specify the appropriate
commands after the SPSS working data file is created.

Operations

• GET SAS reads data from the specified or default data set contained in the SAS transport
file named on the DATA subcommand.

• When GET SAS encounters an unknown format name, it inspects the data set specified on
FSET. If the format exists, it is applied after any necessary modifications are made (see
“SAS to SPSS Data Conversion” on p. 402); otherwise, GET SAS applies the default for-
mat for the SPSS session (see SET).

• Value labels retrieved from a SAS user-defined format are used for variables associated
with that format, becoming part of the SPSS dictionary.

• All variables from the SAS data set are included in the working data file, and they are in
the same order as in the SAS data set.

DATA Subcommand

DATA specifies the transport file that contains the SAS data set to be read.

• DATA is required and must be the first specification on GET SAS.

• The file specification varies from operating system to operating system. Enclosing the
filename within apostrophes always works.

• The optional DSET keyword on DATA determines which data set within the specified SAS
transport file is to be read. The default is the first data set.

DSET (data set) Data set to be read. Specify the name of the data set in parentheses. If the
specified data set does not exist in the SAS transport file, GET SAS displays
a message informing you that the data set was not found. Names of the data
sets in the file are then listed.

Example
GET SAS DATA=’ELECT’ DSET(Y1948).

• The SAS transport file ELECT is opened and the data set named Y1948 is used to build the
working file for the SPSS session.

402 GET SAS

FORMATS Subcommand

FORMATS specifies the SAS transport file with the data set containing user-defined formats
to be applied to the retrieved data. User-defined formats in SAS may contain value labels
and/or user-defined output formats. In most cases, SPSS reads in value labels, if specified,
and sets user-defined output formats to SPSS defaults.

• The file specification varies from operating system to operating system. Enclosing the
filename within apostrophes always works.

• FORMATS is optional. If the user-defined formats reside in the same transport file as the
data, you can specify FSET directly on the DATA subcommand. The data set named on
FSET must be different from that named on DSET.

• If FORMATS is omitted and FSET is not specified on DATA either, no value labels are avail-
able and all user-defined formats used in the data are set to the default for the session.

The optional keyword FSET specifies the data set containing the formats. The default is the
first data set in the specified transport file.

FSET (data set) Data set containing formats. Specify the data set from which user-defined
formats and value labels are to be obtained. The data set name must be en-
closed in parentheses. If the specified data set does not exist in the SAS trans-
port file, GET SAS displays a message informing you that the data set was
not found. Names of the data sets in the file are then listed.

Example
GET SAS /DATA=’ELECT’ DSET(Y1948)
 /FORMATS=’ELECTFM’ FSET(F1948).

• The user-defined formats reside in a different transport file. The FORMATS subcommand
is required.

• FSET specifies F1948 as the data set to read for user-specified formats.

• Value labels and formats read from the SAS transport file ELECTFM are converted to con-
form to SPSS conventions.

Example
GET SAS /DATA=’ELECT’ DSET(Y1948) FSET(F1948).

• The SAS transport file ELECT contains both the data and the user-defined formats.

• DSET specifies Y1948 as the data set to read for input data.

• FSET specifies F1948 as the data set to read for user-specified formats.

SAS to SPSS Data Conversion

Although SAS and SPSS data files have similar attributes, they are not identical. SPSS
makes the following conversions to force SAS data sets to comply with SPSS conventions.

GET SAS 403

File Label

The file label for the SPSS file is obtained from the name specified on the LABEL option of
the SAS DATA statement.

Variable Names

• Like SPSS, SAS allows variable names up to eight characters long, but the SAS naming
conventions are different from those in SPSS. A SAS variable name must begin with a
letter or an underscore. The underscore can be used within SPSS variable names but not
at the beginning of a name. All leading underscores in SAS files are changed to the @
symbol.

• If an SPSS reserved keyword is used as a SAS variable name, SPSS appends the # symbol
to the name and issues a warning message. The SPSS reserved keywords are ALL, AND,
BY, GE, GT, LE, LT, NE, NOT, OR, TO, and WITH. A SAS variable named AND, for exam-
ple, would be converted to AND#.

Variable Labels

SAS variable labels specified on the LABEL statement in the DATA step are used as variable
labels in SPSS.

Value Labels

SAS value formats that assign value labels are read from the data set specified on the FORMATS
subcommand. The SAS value labels are then converted to SPSS value labels in the following
manner:
• Labels assigned to single values are retained.

• Labels assigned to a range of values are assigned to the beginning and end points of the
range. For example, if SAS assigns the label LOW to values 1–3, in the resulting SPSS
working data file the label LOW is assigned only to values 1 and 3.

• Labels assigned to SAS keywords LOW, HIGH, and OTHER are ignored.

• Labels assigned to long string variables are ignored.
• Labels over 60 characters long are truncated.

Missing Values

Since SAS has no user-defined missing values, all SAS missing codes are converted to SPSS
system-missing values.

404 GET SAS

Variable Types

• Both SAS and SPSS allow two types of variables: numeric and character string. During
conversion, SAS numeric variables become SPSS numeric variables, and SAS string
variables become SPSS string variables of the same length.

• Values for SAS variables that can be identified in date format are converted to the num-
ber of seconds from October 15, 1582, to the given date. Similarly, values for any SAS
variables that are clearly in date-time format are converted to the number of seconds
from October 15, 1582, to the given date and time.

Print and Write Formats

SAS formats are converted to their closest representation within SPSS. Esoteric formats are
converted to the default print format and the closest write format. If a numeric variable does
not have a SAS format, the default SPSS format is used for both print and write formats. (The
default numeric format for an SPSS session can be specified on SET FORMAT. If SET FORMAT
is not specified for the session, the default numeric format is F8.2.)

Table 1 shows the correspondence between SPSS and SAS formats.

Table 1 Output format correspondence

SAS SPSS print
format

SPSS write
format Notes

BEST default default
BINARYw.d PIBHEXk IBw.d k=ceil(w/4)
Fw.d Fw.d Fw.d
NEGPARENw.d Fw.d Fw.d Prints negative numbers in parentheses

in SAS
COMMAw.d COMMAw.d COMMAw.d
COMMAXw.d DOTw.d DOTw.d
DOLLARw.d DOLLARw.d DOLLARw.d
DOLLARXw.d DOTw.d DOTw.d Prints dollar format with comma as

decimal delimiter in SAS
Ew.d Ew.d Ew.d
FRACT default default Prints n/m format in SAS
HEXw PIBHEXw PIBHEXw
IBw Fk.0 IBw k=2w+1
OCTALw PIBHEXk.d PIBHEXk.d k=3/4w
PDw Fk.d PW k=2w+1
PERCENTw.d PCTw.d PCTw.d
PIBw.d default PIBw.d
PKw.d Fk.d PKw.d k=2w+1
RBw default RBw
ROMAN F8.0 F8.0

GET SAS 405

SSNw Fw.0 Fw.0
WORDFw.d Fw.d Fw.d Prints numeric values as words in SAS
WORDSw.d Fw.d Fw.d Prints numeric values as words and

decimals as fractions in SAS
Zw Nw Nw
ZDw Zw Zw
$w Aw Aw
$CHARw Aw Aw
$ASCIIw Aw Aw
$EBCDIC Aw Aw
$HEXw AHEXw AHEXw
$OCTALw AHEXk AHEXk k=2/3w
$BINARYw AHEXk AHEXk k=w/4
$VARYINGw Aw Aw
DATEw DATEw DATEw Minimum width for SPSS is 9
DATETIMEw DATETIMEw DATETIMEw Minimum width for SPSS is 17
DAYw DATE9 DATE9 Prints day of month in SAS
DDMMYYw EDATEw EDATEw Minimum width for SPSS is 9
DOWNAMEw WKDAYw WKDAYw
HHMMw.d TIMEw+d TIMEw+d Minimum width for SPSS is 5
HOURw.d TIME5.0 TIME5.0 No equivalent format for fractions of an

hour in SPSS
JULIANw JDATEw JDATEw
JULDAYw JDATEw JDATEW
MMDDYYw ADATEw ADATEw Minimum width for SPSS is 8
MMSSw.d TIMEw.d TIMEw.d
MMYYw MOYRw+1 MOYRw+1
MONNAMEw MONTHw MONTHw Prints name of the month in SAS
MONTH MONTHw MONTHw
MONYYw MOYRw+1 MOYRw+1
NENGOw JDATEw JDATEw Prints Japanese date format in SAS
QTRw QYR8 QYR8 SPSS assumes the current year
QTRRw QYR8 QYR8 Prints quarter in Roman numerals in

SAS
TIMEw.d TIMEw.d TIMEw.d Minimum width for SPSS is 5
TODw DATETIMEw DATETIMEw Minimum width for SPSS is 21
WEEKDATEw DATE12 DATE12 Prints day of week and date in SAS (day-

of-week, month-name dd yy)
WEEKDATEXw EDATE12 EDATE12 Prints day of week and date in SAS (day-

of-week, dd month-name yy)

Table 1 Output format correspondence (Continued)

SAS SPSS print
format

SPSS write
format Notes

406 GET SAS

Tips for Creating and Moving a SAS Transport File

Most versions of SAS are capable of creating a transport file using a machine-independent
portable format. Here are some tips for creating and moving a SAS transport file with a data
set containing either data or user-defined formats, or both:

• Use the SAS export engine available in SAS Release 6.06 and higher to create a transport
file containing two data sets, one of data and the other of formats:

LIBNAME OUTLIB XPORT ’dir/filename’;
PROC FORMAT CNTLOUT=format_set_name;
VALUE format_name 1=’value label’ 2=’value label’ ... ;

DATA data_set_name; INPUT var1 ...;
ATTRIB var1 FORMAT=format_name.;
CARDS;
1 ...
2 ...
...
;
PROC COPY IN=WORK OUT=OUTLIB;
SELECT data_set_name format_set_name;
RUN;

where filename is the name of the transport file, dir is the directory to save the trans-
port file to, format_set_name is the name of the data set that will contain your for-
mats, format_name is the name of a format defined on PROC FORMAT and later to be
associated with var1 in the data set, value label stands for the labels specified for
numeric values 1 and so on, and data_set_name is the name of the data set created
from the input. Note that the SAS export engine on PC is SASV5XPT. Use SASV5XPT in
place of XPORT if you are on a SAS PC.

• Use the SAS export engine to write a SAS data set (either with data or with user-defined
formats) into a transport format:

LIBNAME TRANFILE XPORT ’dir/filename’;
LIBNAME OLDLIB ’dir’;

PROC COPY IN=OLDLIB OUT=TRANFILE;
SELECT data_set_name;
RUN;

WEEKDAYw WKDAYw WKDAYw
WORDDATEw ADATE12 ADATE12
WORDDATXw DATE12 DATE12
YEARw SDATE10 SDATE10
YYMMXw MOYR8 MOYR8
YYMONw MOYR8 MOYR8
YYMMDDw MOYR6 MOYR6 SDATE10 if width is 6 or more
YYQXw QYRw+2 QYRw+2
YYQRw QYRw+2 QYRw+2 Prints quarter in Roman numerals in

SAS

Table 1 Output format correspondence (Continued)

SAS SPSS print
format

SPSS write
format Notes

GET SAS 407

where filename is the name of the transport file, dir is the directory containing the
data set file, and data_set_name is the name of the data set to be written into the trans-
port file. Note that the SAS export engine on PC is SASV5XPT. Use SASV5XPT in place
of XPORT if you are on a PC.

• If the user-defined formats have been stored in a format library, you must create a SAS
data set first:

LIBNAME=libref;
PROC FORMAT LIBRARY=LIBRARY CNTLOUT=libname.data_set_name;
RUN;

where libref is the name of the format library you want to convert to a data set and
libname.data_set_name is the name of the data set containing the formats. You can
now write it to a transport file.

• The SAS transport file is a binary file. When you move it through your network or to a
different platform, transport it in binary mode. For example, you can FTP it with the binary
switch on.

408

GET SCSS

This command is not available on all operating systems.

GET SCSS MASTERFILE=file [/WORKFILE=file]

 {ALL** }
 {$ALL** }
 [/VARIABLES={varlist }
 {$varlist }]
 {(old varnames=new varnames)}

**Default if the subcommand is omitted.

Example:
GET SCSS MASTERFILE=MHUBIN WORKFILE=WHUBIN.

Overview

GET SCSS reads an SCSS masterfile or a workfile/masterfile combination.

Options

Workfiles. You can specify a workfile to read with the masterfile on the WORKFILE sub-
command.

Variable Subsets, Order, and Names. You can read a subset of variables and reorder and/or re-
name variables that are copied into the SPSS working data file using the VARIABLES sub-
command.

Basic Specification

The basic specification is the MASTERFILE subcommand, which specifies the SCSS master-
file to be read. The masterfile is copied into the SPSS working file.

Subcommand Order

• If both MASTERFILE and WORKFILE are specified, they can be used in either order.

• If VARIABLES is used, it must be the last specification.

Operations

In most instances, GET SCSS is able to retrieve the information in the SCSS masterfile. This
program may need to recode data as explained below.

GET SCSS 409

Missing Values

• This program and SCSS have different rules for defining user-missing values. First, SCSS
allows more than three missing values per variable. Second, SCSS variables can have
missing-value ranges that include valid values. Finally, SCSS allows you to specify a
range of missing values for string variables as well as for numeric variables. When it en-
counters missing-value specifications that are not allowed in this program, GET SCSS re-
codes numeric values to the system-missing value and string values to blanks.

• In SCSS a value can be missing for some cases (via value revision) and not for others. this
program considers such a value missing for all cases when reading the file with GET
SCSS.

• Any time this program recodes a missing value, a warning message is issued to indicate
the action taken.

Formats

Numeric variables copied from the SCSS masterfile are assigned print and write formats
based on the length of the values. Variables with original alphanumeric values are assigned
print and write formats of A1, A2, or A4 (for variables with three or four characters). Alpha-
numeric values cannot occur in a variable in a masterfile created using the SAVE SCSS com-
mand in this program but can occur in a masterfile defined directly in SCSS where the
original values are alphanumeric but were revised as the masterfile was created.

MASTERFILE Subcommand

MASTERFILE specifies the masterfile to be read. If the masterfile alone is specified, only
masterfile information is copied.

• MASTERFILE is required and must precede VARIABLES (if used).

• If WORKFILE is not specified, revisions or additions recorded in any of the workfiles
associated with the specified masterfile are not available to this program.

Example
GET SCSS MASTERFILE=HUBIN.

• GET SCSS retrieves the SCSS masterfile HUBIN.

WORKFILE Subcommand

WORKFILE specifies a workfile associated with the masterfile being read. If WORKFILE is
specified, the SPSS working data file reflects changes recorded in the workfile, including
labels, revisions to existing variables, and computed variables.

• MASTERFILE and WORKFILE can be used in either order. The slash between these vari-
ables is optional.

• Both MASTERFILE and WORKFILE must precede VARIABLES.

410 GET SCSS

• If the workfile alone is specified, this program tries to locate the masterfile but cannot al-
ways succeed (depending on the completeness of the specification in the workfile and on
the operating system).

Example
GET SCSS WORKFILE=WHUBIN MASTERFILE=MHUBIN.

• WORKFILE specifies workfile WHUBIN, which stores changes made to the masterfile
MHUBIN.

VARIABLES Subcommand

VARIABLES limits the number of variables this program copies from the SCSS files. VARI-
ABLES can also be used to determine the order of variables in the SPSS working file and
to rename variables.

• VARIABLES must be the last specification on GET SCSS. VARIABLES can specify a vari-
able list or keywords ALL or $ALL. ALL is the default if a workfile is specified. $ALL is the
default if no workfile is specified and refers to the unrevised masterfile version of all of
the variables.

• Variables are copied in the order specified on VARIABLES.
• You can copy the unrevised masterfile version of any variable, even if WORKFILE is spec-

ified, by specifying a dollar sign before the variable name. Since variable names begin-
ning with dollar signs are not allowed in this program, such variables should be renamed.

• The variable name THRU is allowed in SCSS but not in this program, so it must be
renamed.

• To rename variables, specify a list of old variable names followed by an equals sign
and a list of new variable names. The same number of variables must be specified on
both lists, and you can use the keyword TO. The entire specification must be enclosed
in parentheses.

• Alternatively, you can specify each old variable name individually, followed by an equals
sign and the new variable name. Multiple sets of variable specifications are allowed. The
parentheses around each set of specifications are optional.

• Name changes take place in one operation. Therefore, variable names can be exchanged
between two variables.

• Variables cannot be renamed to scratch variables.

Example
GET SCSS WORKFILE=WHUBIN MASTERFILE=MHUBIN

/VARIABLES=MOHIRED TO SEX, JOBCAT.

• Variables copied into the SPSS working data file are those between and including MOHIRED
and SEX, and JOBCAT.

Example
GET SCSS WORKFILE=WHUBIN MASTERFILE=MHUBIN

/VARIABLES=MOHIRED TO SEX ($SEX=SEX$) JOBCAT.

GET SCSS 411

• This example uses the dollar sign to copy the unrevised masterfile version of the variable
SEX into the working data file. Since variable names beginning with dollar signs are not
allowed in this program, the variable has to be renamed.

• The working data file contains both the revised and unrevised version of the variable SEX.

Example
GET SCSS WORKFILE=WHUBIN MASTERFILE=MHUBIN

/VARIABLES=(DEPT,SALARY,HOURLY=DEPT1,SALARY1,HOURLY1).

• The variables DEPT, SALARY, and HOURLY are copied into the SPSS-format data file and
are renamed DEPT1, SALARY1, and HOURLY1, respectively. The parentheses are re-
quired.

412

GET TRANSLATE

GET TRANSLATE FILE=file

 [/TYPE={WK }]
 {WK1}
 {WKS}
 {WR1}
 {WRK}
 {SLK}
 {XLS}
 {DBF}
 {TAB}

 [/FIELDNAMES]*

 [/RANGE={range name }]*
 {start..stop}
 {start:stop }

 [/KEEP={ALL** }] [/DROP=varlist]
 {varlist}

 [/RENAME=(old varnames=new varnames)...]

 [/MAP]

*Available only for spreadsheet and tab-delimited ASCII files.
**Default if the subcommand is omitted.

Example:
GET TRANSLATE FILE=’PROJECT.WKS’
/FIELDNAMES
/RANGE=D3..J279.

Keyword Type of file

WK Any Lotus 1-2-3 or Symphony file
WK1 1-2-3 Release 2.0
WKS 1-2-3 Release 1A
WR1 Symphony Release 2.0
WRK Symphony Release 1.0
SLK Microsoft Excel and Multiplan in

SYLK (symbolic link) format
XLS Microsoft Excel
DBF All dBASE files
TAB Tab-delimited ASCII file

GET TRANSLATE 413

Overview

GET TRANSLATE creates a working data file from files produced by other software applica-
tions. Supported formats are 1-2-3, Symphony, Multiplan, Excel, dBASE II, dBASE III,
dBASE IV, and tab-delimited ASCII files.

Options

Variable Subsets. You can use the DROP and KEEP subcommands to specify variables to omit
or retain in the resulting working data file.

Variable Names. You can rename variables as they are translated using the RENAME sub-
command.

Variable Map. To confirm the names and order of the variables in the working data file, use
the MAP subcommand. MAP displays the variables in the working data file and their corre-
sponding names in the other application.

Spreadsheet Files. You can use the RANGE subcommand to translate a subset of cells from a
spreadsheet file. You can use the FIELDNAMES subcommand to translate field names in the
spreadsheet file to variable names.

Basic Specification

• The basic specification is FILE with a file specification enclosed in apostrophes.

• If the file’s extension is not the default for the type of file you are reading, TYPE must also
be specified.

Subcommand Order

Subcommands can be named in any order.

Operations

GET TRANSLATE replaces an existing working data file.

Spreadsheets

A spreadsheet file suitable for this program should be arranged so that each row represents a
case and each column a variable.

• By default, the new working data file contains all rows and up to 256 columns from Lotus
1-2-3, Symphony, or Excel, or up to 255 columns from Multiplan.

• By default, GET TRANSLATE uses the column letters as variable names in the working
data file.

414 GET TRANSLATE

• The first row of a spreadsheet or specified range may contain field labels immediately fol-
lowed by rows of data. These names can be transferred as SPSS variable names (see the
FIELDNAMES subcommand on p. 417).

• The current value of a formula is translated to the working data file.
• Blank, ERR, and NA values in 1-2-3 and Symphony and error values such as #N/A in

Excel are translated as system-missing values in the working data file.

• Hidden columns and cells in 1-2-3 Release 2 and Symphony files are translated and copied
into the working data file.

• Column width and format type are transferred to the dictionary of the working data file.

• The format type is assigned from values in the first data row. By default, the first data row is
row 1. If RANGE is specified, the first data row is the first row in the range. If FIELDNAMES
is specified, the first data row follows immediately after the single row containing field
names.

• If a cell in the first data row is empty, the variable is assigned the global default format
from the spreadsheet.

The formats from 1-2-3, Symphony, Excel, and Multiplan are translated as follows:

• If a string is encountered in a column with numeric format, it is converted to the system-
missing value in the working data file.

• If a numeric value is encountered in a column with string format, it is converted to a blank
in the working data file.

• Blank lines are translated as cases containing the system-missing value for numeric vari-
ables and blanks for string variables.

• 1-2-3 and Symphony date and time indicators (shown at the bottom of the screen) are not
transferred from WKS, WK1, WRK, or WR1 files.

1-2-3/Symphony Excel SYLK SPSS

Fixed 0.00; #,##0.00 Fixed F
 0; #,##0 Integer F
Scientific 0.00E+00 Exponent E
Currency $#,##0_);... $ (dollar) DOLLAR
,(comma) COMMA
General General General F
+/ - * (bargraph) F
Percent 0%; 0.00% Percent PCT
Date m/d/yy;d-mmm-yy... DATE
Time h:mm; h:mm:ss... TIME
Text/Literal F
Label Alpha String

GET TRANSLATE 415

Databases

Database files are logically very similar to SPSS-format data files.

• By default, all fields and records from dBASE II, dBASE III, or dBASE IV files are in-
cluded in the working data file.

• Field names are automatically translated into variable names. If the FIELDNAMES sub-
command is used with database files, it is ignored.

• Field names to be translated should comply with SPSS-format variable naming conven-
tions. Names longer than eight characters are truncated. If a field name is not unique in
the first eight characters, the field will be dropped.

• Colons used in dBASE II field names are translated to underscores.

• Records in dBASE II, dBASE III, or dBASE IV that have been marked for deletion but
that have not actually been purged are included in the working data file. To differentiate
these cases, GET TRANSLATE creates a new string variable D_R, which contains an aster-
isk for cases marked for deletion. Other cases contain a blank for D_R.

• Character, floating, and numeric fields are transferred directly to variables. Logical fields
are converted into string variables. Memo fields are ignored.

dBASE formats are translatedas follows:

Tab-delimited ASCII Files

Tab-delimited ASCII files are simple spreadsheets produced by a text editor, with the col-
umns delimited by tabs and rows by carriage returns. The first row is usually occupied by
column headings.

• By default all columns of all rows are treated as data. Default variable names VAR1, VAR2,
and so on are assigned to each column. The data type (numeric or string) for each variable
is determined by the first data value in the column.

• If FIELDNAMES is specified, the program reads in the first row as variable names and de-
termines data type by the values in from the second row.

• Any value that contains non-numeric characters is considered a string value. Dollar and
date formats are not recognized and are treated as strings. When string values are encoun-
tered for a numeric variable, they are converted to the system-missing value.

• For numeric variables, the assigned format is F8.2 or the format of the first data value in
the column, whichever is wider. Values that exceed the defined width are rounded for dis-
play, but the entire value is stored internally.

dBASE SPSS

Character String
Logical String
Date Date
Numeric Number
Floating Number
Memo Ignored

416 GET TRANSLATE

• For string variables, the assigned format is A8 or the format of the first data value in the
column, whichever is wider. Values that exceed the defined width are truncated.

• ASCII data files delimited by space (instead of tabs) or in fixed format should be read by
DATA LIST.

Limitations

The maximum number of variables that can be translated into the working data file depends
on the maximum number of variables the other software application can handle:

FILE Subcommand

FILE names the file to read. The only specification is the name of the file.

• On some systems, file specifications should be enclosed in quotes or apostrophes.

Example
GET TRANSLATE FILE=’PROJECT.WKS’.

• GET TRANSLATE creates a working data file from the 1-2-3 Release 1.0 spreadsheet with
the name PROJECT.WKS.

• The working file contains all rows and columns and uses the column letters as variable
names.

• The format for each variable is determined by the format of the value in the first row of
each column.

TYPE Subcommand

TYPE indicates the format of the file.

• TYPE can be omitted if the file extension named on FILE is the default for the type of file
you are reading.

• The TYPE subcommand takes precedence over the file extension.

• You can create a Lotus format file in Multiplan and translate it to an working data file by
specifying WKS on TYPE.

Application Maximum
 variables

1-2-3 256
Symphony 256
Multiplan 255
Excel 256
dBASE IV 255
dBASE III 128
dBASE II 32

GET TRANSLATE 417

WK Any Lotus 1-2-3 or Symphony file.

WK1 1-2-3 Release 2.0.

WKS 1-2-3 Release 1A.

WR1 Symphony Release 2.0.

WRK Symphony Release 1.0.

SLK Microsoft Excel and Multiplan saved in SYLK (symbolic link) format.

XLS Microsoft Excel, Release 4.0 or earlier. (For Excel 5 or later, user GET CAPTURE.)

DBF All dBASE files.

TAB Tab-delimited ASCII data file.

Example
GET TRANSLATE FILE=’PROJECT.OCT’ /TYPE=SLK.

• GET TRANSLATE creates a working data file from the Multiplan file PROJECT.OCT.

FIELDNAMES Subcommand

FIELDNAMES translates spreadsheet field names into variable names.

• FIELDNAMES can be used with spreadsheet and tab-delimited ASCII files only. FIELDNAMES
is ignored when used with database files.

• Each cell in the first row of the spreadsheet file (or the specified range) must contain a
field name. If a column does not contain a name, the column is dropped.

• Field names to be translated should conform to SPSS-format naming conventions. They
must be unique in the first eight characters and cannot have leading blanks.

• Field names that exceed eight characters are truncated.

• If two or more columns in the spreadsheet have the same field name, digits are appended
to all field names after the first, making them unique.

• Illegal characters in field names are changed to underscores in this program.
• If the spreadsheet file uses reserved words (ALL, AND, BY, EQ, GE, GT, LE, LT, NE, NOT,

OR, TO, or WITH) as field names, GET TRANSLATE appends a dollar sign ($) to the vari-
able name. For example, columns named GE, GT, EQ, and BY will be renamed GE$, GT$,
EQ$, and BY$ in the working data file.

Example
GET TRANSLATE FILE=’MONTHLY.WRK’ /FIELDNAMES.

• GET TRANSLATE creates a working data file from a Symphony 1.0 spreadsheet. The first
row in the spreadsheet contains field names that are used as variable names in the working
file.

418 GET TRANSLATE

RANGE Subcommand

RANGE translates a specified set of cells from a spreadsheet file.

• RANGE cannot be used for translating database files.

• For 1-2-3 or Symphony, specify the beginning of the range with a column letter and row
number followed by two periods and the end of the range with a column letter and row
number, as in A1..K14.

• For Multiplan spreadsheets, specify the beginning and ending cells of the range separated
by a colon, as in R1C1:R14C11.

• For Excel files, specify the beginning column letter and row number, a colon, and the end-
ing column letter and row number, as in A1:K14.

• You can also specify the range using range names supplied in Symphony, 1-2-3, or
Multiplan.

• If you specify FIELDNAMES with RANGE, the first row of the range must contain field names.

Example
GET TRANSLATE FILE=’PROJECT.WKS’ /FIELDNAMES /RANGE=D3..J279.

• GET TRANSLATE creates an SPSS working data file from the 1-2-3 Release 1A file
PROJECT.WKS.

• The field names in the first row of the range (row 3) are used as variable names.

• Data from cells D4 through J279 are transferred to the working data file.

DROP and KEEP Subcommands

DROP and KEEP are used to copy a subset of variables into the working data file. DROP spec-
ifies the variables not to copy into the working file. KEEP specifies variables to copy. Vari-
ables not specified on KEEP are dropped.

• DROP and KEEP cannot precede the FILE or TYPE subcommands.
• DROP and KEEP specifications use variable names. By default, this program uses the col-

umn letters from spreadsheets and the field names from databases as variable names.

• If FIELDNAMES is specified when translating from a spreadsheet, the DROP and KEEP
subcommands must refer to the field names, not the default column letters.

• Variables can be specified in any order. Neither DROP nor KEEP affects the order of vari-
ables in the resulting file. Variables are kept in their original order.

• If a variable is referred to twice on the same subcommand, only the first mention of the
variable is recognized.

• Multiple DROP and KEEP subcommands are allowed; the effect is cumulative. Specifying
a variable named on a previous DROP or not named on a previous KEEP results in an error
and the command is not executed.

• If you specify both RANGE and KEEP, the resulting file contains only variables that are
both within the range and specified on KEEP.

• If you specify both RANGE and DROP, the resulting file contains only variables within the
range and excludes those mentioned on DROP, even if they are within the range.

GET TRANSLATE 419

Example
GET TRANSLATE FILE=’ADDRESS.DBF’ /DROP=PHONENO, ENTRY.

• GET TRANSLATE creates an SPSS working data file from the dBASE file ADDRESS.DBF,
omitting the fields named PHONENO and ENTRY.

Example
GET TRANSLATE FILE=’PROJECT.OCT’ /TYPE=WK1 /FIELDNAMES
/KEEP=NETINC, REP, QUANTITY, REGION, MONTH, DAY, YEAR.

• GET TRANSLATE creates a working data file from the 1-2-3 Release 2.0 file called
PROJECT.OCT.

• The subcommand FIELDNAMES indicates that the first row of the spreadsheet contains
field names, which will be translated into variable names in the working file.

• The subcommand KEEP translates columns with the field names NETINC, REP, QUANTITY,
REGION, MONTH, DAY, and YEAR to the working file.

RENAME Subcommand

RENAME changes the names of variables as they are copied into the working data file.

• The specification on RENAME is a list of old variable names, an equals sign, and a list of
new variable names. The same number of variables must be specified on both lists, and
you can use keyword TO. The entire specification must be enclosed in parentheses.

• Alternatively, you can specify each old variable name individually, followed by an equals
sign and the new variable name. Multiple sets of variable specifications are allowed. The
parentheses around each set of specifications are optional.

• Name changes take place in one operation. Therefore, variable names can be exchanged
between two variables.

• Variables cannot be renamed to scratch variables.

• Multiple RENAME subcommands are allowed.

Example
GET TRANSLATE FILE=’PROJECT.WK’
 /RENAME (A TO D = LNAME FNAME AGE SEX).

• RENAME changes the first four column letters to LNAME, FNAME, AGE, and SEX in the
SPSS working data file.

MAP Subcommand

MAP displays a list of the variables in the working data file and their corresponding names
in the other application.

• The only specification is the keyword MAP. There are no additional specifications.

• Multiple MAP subcommands are allowed. Each MAP subcommand maps the results of
subcommands that precede it; results of subcommands that follow it are not mapped.

420 GET TRANSLATE

Example
GET TRANSLATE FILE=’ADDRESS.DBF’ /DROP=PHONENO, ENTRY /MAP.

• MAP is specified to confirm that variables PHONENO and ENTRY have been dropped.

421

GRAPH

 This command is available only on systems with high-resolution graphics capabilities.

GRAPH

 [/TITLE=’line 1’ [’line 2’]]
 [/SUBTITLE=’line 1’]
 [/FOOTNOTE=’line 1’ [’line 2’]]

 {/BAR [{(SIMPLE) }]=function/variable specification† }
 {(GROUPED) }
 {(STACKED) }
 {(RANGE) }

 {/LINE [{(SIMPLE) }]=function/variable specification† }
 {(MULTIPLE) }
 {(DROP) }
 {(AREA) }
 {(DIFFERENCE)}

 {/PIE }

 {/PARETO[{(CUM) }][{(SIMPLE) }]=function/variable specification†}
 {(NOCUM)} {(STACKED)}

 {/HILO[{(SIMPLE) }]=function/variable specification†† }
 {(GROUPED)}

 {/HISTOGRAM [(NORMAL)]=var }

 {/SCATTERPLOT[{ (BIVARIATE)}]=variable specification††† }
 { (OVERLAY) }
 { (MATRIX) }
 { (XYZ) }

 {/ERRORBAR[{(CI[{95}]) }]={var [var var ...][BY var]} }
 {n } {var BY var BY var }
 {(STERRIR[{12}])}
 {n }
 {(STDDEV[{2}]) }
 {n}

 [/TEMPLATE=file]

 [/MISSING=[{ LISTWISE**}][{ NOREPORT**}][{EXCLUDE**}]]
 {VARIABLE }] {REPORT } {INCLUDE }

** Default if the subcommand is omitted.

422 GRAPH

The following table shows all possible function/variable specifications for BAR, LINE, PIE,
BLOCK, and PARETO subcommands. For special restrictions, see individual subcommands.
In the table, valuef refers to the value function, countf refers to the count functions, and sumf
refers to the summary functions.

The following table shows all possible function/variable specifications for the HILO sub-
command. Categorical variables for simple high-low-close charts must be dichotomous
or trichotomous.

Variable specification is required on all types of scatterplots. The following table shows all
possible specifications:

Value function:

The VALUE function yields the value of the specified variable for each case. It always pro-
duces one bar, point, or slice for each case. The VALUE(X) specification implies the value of
X by n, where n is the number of each case. You can specify multiple variables, as in:

GRAPH /BAR = VALUE(SALARY BONUS BENEFIT).

This command draws a bar chart with the values of SALARY, BONUS, and BENEFIT for each
employee (case). A BY variable can be used to supply case labels, but it does not affect the
layout of the chart, even if values of the BY variable are the same for multiple cases.

Simple Bar, Simple or Area
Line, Pie, Simple High-Low,
and Simple Pareto Charts

Grouped or Stacked Bar, Multiple,
Drop or Difference Line, and Stacked
Pareto Charts

Categorical Charts

[countf BY] var [countf BY] var BY var
sumf(var) BY var sumf(var) BY var BY var
sumf(varlist) sumf(varlist) BY var
sumf(var) sumf(var)... sumf(var) sumf(var)... BY var

Noncategorical
Charts

valuef(var) [BY var] valuef(varlist) [BY var]

Simple Range Bar and Simple High-
Low-Close Charts

Clustered Range Bar and Clustered High-
Low-Close Charts

[countf BY] var (sumf(var) sumf(var) [sumf(var)]) (...) ...BY var
sumf(var) sumf(var) sumf(var) BY var sumf(var) sumf(var) [sumf(var)] BY var BY var
sumf(var) BY var BY var
valuef(varlist) [BY var] valuef(varlist) (...) ... [BY var]

BIVARIATE var WITH var [BY var] [BY var ({NAME })]
 {IDENTIFY}

OVERLAY varlist WITH varlist [(PAIR)] [BY var ({NAME })]
 {IDENTIFY}

MATRIX varlist [BY var] [BY var ({NAME })]
 {IDENTIFY}

XYZ var WITH var WITH var [BY var] [BY var ({NAME })]
 {IDENTIFY}

GRAPH 423

Aggregation functions:

Two groups of aggregation functions are available: count functions and summary functions.

Count functions:

COUNT Frequency of cases in each category.

PCT Frequency of cases in each category expressed as a percentage of the whole.

CUPCT Cumulative percentage sorted by category value.

CUFREQ Cumulative frequency sorted by category value.

• Count functions yield the count or percentage of valid cases within categories determined
by one or more BY variables, as in

GRAPH /BAR (SIMPLE) = PCT BY REGION.

• Count functions do not have any arguments.

• You can omit the keyword COUNT and subsequent keyword BY and specify just a vari-
able, as in

GRAPH /BAR = DEPT.

This command is interpreted as

GRAPH /BAR = COUNT BY DEPT.

Summary functions:

MINIMUM Minimum value of the variable.

MAXIMUM Maximum value of the variable.

N Number of cases for which the variable has a nonmissing value.

SUM Sum of the values of the variable.

CUSUM Sum of the summary variable accumulated across values of the category
variable.

MEAN Mean.

STDDEV Standard deviation.

VARIANCE Variance.

MEDIAN Median.

GMEDIAN Group median.

MODE Mode.

PTILE(x) Xth percentile value of the variable. X must be greater than 0 and less than 100.

PLT(x) Percentage of cases for which the value of the variable is less than x.

PGT(x) Percentage of cases for which the value of the variable is greater than x.

NLT(x) Number of cases for which the value of the variable is less than x.

424 GRAPH

NGT(x) Number of cases for which the value of the variable is greater than x.

PIN(x1,x2) Percentage of cases for which the value of the variable is greater than or
equal to x1 and less than or equal to x2. x1 cannot exceed x2.

NIN(x1,x2) Number of cases for which the value of the variable is greater than or equal
to x1 and less than or equal to x2. x1 cannot exceed x2.

• Summary functions are usually used with summary variables (variables that record con-
tinuous values, like age or expenses). To use a summary function, specify the name of one
or more variables in parentheses after the name of the function, as in

GRAPH /BAR = SUM(SALARY) BY DEPT.

• You can specify multiple summary functions for more chart types. For example, the same
function can be applied to a list of variables, as in

GRAPH /BAR = SUM(SALARY BONUS BENEFIT) BY DEPT.

This syntax is equivalent to

GRAPH /BAR = SUM(SALARY) SUM(BONUS) SUM(BENEFIT) BY DEPT.

Different functions can be applied to the same variable, as in

GRAPH /BAR = MEAN(SALARY) MEDIAN(SALARY) BY DEPT.

Different functions and variables can be combined, as in

GRAPH /BAR = MIN(SALARY81) MAX(SALARY81)
 MIN(SALARY82) MAX(SALARY82) BY JOBCAT.

The effect of multiple summary functions on the structure of the charts is illustrated under
the discussion of specific chart types.

Overview

GRAPH generates a high-resolution chart by computing statistics from variables in the work-
ing data file and constructing the chart according to your specification. The chart can be a bar
chart, pie chart, line chart, error bar chart, high-low-close histogram, scatterplot, or Pareto
chart. The chart is displayed where high-resolution display is available and can be edited with
a chart editor and saved as a chart file.

Options

Titles and Footnotes. You can specify a title, subtitle, and footnote for the chart using the
TITLE, SUBTITLE, and FOOTNOTE subcommands.

Chart Type. You can request a specific type of chart using the BAR, LINE, PIE, ERRORBAR,
HILO, HISTOGRAM, SCATTERPLOT, or PARETO subcommand.

Chart Content. You can specify an aggregated categorical chart using various aggregation
functions or a nonaggregated categorical chart using the VALUE function (see pp. 422–424
for a list of available functions).

Templates. You can specify a template, using the TEMPLATE subcommand, to override the de-
fault chart attribute settings on your system.

GRAPH 425

Basic Specification

The basic specification is a chart type subcommand. By default, the title of the generated
chart will have no title, subtitle, or footnote.

Subcommand Order

Subcommands can be specified in any order.

Syntax Rules

• Only one chart type subcommand can be specified.

• The function/variable specification is required for all subtypes of bar, line, error bar, hilo,
and Pareto charts; the variable specification is required for histograms and all subtypes of
scatterplots.

• The function/variable or variable specifications should match the subtype keywords. If
there is a discrepancy, GRAPH produces the default chart for the function/variable or vari-
able specification regardless of the specified keyword.

Operations

• GRAPH computes aggregated functions to obtain the values needed for the requested chart
and calculates an optimal scale for charting.

• The chart title, subtitle, and footnote are assigned as they are specified on TITLE, SUBTITLE,
and FOOTNOTE subcommands. If you do not use these subcommands, the chart title subti-
tle, and footnote are null. The split-file information is displayed as a subtitle if split-file is
in effect,.

• GRAPH creates labels that provide information on the source of the values being plotted.
Labeling conventions vary for different subtypes. Where variable or value labels are de-
fined in the working data file, GRAPH use the labels; otherwise, variable names or values
are used.

Limitations

Categorical charts cannot display fewer than 2 or more than 3000 categories.

Example

GRAPH /BAR=SUM (MURDER) BY CITY.

• This command generates a simple (default) bar chart showing the number of murders in
each city.

• The category axis (x-axis) labels are defined by the value labels (or values if no value
labels exit) of the variable CITY.

426 GRAPH

• The default span (2) and sigma value (3) are used.

• Since no BY variable is specified, the x-axis is labeled by sequence numbers.

TITLE, SUBTITLE, and FOOTNOTE Subcommands

TITLE, SUBTITLE, and FOOTNOTE specify lines of text placed at the top or bottom of the
chart.

• One or two lines of text can be specified for TITLE or FOOTNOTE, and one line of text for
SUBTITLE.

• Each line of text must be enclosed in apostrophes or quotation marks. The maximum
length of any line is 72 characters.

• The default font sizes and types are used for the title, subtitle, and footnote.

• By default, the title, subtitle, and footnote are left-aligned with the y-axis.

• If you do not specify TITLE, the default title, subtitle, and footnote are null, which leaves
more space for the chart. If split-file processing is in effect, the split-file information is
provided as a default subtitle.

Example
GRAPH TITLE = ’Murder in Major U.S. Cities’
 /SUBTITLE=’per 100,000 people’
 /FOOTNOTE=’The above data was reported on August 26, 1987’
 /BAR=SUM(MURDER) BY CITY.

BAR Subcommand

BAR creates one of five types of bar charts using keywords SIMPLE, COMPOSITIONAL,
GROUPED, STACKED, or RANGE.

• Only one keyword can be specified, and it must be specified in the parentheses.

• When no keyword is specified, the default is either SIMPLE or GROUPED, depending on
the type of function/variable specification.

SIMPLE Simple bar chart. This is the default if no keyword is specified on the
BAR subcommand and the variables define a simple bar chart. A sim-
ple bar chart can be defined by a single summary or count function and
a single BY variable, or by multiple summary functions and no BY
variable (see Figure 11 to Figure 14).

GROUPED Clustered bar chart. A clustered bar chart is defined by a single func-
tion and two BY variables, or by multiple functions and a single BY
variable. This is the default if no keyword is specified on the BAR sub-
command and the variables define a clustered bar chart (see Figure 15
to Figure 18).

STACKED Stacked bar chart. A stacked bar chart displays a series of bars, each
divided into segments stacked one on top of the other. The height of
each segment represents the value of the category. Like a clustered bar

GRAPH 427

chart, it is defined by a single function and two BY variables or by mul-
tiple functions and a single BY variable (see Figure 19 to Figure 21).

RANGE Range bar chart. A range bar chart displays a series of floating bars.
The height of each bar represents the range of the category and its po-
sition in the chart indicates the minimum and maximum values. A
range bar chart can be defined by a single function and two BY vari-
ables or by multiple functions and a single BY variable. If a variable
list is used as the argument for a function, the list must be of an even
number. If a second BY variable is used to define the range, the vari-
able must be dichotomous (see Figure 22 to Figure 24).

Figure 11 /BAR=COUNT BY JOBCAT

Specification: count_function BY var
 or: sum_function(var) BY var

y-axis title: fn name [+fn var label]

y-axis labels: fn value scale

x-axis title: BY var label

x-axis labels: BY var value labels

Each bar shows the number of cases in the indicated job categories.

Figure 12 /BAR=MEAN(SALBEG, SALNOW)

Specification: sum_function (varlist)

y-axis title: fn name

y-axis labels: fn value scale

x-axis title: none

x-axis labels: fn var labels

One bar is produced for each variable, representing the summary function of that variable
across all cases.

428 GRAPH

Figure 13 /BAR=MEAN(SALBEG) MEDIAN(SALBEG) MEAN(SALNOW) MEDIAN(SALNOW)

Specification: sum_function list

y-axis title: Summary

y-axis labels: fn value scale

x-axis title: none

x-axis labels: fn names +var names

One bar is produced for each summary function. The argument can be the same or different.

Figure 14 /BAR=VALUE(SALNOW) BY ID

Specification: value_function(var) [BY var]

y-axis title: value + var label

y-axis labels: fn value scale

x-axis title: BY var value labels

x-axis labels: BY var label

Each bar shows the value of a single case. If no BY variable is specified, the x-axis title will
be Case Number and the x-axis labels will be case numbers.

GRAPH 429

Figure 15 /BAR=COUNT BY JOBCAT BY SEX
Specification: count_function BY var1 BY var2
 or: sum_function(var) BY var1 BY var2

Legend title: 2nd BY var label

Legend labels: 2nd BY var value labels

y-axis title: fn name [+var label]

y-axis labels: fn value scale

x-axis title: 1st BY var label

x-axis labels: 1st BY value labels

Cases are broken down into categories by VAR1 and then by VAR2. Each bar shows the valid
number of cases or the summary function value within each subcategory.

Figure 16 /BAR=MEAN(SALBEG SALNOW) BY JOBCAT

Specification: sum_function (varlist) BY var

Legend title: none

Legend labels: fn var labels

y-axis title: fn name

y-axis labels: fn value scale

x-axis title: var label

x-axis labels: BY value labels

The variables are broken down into categories. Within a category, each bar shows the value
of the function for each variable.

Figure 17 /BAR=MEDIAN(SALNOW) MEAN(SALNOW) BY SEX

Specification: sum_function list BY var

Legend title: fn var label (if only one fn var)

Legend labels: fn name

y-axis title: none

y-axis labels: fn value scale

x-axis title: BY var label

x-axis labels: BY var value label

The variable is broken down into categories. Within a category, each bar shows a different
function of the same variable.

430 GRAPH

Figure 18 /BAR=VALUE(SALBEG SALNOW) BY ID

Specification: value_function(varlist) [BY var]

Legend title: none

Legend labels: fn var name

y-axis title: value

y-axis labels: values

x-axis title: BY var label

x-axis labels: BY var value label

Each group shows one case identified by the category variable following BY. Each bar within
the case shows the value of one variable for that case.

Specification: count_function BY var1 BY var2
 or: sum_function(var) BY var1 BY var2

Legend title: 2nd BY var label

Legend labels: 2nd BY var value labels

y-axis title: fn name [+fn var label]

y-axis labels: fn value scale

x-axis title: 1st BY var label

x-axis labels: 1st BY var value labels

Each bar represents one subcategory defined by the two category variables. The bars are
stacked within each category defined by the first category variable.

Figure 19 /BAR(STACKED)=COUNT BY JOBCAT BY SEX

Figure 20 /BAR(STACKED)=SUM(THEFT AUTO BURGLARY) BY YEAR

Specification: sum_function (varlist) BY var

Legend title: none

Legend labels: fn var labels

y-axis title: fn name

y-axis labels: fn value scale

x-axis title: BY var label

x-axis labels: BY var value labels

Each bar represents the function value of one variable broken down into categories. Bars
within each category are stacked.

GRAPH 431

Figure 21 /BAR(STACKED)=VALUE(SALNOW FRINGE) BY ID

Specification: value_function(varlist)[BY var]

Legend title: none

Legend labels: var labels

y-axis title: fn name

y-axis labels: fn value scale

x-axis title: BY var label

x-axis labels: BY var value labels

Each bar shows the value of each variable for the indicated case. If no BY variable is speci-
fied, x-axis is labeled by case numbers and its title is Case Number.

Figure 22 /BAR(RANGE)=COUNT BY JOBCAT BY RACE

Specification: count_function BY var1 BY var2

Legend title: var2 label

Legend labels: var2 value labels

y-axis title: fn name

y-axis labels: fn value scale

x-axis title: var1 label

x-axis labels: var1 value labels

The height of each bar represents the difference between the two categories defined by var2,
which must be dichotomous. The direction of difference, that is, whether nonwhite employ-
ees in each category defined by var1 are more or less, is not shown.

Figure 23 /BAR(RANGE)=VALUE(SWI_HI SWI_LO) BY DAY

Specification: value_function(var1 var2)[BY var]

Legend title: none

Legend labels: var1 label–var2 label

y-axis title: none

y-axis labels: fn value scale

x-axis title: BY var label

x-axis labels: BY var value labels

The height of each bar represents the difference between the high and the low values of the
day. The position of each bar shows the fluctuation over the two-week period.

432 GRAPH

LINE Subcommand

LINE creates one of five types of line charts using keywords SIMPLE, MULTIPLE, DROP,
AREA, or DIFFERENCE.
• Only one keyword can be specified, and it must be specified in the parentheses.

• When no keyword is specified, the default is either SIMPLE or MULTIPLE, depending on
the type of function/variable specification.

SIMPLE Simple line chart. A simple line chart is defined by a single function and a
single BY variable or by multiple functions and no BY keyword. This is the
default if no keyword is specified on LINE and the data define a simple line
(see Figure 25 to Figure 27).

MULTIPLE Multiple line chart. A multiple line chart is defined by a single function and
two BY variables or by multiple functions and a single BY variable. This is
the default if no keyword is specified on LINE and the data define a multiple
line (see Figure 28 to Figure 30).

DROP Drop-line chart. A drop-line chart shows the difference between two or more
fluctuating variables. It is defined by a single function and two BY variables or
by multiple functions and a single BY variable (see Figure 31 to Figure 34).

AREA Area line chart. An area line chart fills the area beneath each line with a color
or pattern. When multiple lines are specified, the second line is the sum of
the first and second variables, the third line is the sum of the first, second,
and third variables, and so on. The specification is the same as that for a sim-
ple or multiple line chart. Figure 35 to Figure 37 show area line charts with
multiple lines.

DIFFERENCE Difference line chart. A difference line chart fills the area between a pair of
lines. It highlights the difference between two variables or two groups. A dif-
ference line chart is defined by a single function and two BY variables or by
two summary functions and a single BY variable. If a second BY variable is

Specification: sum_function (varlist) BY var

Legend title: fn name

Legend labels: pairs of var labels

y-axis title: none

y-axis labels: fn value scale

x-axis title: BY var label

x-axis labels: BY var value labels

Figure 24 /BAR(RANGE)=MEAN(SWI_HI SWI_LO GER_HI GER_LO CAN_HI CAN_LO) BY

The variable list must contain an even number of variables. Each pair of variables is plotted
as a separate series.

GRAPH 433

used to define the two groups, the variable must be dichotomous (see Figure
38 to Figure 41).

Figure 25 /LINE=COUNT BY TIME

Specification: count_function BY var
 or: sum_function(var) BY var

y-axis title: fn name [+fn var label]

y-axis labels: fn value scale

x-axis title: BY var label

x-axis labels: BY var value labels

Each point on the line represents the number of valid cases for one category.

Figure 26 /LINE=MEAN(SPRING SUMMER FALL WINTER)

Specification: sum_function (varlist)

y-axis title: fn name

y-axis labels: fn value scale

x-axis title: none

x-axis labels: fn var labels

Each point on the line shows the function value for one variable across all valid cases.

Figure 27 /LINE=VALUE(POUND) BY DAY

Specification: value_function (var) [BY var]

y-axis title: value + var name

y-axis labels: value labels

x-axis title: BY var label

x-axis label: BY var value labels

Each point on the line shows the value of a single case. If a BY variable is not specified, the
x-axis title will be Case Number and the x-axis labels will be the number of each case.

434 GRAPH

Figure 28 /LINE=COUNT BY TIME BY SEX

Specification: count_function BY var1 BY var2
 or: sum_function(var) BY var1 BY var2

Legend title: 2nd BY var label

Legend labels: 2nd BY var value labels

y-axis title: fn name [+fn var label]

y-axis labels: fn value scale

x-axis title: 1st BY var label

x-axis labels: 1st BY var value labels

Each line represents one category defined by the second BY variable. Each point on the line
shows the number of valid cases for one category defined by the first BY variable. Missing
values are indicated by unconnected lines.

Figure 29 /LINE=MEAN(THEFT AUTO BURGLARY) BY YEAR

Specification: sum_function (varlist) BY var

Legend title: none

Legend labels: fn var labels

y-axis title: fn name

y-axis labels: fn value scale

x-axis title: BY var label

x-axis labels: BY var value labels

Each line represents one variable. Each point on the line shows the value for one category.

Figure 30 /LINE=VALUE(SALBEG SALNOW) BY ID

Specification: value_function (varlist) [BY var]

Legend title: none

Legend labels: var labels

y-axis title: value

y-axis labels: values

x-axis title: BY var label

x-axis labels: BY var value labels

Each line represents one variable. Each point shows the value of each case for the variable.
If no BY variable is specified, the x-axis title will be Case Number and the x-axis labels the
number of each individual case.

GRAPH 435

Figure 31 LINE(DROP)=NEAN (SALBEG SALNOW) BY SEXRACE

Specification: sum_function (varlist) BY var

Legend title: none

Legend labels: var labels

y-axis title: fn name

y-axis labels: fn value scale

x-axis title: BY var label

x-axis labels: BY var value labels

Each line represents the difference in each sex and race category between summary function
values computed from the two variables. If more variables are specified, each will be repre-
sented by a symbol on the lines.

Figure 32 LINE(DROP)=MEAN(SALNOW) BY SEXRACE BY JOBCAT

Specification: sum_function BY var BY var

Legend title: 2nd BY var label

Legend labels: 2nd BY var value labels

y-axis title: fn name[+var label]

y-axis labels: fn value scale

x-axis title: 1st BY var label

x-axis labels: 1st BY var value labels

Each line represents the difference in each sex and race category between job categories.

Figure 33 LINE(DROP)=COUNT BY JOBCAT BY SEX

Specification: count_function BY var1 BY var2

Legend title: 2nd BY var label

Legend labels: 2nd BY var value labels

y-axis title: fn name

y-axis labels: fn value scale

x-axis title: 1st BY var label

x-axis labels: 1st BY var value labels

Each line represents the difference in number of valid cases in each job category between
male and female.

436 GRAPH

Figure 34 LINE(DROP)=VALUE(SALBEG SALNOW) BY ID

Specification: value_function (varlist) [BY var]

Legend title: none

Legend labels: var labels

y-axis title: fn name

y-axis labels: value scale

x-axis title: BY var label

x-axis labels: BY var value labels

If no BY variable is specified, the x-axis title is Case Number and the x-axis labels are the
numbers of cases.

Figure 35 /LINE(AREA)=COUNT BY TIME

Specification: count_function BY var
 or: sum_function(var) BY var

y-axis title: fn name [+fn var label]

y-axis labels: fn value scale

x-axis title: BY var label

x-axis labels: BY var value labels

The area shows the number of valid cases for categories defined by the BY variable.

Figure 36 /LINE(AREA)=COUNT BY TIME BY SEX
Specification: count_function BY var1 BY var2
 or: sum_function(var) BY var1 BY var2

Legend title: 2nd BY var label

Legend labels: 2nd BY var value labels

y-axis title: fn name [+fn var label]

y-axis labels: fn value scale

x-axis title: 1st BY var label

x-axis labels: 1st BY var value labels

The two areas respectively represent the categories defined by the second BY variable.

GRAPH 437

Figure 37 /LINE(AREA)=SUM(VIOLENT PROPERTY) BY YEAR

Specification: sum_function (varlist) BY var

Legend title: none

Legend labels: fn var labels

y-axis title: fn name

y-axis labels: fn value scale

x-axis title: BY var label

x-axis labels: BY var value labels

Each area represents one function variable.

Figure 38 LINE(DIFFERENCE)=MEAN(SALBEG SALNOW) BY TIME

Specification: sum_function (varlist) BY var

Legend title: fn name

Legend labels: fn var labels

y-axis title: none

y-axis labels: fn value scale

x-axis title: BY var label

x-axis labels: BY var value labels

Figure 39 LINE(DIFFERENCE)=MEAN(SALNOW) BY TIME BY SEX

Specification: sum_function(var) BY var BY var

Legend title: 2nd BY var label

Legend labels: 2nd BY var value labels

y-axis title: fn name [+var label]

y-axis labels: fn value scale

x-axis title: 1st BY var label

x-axis labels: 1st BY var value labels

The second BY variable must be dichotomous.

438 GRAPH

PIE Subcommand

PIE creates pie charts. A pie chart can be defined by a single function and a single BY variable
or by multiple summary functions and no BY variable. A pie chart divides a circle into slices.
The size of each slice indicates the value of the category relative to the whole (see Figure 42
to Figure 44). Cumulative functions (CUPCT, CUFREQ, and CUSUM) are inappropriate for
pie charts but are not prohibited. When specified, all cases except those in the last category
are counted more than once in the resulting pie.

Figure 40 LINE(DIFFERENCE)=COUNT BY TIME BY SEX

Specification: count_function BY var BY var

Legend title: 2nd BY var label

Legend labels: 2nd BY var value labels

y-axis title: fn name

y-axis labels: fn value scale

x-axis title: 1st BY var label

x-axis labels: 1st BY var value labels

The second BY variable must be dichotomous.

Figure 41 LINE(DIFFERENCE)=VALUE(SALBEG SALNOW) BY TIME

Specification: value_function(var1 var2 [BY var]

Legend title: 2nd BY var label

Legend labels: 2nd BY var value labels

y-axis title: fn name

y-axis labels: fn value scale

x-axis title: 1st BY var label

x-axis labels: 1st BY var value labels

If no BY variable is specified, the x-axis title is Case Number and x-axis labels are the case
numbers.

GRAPH 439

Figure 42 /PIE=COUNT BY JOBCAT

Specification: count_function BY var

Labels: BY var value labels

Each pie slice shows proportionally the number of cases in each category defined by the BY
variable.

Figure 43 /PIE=SUM(THEFT AUTO BURGLARY)

Specification: summary_function(varlist)

 Labels: fn var labels

Each pie slice proportionally shows the function value for one variable.

440 GRAPH

HILO Subcommand

HILO creates one of two types of high-low-close charts using keywords SIMPLE or GROUPED.
High-low-close charts show the range and the closing (or average) value of a series.

• Only one keyword can be specified.

• When a keyword is specified, it must be specified in the parentheses.
• When no keyword is specified, the default is either SIMPLE or GROUPED, depending on

the type of function/variable specification.

SIMPLE Simple high-low-close chart. A simple high-low-close chart can be defined
by a single summary or count function and two BY variables, or by three sum-
mary functions and one BY variable, or by three values with one or no BY vari-
able. When a second BY variable is used to define a high-low-close chart, the
variable must be dichotomous or trichotomous. If dichotomous, the first value
defines low and the second value defines high; if trichotomous, the first value
defines high, the second defines low and the third defines close (see Figure
45 to Figure 47).

GROUPED Grouped high-low-close chart. A grouped high-low-close chart is defined by
a single function and two BY variables, or by multiple functions and a single
BY variable. When a variable list is used for a single function, the list must
contain two or three variables. If it contains two variables, the first defines
high, and the second defines low. If it contains three variables, the first de-
fines high, the second low, and the third close. Likewise, if multiple func-
tions are specified, they must be either in groups of two or in groups of three.
The first function defines high, the second defines low, and the third, if spec-
ified, defines close (see Figure 48 and Figure 49).

Figure 44 /PIE=VALUE(SALNOW) BY ID

Specification: value_function (var) [BY var]

Labels: BY variable value labels

Each pie slice shows the value of one case. If no BY variable is specified, the number of each
case is used as the label.

GRAPH 441

Figure 45 HILO=MEAN(HIGH LOW CLOSE) BY DATE

Specification: sum_function(varlist) BY var

Legend title: fn name

Legend labels: fn var labels

y-axis title: none

y-axis labels: fn value scale

x-axis title: BY var label

x-axis labels: BY var value labels

You can specify three variables with one summary function or three summary functions
each with one variable. The line represents the close or average series defined by the func-
tion. If you specify only two, they are used as high and low values.

Figure 46 HILO=MEAN(VALUE) BY DATE BY HILO

Specification: sum_function(var) BY var BY var

Legend title: 2nd BY var label

Legend labels: 2nd BY var value labels

y-axis title: fn name+fn var label

y-axis labels: fn value scale

x-axis title: 1st BY var label

x-axis labels: 1st BY var value labels

The second BY variable must be dichotomous or trichotomous. If dichotomous, the first val-
ue defines the high and the second value defines the low. If trichotomous, the first value de-
fines the high, the second value defines the low, and the last value defines the close.

Figure 47 HILO=VALUE(HIGH LOW CLOSE) BY TIME

Specification: value_function(varlist) BY var

Legend title: none

Legend labels: var labels

y-axis title: none

y-axis labels: value scale

x-axis title: BY var label

x-axis labels: BY var value labels

The first variable represents the high value, the second, the low value, and the third, the
close value.

442 GRAPH

ERRORBAR Subcommand

ERRORBAR creates either a simple or a clustered error bar chart, depending on the variable
specification on the subcommand. A simple error bar chart is defined by one numeric vari-
able with or without a BY variable or a variable list. A clustered error bar chart is defined by
one numeric variable with two BY variables or a variable list with a BY variable (see Figure
50 to Figure 53).

Error bar charts can display confidence intervals, standard deviations, or standard errors of
the mean. To specify the statistics to be displayed, one of the following keywords is required:

CI value Display confidence intervals for mean. You can specify a confidence level
between 50 and 99.9. The default is 95.

STERROR n Display standard errors of mean. You can specify any positive number for n.
The default is 2.

Specification: sum_function list BY var BY var

Legend title: 2nd BY var label

Legend labels: 2nd BY var value labels
3rd fn name + var label

y-axis title: 1st 2 fn names+var labels

y-axis labels: fn value scale

x-axis title: 1st BY var label

x-axis labels: 1st BY var value labels

Figure 48 HILO=MEAN(HIGH) MEAN(LOW) MEAN(CLOSE) BY DATE BY COMPANY

The function-variable specification automatically produces a clustered high-low-close
chart. The function list must consist of two or three functions. If two functions are specified,
they represent the high and the low; if three functions are specified, they represent the high,
the low, and the close.

Specification: value_function list BY var

Legend title: none

Legend labels: var labels

y-axis title: none

y-axis labels: value scale

x-axis title: BY var label

x-axis labels: BY var value labels

Each function must have two or three variables to represent high and low, or high, low, and
close values. If no BY variable is specified, case numbers are used as x-axis labels.

Figure 49 HILO=VALUE(RH RL RA) VALUE(FH HL HA) VALUE(GH GL HA) BY WEEK

GRAPH 443

STDDEV n Display standard deviations. You can specify any positive number for n. The
default is 2.

Figure 50 ERRORBAR=SALNOW BY SEXRACE

Specification: var by var

Legend title: none

Legend labels: none

y-axis title: display + var label

y-axis labels: value scale

x-axis title: BY var label

x-axis labels: BY var value labels

CI(95) is the default. Error bars can also display standard errors of the mean or standard de-
viations if you specify the appropriate keyword in the parentheses.

Figure 51 ERRORBAR=FRINGE SALBEG SALNOW

Specification: varlist

Legend title: none

Legend labels: none

y-axis title: displayed statistics

y-axis labels: value scale

x-axis title: none

x-axis labels: var labels

CI(95) is the default. Error bars can also display standard errors of the mean or standard de-
viations if you specify the appropriate keyword in the parentheses. Numbers of valid cases
for each variable are displayed.

444 GRAPH

SCATTERPLOT Subcommand

SCATTERPLOT produces two- or three-dimensional scatterplots. Multiple two-dimensional
plots can be plotted within the same frame or as a scatterplot matrix. Only variables can be
specified; aggregated functions cannot be plotted. When SCATTERPLOT is specified without
keywords, the default is BIVARIATE.

BIVARIATE One two-dimensional scatterplot. A basic scatterplot is defined by two vari-
ables separated by the keyword WITH (see Figure 54 to Figure 56). This is
the default when SCATTERPLOT is specified without keywords.

OVERLAY Multiple plots drawn within the same frame. Specify a variable list on both
sides of WITH. By default, one scatterplot is drawn for each combination of
variables on the left of WITH with variables on the right (see Figure 57). You
can specify PAIR in parentheses to indicate that the first variable on the left
is paired with the first variable on the right, the second variable on the left
with the second variable on the right, and so on. All plots are drawn within
the same frame and are differentiated by color or pattern. The axes are scaled
to accommodate the minimum and maximum values across all variables.

Specification: var1 BY var2 BY var3

Legend title: var3 label

Legend labels: var3 value labels+Mean
+var1 label

y-axis title: display+var1 label

y-axis labels: value scale

x-axis title: var2 label

x-axis labels: var2 value labels

Figure 52 ERRORBAR=SALNOW BY JOBCAT BY SEXRACE

Figure 53 ERRORBAR=FRINGE SALBEG SALNOW BY SEX

Specification: varlist BY var

Legend title: none

Legend labels: Mean+var labels

y-axis title: displayed statistics

y-axis labels: values

x-axis title: BY var label

x-axis labels: BY var value labels

GRAPH 445

MATRIX Scatterplot matrix. Specify at least two variables. One scatterplot is drawn
for each combination of the specified variables above the diagonal and a sec-
ond below the diagonal in a square matrix (see Figure 58).

XYZ One three-dimensional plot. Specify three variables, each separated from the
next with the keyword WITH (see Figure 59).

• If you specify a control variable using BY, GRAPH produces a control scatterplot where
values of the BY variable are indicated by different colors or patterns. A control variable
cannot be specified for overlay plots.

• You can display the value label of an identification variable at the plotting position for
each case by adding BY var (NAME) or BY var (IDENTIFY) to the end of any valid scatter-
plot specification. When the chart is created, NAME turns the labels on while IDENTIFY
turns the labels off. You can use the Point Selection tool to turn individual labels off or
on in the scatterplot. Figure 56 shows a simple scatterplot with labels turned on.

Figure 54 /SCATTERPLOT=PROFITS WITH COMPS

Specification: var1 WITH var2
 [BY var] [BY var (NAME)]

y-axis title: var2 var label

y-axis labels: scaled values

x-axis title: var1 var label

x-axis labels: scaled values

Figure 55 /SCATTERPLOT=SALBEG WITH SALNOW BY SEX

Specification: var1 WITH var2 BY var3*

Legend title marker var (var3) label

Legend labels: marker var value [label]

y-axis title: var2 var label

y-axis labels: scaled values

x-axis title: var1 var label

x-axis labels: scaled values

*VAR3 is a marker variable. For specification of a label variable, see Figure 56.

446 GRAPH

Figure 56 /SCATTERPLOT=JOBCAT WITH SALNOW BY ID (NAME)

Specification: var1 WITH var2 BY var3(NAME)*

Point labels: Label var (VAR3) value labels

y-axis title: var2 var label

y-axis labels: scaled values

x-axis title: var1 var label

x-axis labels: scaled values

*When keyword NAME is specified, VAR3 serves as a label variable. For the specification of
a marker variable, see Figure 55. You can specify both a marker variable and a label variable
for a simple scatterplot.

Figure 57 /SCATTERPLOT(OVERLAY)=VERBAL MATH WITH AARATIO)

Specification: varlist WITH varlist [BY var(NAME)]*

Legend title: none

Legend labels: pairs of var names

y-axis title: none

y-axis labels: scaled values**

x-axis title: none

x-axis labels: scaled values**

*You can specify only a label variable after BY for an overlay scatterplot. The keyword NAME
is required if a BY variable is specified.
**Values are scaled to accommodate the maximum and minimum values of each pair.

GRAPH 447

HISTOGRAM Subcommand

HISTOGRAM creates a histogram (see Figure 60 and Figure 61).

• Only one variable can be specified on this subcommand.

• GRAPH divides the values of the variable into several evenly spaced intervals and produces
a bar chart showing the number of times the values for the variable fall within each interval.

• You can request a normal distribution line by specifying the keyword NORMAL in paren-
theses (see Figure 61).

Figure 58 /SCATTERPLOT(MATRIX)=SCORE COST SFRATIO

Specification: varlist [BY var] [BY var(NAME)]*

Legend title: marker var name

Legend labels: marker var value labels

Point labels: label value labels

Diagonal titles: var labels

*Matrix scatterplots can have both marker variable and label variable specifications.

Specification:
 xvar WITH yvar WITH zvar [BY var] [BY var(NAME)]

Legend title: 1st BY var label

Legend labels: 1st BY var value labels

Point labels: 2nd BY var value labels

x-axis title: xvar label

y-axis title: yvar label

z-axis title: zvar label

Figure 59 /SCATTERPLOT(XYZ)=JOBCAT WITH SALARY WITH EDLEVEL BY SEX BY ID (NAME)

* 3-D scatterplots allow both marker variable and label variable specifications.

448 GRAPH

PARETO Subcommand

PARETO creates one of two types of Pareto charts. A Pareto chart is used in quality control
to identify the few problems that create the majority of nonconformities. Only SUM, VALUE,
and COUNT can be used with the PARETO subcommand.

Before plotting, PARETO sorts the plotted values in descending order by category. The
right axis is always labeled by the cumulative percentage from 0 to 100. By default, a cu-
mulative line is displayed. You can eliminate the cumulative line or explicitly request it by
specifying one of the following keywords:

CUM Display the cumulative line. This is the default.

NOCUM Do not display the cumulative line.

Figure 60 /HISTOGRAM=RATIO

Specification: var

y-axis title: none

y-axis label: number of valid cases

x-axis title: var label

x-axis label: scaled values

The standard deviation, mean, and number of valid cases are displayed.

Figure 61 /HISTOGRAM(NORMAL)=VERBAL

Specification: var

y-axis title: none

y-axis labels: number of valid cases

x-axis title: var label

x-axis labels: scaled values

The normal distribution line as well as the standard deviation, mean, and number of valid cases
are displayed.

GRAPH 449

You can request a simple or a stacked Pareto chart by specifying one of the following key-
words and define it with appropriate function/variable specifications:

SIMPLE Simple Pareto chart. Each bar represents one type of nonconformity. A sim-
ple Pareto chart can be defined by a single variable, a single VALUE function,
a single SUM function with a BY variable, or a SUM function with a variable
list as an argument with no BY variable (see Figure 62 and Figure 63).

STACKED Stacked Pareto chart. Each bar represents one or more types of nonconformity
within the category. A stacked Pareto chart can be defined by a single SUM
function with two BY variables, a single variable with a BY variable, a VALUE
function with a variable list as an argument, or a SUM function with a variable
list as an argument and a BY variable (see Figure 64 and Figure 65).

Figure 62 PARETO(CUM SIMPLE)=SUM(DEF1 TO DEF7)

Specification: sum_fun (varlist)

Right axis title: Percent

Right axis labels: Cumulative percentage

y-axis title: Count

y-axis labels: defect count

x-axis title: none

x-axis labels: var labels

The data are sorted in descending order. The cumulative line is displayed. The first two de-
fects account for over 75% of the returned products.

Figure 63 PARETO(CUM SIMPLE)=SUM(DEFECTS) BY SHIFT

The data are sorted in descending order. The cumulative line is displayed. The work shifts
7, 3, and 9 account for 60% of the defective products.

Specification: sum_fun (var) BY var

Right axis title: Percent

Right axis labels: Cumulative percentage

y-axis title: fn var label

y-axis labels: defect count

x-axis title: BY var label

x-axis labels: var labels

450 GRAPH

TEMPLATE Subcommand

TEMPLATE uses an existing chart as a template and applies it to the chart requested by the
current GRAPH command.

• The specification on TEMPLATE is a chart file saved during a previous session.

• The general rule of application is that the template overrides the default setting, but the
specifications on the current GRAPH command override the template. Nonapplicable el-
ements and attributes are ignored.

• Three types of elements and attributes can be applied from a chart template: those depen-
dent on data, those dependent on the chart type, and those dependent on neither.

Figure 64 PARETO(CUM STACKED)=SUM(DEF1 TO DEF5) BY SHIFT

Specification: sum_fn(varlist) BY var

Legend title: none

Legend labels: fn variable labels

y-axis title: Count

y-axis labels: defect count

x-axis title: BY var label

x-axis labels: BY var value labels

The Pareto chart shows the work shifts that are responsible for most of the defects. It also
shows the type of defects each work shift produces.

Figure 65 PARETO(CUM STACKED)=SUM(DEFECTS) BY SHIFT BY TYPE

Specification: sum_fn(var1) BY var2 BY var3

Legend title: var3 label

Legend labels: var3 value labels

y-axis title: var1 label

y-axis labels: defect count

x-axis title: var2 label

x-axis labels: var2 value labels

The stacks are defined by the second BY variable (TYPE); the categories are defined by the
first BY variable (SHIFT).

GRAPH 451

Elements and Attributes Independent of Chart Types or Data

Elements and attributes common to all chart types are always applied unless overridden by
the specifications on the current GRAPH command.

• The title, subtitle, and footnote, including text, color, font type and size, and line align-
ment are always applied. To give your chart a new title, subtitle, or footnote, specify
the text on the TITLE, SUBTITLE, or FOOTNOTE subcommand. You cannot change other
attributes.

• The outer frame of the chart, including line style, color, and fill pattern, is always applied.
The inner frame is applied except for those charts that do not have an inner frame. The
template overrides the system default.

• Label formats are applied wherever applicable. The template overrides the system default.
Label text, however, is not applied. GRAPH automatically provides axis labels according
to the function/variable specification.

• Legends and the legend title attributes, including color, font type and size, and align-
ment, are applied provided the current chart requires legends. The legend title text,
however, is not applied. GRAPH provides the legend title according to the function/vari-
able specification.

Elements and Attributes Dependent on Chart Type

Elements and attributes dependent on the chart type are those that exist only in a specific
chart type. They include bars (in bar charts), lines and areas (in line charts), markers (in scat-
terplots), boxes (in boxplots), and pie sectors (in pie charts). These elements and their at-
tributes are usually applied only when the template chart and the requested chart are of the
same type. Some elements or their attributes may override the default settings across chart
type.

• Color and pattern are always applied except for pie charts. The template overrides the sys-
tem default.

• Scale axis lines are applied across chart types. Scale axis range is never applied.

• Interval axis lines are applied from interval axis to interval axis. Interval axis bins are
never applied.

• If the template is a 3-D bar chart and you request a chart with one category axis, attributes
of the first axis are applied from the template. If you request a 3-D bar chart and the tem-
plate is not a 3-D chart, no category axis attributes are applied.

Elements and Attributes Dependent on Data

Data-dependent elements and attributes are applied only when the template and the requested
chart are of the same type and the template has at least as many series assigned to the same
types of chart elements as the requested chart.

• Category attributes and elements, including fill, border, color, pattern, line style, weight
of pie sectors, pie sector explosion, reference lines, projection lines, and annotations, are
applied only when category values in the requested chart match those in the template.

452 GRAPH

• The attributes of data-related elements with on/off states are always applied. For example,
the line style, weight, and color of a quadratic fit in a simple bivariate scatterplot are ap-
plied if the requested chart is also a simple bivariate scatterplot. The specification on the
GRAPH command, for example, HISTOGRAM(NORMAL), overrides the applied on/off sta-
tus; in this case, a normal curve is displayed regardless of whether the template displays
a normal curve.

• In bar, line, and area charts, the assignment of series to bars, lines, and areas is not applied.

• Case weighting status for histograms and scatterplots is not applied. You must turn
weighting on or off before specifying the GRAPH command.

MISSING Subcommand

MISSING controls the treatment of missing values in the chart drawn by GRAPH.

• The default is LISTWISE.
• The MISSING subcommand has no effect on variables used with the VALUE function to

create nonaggregated charts. User- and system-missing values create empty cells.

• LISTWISE and VARIABLE are alternatives and apply to variables used in summary functions
for a chart or to variables being plotted in a scatterplot.

• REPORT and NOREPORT are alternatives and apply only to category variables. They
control whether categories and series with missing values are created. NOREPORT is the
default.

• INCLUDE and EXCLUDE are alternatives and apply to both summary and category vari-
ables. EXCLUDE is the default.

• When a case has a missing value for the name variable but contains valid values for the
dependent variable in a scatterplot, the case is always included. User-missing values are
displayed as point labels; system-missing values are not displayed.

• For an aggregated categorical chart, if every aggregated series is empty in a category, the
empty category is excluded.

• A nonaggregated categorical chart created with the VALUE function can contain complete-
ly empty categories. There are always as many categories as rows of data. However, at
least one nonempty cell must be present; otherwise the chart is not created.

LISTWISE Listwise deletion of cases with missing values. A case with a missing value
for any dependent variable is excluded from computations and graphs.

VARIABLE Variable-wise deletion. A case is deleted from the analysis only if it has a
missing value for the dependent variable being analyzed.

NOREPORT Suppress missing-value categories. This is the default.

REPORT Report and graph missing-value categories.

EXCLUDE Exclude user-missing values. Both user- and system-missing values for de-
pendent variables are excluded from computations and graphs. This is the
default.

GRAPH 453

INCLUDE Include user-missing values. Only system-missing values for dependent
variables are excluded from computations and graphs.

454

IF

IF [(]logical expression[)] target variable=expression

The following relational operators can be used in logical expressions:

The following logical operators can be used in logical expressions:

Example:
IF (AGE > 20 AND SEX = 1) GROUP=2.

Overview

IF conditionally executes a single transformation command based upon logical conditions
found in the data. The transformation can create a new variable or modify the values of an
existing variable for each case in the working data file. You can create or modify the values
of both numeric and string variables. If you create a new string variable you must first de-
clare it on the STRING command.

IF has three components: a logical expression (see “Logical Expressions” on p. 44) that
sets up the logical criteria, a target variable (the one to be modified or created), and an as-
signment expression. The target variable’s values are modified according to the assignment
expression.

IF is most efficient when used to execute a single, conditional, COMPUTE-like transfor-
mation. If you need multiple IF statements to define the condition, it is usually more efficient
to use the RECODE command or a DO IF—END IF structure.

Symbol Definition Symbol Definition

EQ or = Equal to NE or <>*

* On ASCII systems (for example, UNIX, VAX, and all PC’s) you can also use ~=;
on IBM EBCDIC systems (for example, IBM 360 and IBM 370) you can also use ¬=.

Not equal to
LT or < Less than LE or <= Less than or equal to
GT or > Greater than GE or >= Greater than or equal to

Symbol Definition

AND or & Both relations must be true
Or or | Either relation can be true
Not* Reverses the outcome of an expression*

* On ASCII systems you can also use ~; on IBM EBCDIC systems
you can also use ¬ (or the symbol above number 6).

IF 455

Basic Specification

The basic specification is a logical expression followed by a target variable, a required
equals sign, and the assignment expression. The assignment is executed only if the logical
expression is true.

Syntax Rules

• Logical expressions can be simple logical variables or relations, or complex logical tests
involving variables, constants, functions, relational operators, and logical operators. Both
the logical expression and the assignment expression can use any of the numeric or string
functions allowed in COMPUTE transformations (see COMPUTE and “Transformation Ex-
pressions” on p. 34).

• Parentheses can be used to enclose the logical expression. Parentheses can also be used
within the logical expression to specify the order of operations. Extra blanks or parentheses
can be used to make the expression easier to read.

• A relation can compare variables, constants, or more complicated arithmetic expressions.
Relations cannot be abbreviated. For example, (A EQ 2 OR A EQ 5) is valid, while
(A EQ 2 OR 5) is not. Blanks (not commas) must be used to separate relational operators
from the expressions being compared.

• A relation cannot compare a string variable to a numeric value or variable, or vice versa.
A relation cannot compare the result of the logical functions SYSMIS, MISSING, ANY, or
RANGE to a number.

• String values used in expressions must be specified in quotes and must include any leading
or trailing blanks. Lowercase letters are considered distinct from uppercase letters.

• String variables that are used as target variables must already exist. To declare a new
string variable, first create the variable with the STRING command and then specify the
new variable as the target variable on IF.

Operations

• Each IF command evaluates every case in the data. Compare IF with DO IF, which passes
control for a case out of the DO IF—END IF structure as soon as a logical condition is met.

• The logical expression is evaluated as true, false, or missing. The assignment is executed
only if the logical expression is true. If the logical expression is false or missing, the as-
signment is not made. Existing target variables remain unchanged; new numeric variables
retain their initial (system-missing) values.

• In general, a logical expression is evaluated as missing if any one of the variables used
in the logical expression is system- or user-missing. However, when relations are joined
by the logical operators AND or OR, the expression can sometimes be evaluated as true
or false even when variables have missing values (see “Missing Values and Logical Op-
erators” on p. 456).

456 IF

Numeric Variables

• Numeric variables created with IF are initially set to the system-missing value. By default,
they are assigned an F8.2 format.

• Logical expressions are evaluated in the following order: functions, followed by expo-
nentiation, arithmetic operations, relations, and logical operators. When more than one
logical operator is used, NOT is evaluated first, followed by AND and then OR. You can
change the order of operations using parentheses.

• Assignment expressions are evaluated in the following order: functions, then exponentia-
tion, and then arithmetic operators.

String Variables

• New string variables declared on IF are initially set to a blank value and are assigned the
format specified on the STRING command that creates them.

• Logical expressions are evaluated in the following order: string functions, then relations,
then logical operators. When more than one logical operator is used, NOT is evaluated first,
followed by AND and then OR. You can change the order of operations using parentheses.

• If the transformed value of a string variable exceeds the variable’s defined width, the
transformed value is truncated. If the transformed value is shorter than the defined width,
the string is right-padded with blanks.

Missing Values and Logical Operators

When two or more relations are joined by logical operators AND or OR, the program always
returns a missing value if all of the relations in the expression are missing. However, if any
one of the relations can be determined, the program interprets the expression as true or false
according to the logical outcomes shown in Table 1. The asterisk flags expressions where the
program can evaluate the outcome with incomplete information.

Table 1 Logical outcome

Expression Outcome Expression Outcome

true AND true = true true OR true = true
true AND false = false true OR false = true
false AND false = false false OR false = false
true AND missing = missing true OR missing = true*
missing AND missing = missing missing OR missing = missing
false AND missing = false* false OR missing = missing

IF 457

Example

IF (AGE > 20 AND SEX = 1) GROUP=2.

• Numeric variable GROUP is set to 2 for cases where AGE is greater than 20 and SEX is
equal to 1.

• When the expression is false or missing, the value of GROUP remains unchanged. If
GROUP has not been previously defined, it contains the system-missing value.

Example

IF (SEX EQ ’F’) EEO=QUOTA+GAIN.

• The logical expression tests string variable SEX for the value F.

• When the expression is true (when SEX equals F), the value of numeric variable EEO is
assigned the value of QUOTA plus GAIN. Both QUOTA and GAIN must be previously de-
fined numeric variables.

• When the expression is false or missing (for example, if SEX equals f), the value of EEO
remains unchanged. If EEO has not been previously defined, it contains the system-missing
value.

Example

COMPUTE V3=0.
IF ((V1-V2) LE 7) V3=V1**2.

• COMPUTE assigns V3 the value 0.

• The logical expression tests whether V1 minus V2 is less than or equal to 7. If it is, the
value of V3 is assigned the value of V1 squared. Otherwise, the value of V3 remains at 0.

Example

IF (ABS(A-C) LT 100) INT=100.

• IF tests whether the absolute value of variable A minus variable C is less than 100. If it
is, INT is assigned the value 100. Otherwise, the value is unchanged. If INT has not been
previously defined, it is system-missing.

Example

IF (MEAN(V1 TO V5) LE 7) INDEX=1.

• If the mean of variables V1 through V5 is less than or equal to 7, INDEX equals 1.

458 IF

Example

* Test for listwise deletion of missing values.

DATA LIST /V1 TO V6 1-6.
STRING SELECT(A1).
COMPUTE SELECT=’V’.
VECTOR V=V1 TO V6.

LOOP #I=1 TO 6.
IF MISSING(V(#I)) SELECT=’M’.
END LOOP.

BEGIN DATA
123456
 56
1 3456
123456
123456
END DATA.

FREQUENCIES VAR=SELECT.

• STRING creates string variable SELECT with an A1 format and COMPUTE sets the value
of SELECT to V.

• VECTOR defines vector V as the original variables V1 to V6. Variables on a single vector
must be all numeric or all string variables. In this example, because vector V is used as an
argument on the MISSING function of IF, the variables must be numeric (MISSING is not
available for string variables).

• The loop structure executes 6 times: once for each VECTOR element. If a value is missing
for any element, SELECT is set equal to M. In effect, if any case has a missing value for
any of the variables V1 to V6, SELECT is set to M.

• FREQUENCIES generates a frequency table for SELECT. The table gives a count of how
many cases have missing values for at least one variable and how many cases have valid
values for all variables. This table can be used to determine how many cases would be
dropped from an analysis that uses listwise deletion of missing values. See pp. 159 and
280 for alternative ways to test for listwise deletion of missing values.

Example

IF YRHIRED LT 1980 RATE=0.02.
IF DEPT=’SALES’ DIVISION=’TRANSFERRED’.

• The logical expression on the first IF command tests whether YRHIRED is less than 1980
(hired before 1980). If so, variable RATE is set to 0.02.

• The logical expression on the second IF command tests whether DEPT equals SALES.
When the condition is true, the value for string variable DIVISION is changed to
TRANSFERRED but is truncated if the format for DIVISION is not at least 11 charac-
ters wide. For any other value of DEPT, the value of DIVISION remains unchanged.

• Though there are two IF statements, each defines a separate and independent condition.
The IF command is used rather than the DO IF—END IF structure in order to test both con-

IF 459

ditions on every case. If DO IF—END IF is used, control passes out of the structure as soon
as the first logical condition is met.

Example

IF (STATE EQ ’IL’ AND CITY EQ 13) COST=1.07 * COST.

• The logical expression tests whether STATE equals IL and CITY equals 13.

• If the logical expression is true, numeric variable COST is increased by 7%.

• For any other value of STATE or CITY, the value of COST remains unchanged.

Example

STRING GROUP (A18).
IF (HIRED GE 1988) GROUP=’Hired after merger’.

• STRING declares string variable GROUP and assigns it a width of 18 characters.

• When HIRED is greater than or equal to 1988, GROUP is assigned the value Hired after
merger. When HIRED is less than 1988, GROUP remains blank.

Example

IF (RECV GT DUE OR (REVNUES GE EXPNS AND BALNCE GT 0))STATUS=’SOLVENT.

• First, the program tests whether REVNUES is greater than or equal to EXPNS and whether
BALNCE is greater than 0.

• Second, the program evaluates if RECV is greater than DUE.
• If either of these expressions is true, STATUS is assigned the value SOLVENT.

• If both expressions are false, STATUS remains unchanged.

• STATUS is an existing string variable in the working data file. Otherwise, it would have
to be declared on a preceding STRING command.

460

IGRAPH

IGRAPH

[/Y=[VAR(varname1)]
 [TYPE={SCALE ([MIN=value] [MAX=value])}]

 {CATEGORICAL }
 [TITLE=’string’]]

[/X1=[VAR(varname2)]]
 [TYPE={SCALE([MIN=value] [MAX=value])}]
 {CATEGORICAL }
 [TITLE=’string’]]

[/X2=[VAR(varname3)]]
 [TYPE={SCALE([MIN=value] [MAX=value])}]

 {CATEGORICAL }
 [TITLE=’string’]]

[/YLENGTH=value]

[/X1LENGTH=value]

[/X2LENGTH=value]

[/COLOR=varname
[TYPE={SCALE([MIN=value] [MAX=value])}]
 {CATEGORICAL }
[LEGEND={ON|OFF}]
[TITLE=’string’]]

[/STYLE=varname
[LEGEND={ON|OFF}]
[TITLE=’string’]]

[/SIZE=varname
[TYPE={SCALE([MIN=value] [MAX=value])}]
 {CATEGORICAL }
[LEGEND={ON|OFF}]
[TITLE=’string’]]

[/CLUSTER=varname]

[/SUMMARYVAR=varname]

[/PANEL varlist]

[/POINTLABEL=varname{NONE}]
 {ALL }

[/COORDINATE={HORIZONTAL}]
 {VERTICAL }
 {THREE }

[/EFFECT={NONE }]
 {THREE }

[/TITLE=’string’]

[/SUBTITLE=’string’]

[/CAPTION=’string’]

[/VIEWNAME=’line1’]

IGRAPH 461

[/CHARTLOOK=’filename’]

[/SCATTER
[COINCIDENT={NONE }]
 {JITTER[(amount)]}]

[/BAR [(summary function)]
[LABEL {INSIDE } [VAL] [N]]
 {OUTSIDE }
[SHAPE={RECTANGLE}]
 {PYRAMID }
 {OBELISK }
[BARBASE={SQUARE}]
 {ROUND }
[BASELINE (value)]]

[/PIE [(summary function)]
[START value]
[CW|CCW)]
[SLICE={INSIDE }[LABEL] [PCT] [VAL] [N]]
 {OUTSIDE}
 {TEXTIN }
 {NUMIN }
[CLUSTER={URIGHT} [LABEL] [PCT] [VAL] [N]]]
 {LRIGHT}
 {ULEFT }
 {LLEFT }

[/BOX [OUTLIERS={ON|OFF}] [EXTREME={ON|OFF}]
 [MEDIAN={ON|OFF}]
 [LABEL=[N]]
[BOXBASE={SQUARE}]
 {ROUND }
[WHISKER={T }]
 {FANCY}
 {LINE }
[CAPWIDTH (pct)]]

[/LINE [(summary function)]
[STYLE={DOTLINE}]
 {LINE }
 {DOT }
 {NONE }
[DROPLINE={ON|OFF}]
[LABEL=[VAL] [N] [PCT]]
[LINELABEL=[CAT] [N] [PCT]]
[INTERPOLATE={STRAIGHT}]

 {LSTEP }
 {CSTEP }
 {RSTEP }
 {LJUMP }
 {RJUMP }
 {CJUMP }
 {SPLINE }
 {LAGRANGE3}
 {LAGRANGE5}

[BREAK={MISSING}]]
 {NONE }

[/ERRORBAR [{CI(pctvalue)}]
 {SD(sdval) }
 {SE(seval) }
[LABEL [VAL][N]]
[DIRECTION={BOTH | UP | DOWN | SIGN}
[CAPWIDTH (pct)]
[CAPSTYLE {NONE }]

 {T }
 {FANCY}

[SYMBOL={ON | OFF}]
[BASELINE value]]

462 IGRAPH

[/HISTOGRAM[CUM]
[SHAPE={HISTOGRAM}]
[X1INTERVAL={AUTO }]

 {NUM=n }
 {WIDTH=n}

[X2INTERVAL={AUTO }]
 {NUM=n }
 {WIDTH=n}

[X1START=n]
[X2START=n]
[CURVE={OFF|ON}]
[SURFACE={OFF|ON}]
[WIREFRAME={ON|OFF}]]

[/FITLINE[METHOD={NONE }]
 {REGRESSION LINEAR}
 {ORIGIN LINEAR }
 {MEAN }
 {LLR [(NORMAL | EPANECHNIKOV | UNIFORM)]

 [BANDWIDTH={FAST | CONSTRAINED}]
 [X1MULTIPLIER=multiplier]
 [X2MULTIPLIER=multiplier]}

[INTERVAL[(cval)]=[MEAN] [INDIVIDUAL]]
[LINE=[TOTAL] [MEFFECT]]]

 Summary function names are found beginning on page 478.

 Example:

IGRAPH
/VIEWNAME=’Scatterplot’
/X1=VAR(trial1) TYPE=SCALE
/Y=VAR(trial3) TYPE=SCALE
/X2=VAR(trial2) TYPE=SCALE
/COORDINATE=THREE
/X1LENGTH=3.0
/YLENGTH=3.0
/X2LENGTH=3.0
/SCATTER COINCIDENT=NONE
/FITLINE METHOD=REGRESSION LINEAR INTERVAL(90.0)=MEAN LINE=TOTAL.

Overview

The interactive chart editor is designed to emulate the experience of drawing a statistical
chart with a pencil and paper. The chart editor is a highly interactive, direct manipulation en-
vironment that automates the data manipulation and drawing tasks required to draw a chart
by hand, such as determining data ranges for axes; drawing ticks and labels; aggregating and
summarizing data; drawing data representations like bars, boxes, or clouds; and incorporat-
ing data dimensions as legends when the supply of dependent axes is exhausted.

The IGRAPH command creates a chart in an interactive environment. The interactive chart
editor allows the user to make extensive and fundamental changes to this chart instead of cre-
ating a new chart. The chart editor allows the user to replace data, add new data, change di-
mensionality, create separate chart panels for different groups, or change the way data is
represented in a chart (i.e., change a bar chart into a box plot). The chart editor is not a
“typed” chart system. The user can use chart elements in any combination, and is not limited
by “types” that the application recognizes.

To create a chart, the user assigns data dimensions to the domain (independent) and range
(dependent) axes to create a “data region.” The user also adds data representations such as
bars or clouds to the data region. Data representations automatically position themselves ac-
cording to the data dimensions assigned to the data region.

IGRAPH 463

There is no required order for assigning data dimensions or adding data representations;
the user can add the data dimensions first or add the data representations first. When defining
the data region, the user can define the range axis first or the domain axis first.

Options

Titles and Captions. You can specify a title, subtitle, and caption for the chart.

Chart Type. You can request a specific type of chart using the BAR, PIE, BOX, LINE, ER-
RORBAR, HISTOGRAM, and SCATTERPLOT subcommands.

Chart Content. You can combine elements in a single chart. For example, you can add error
bars to a bar chart.

Chart Legends. You can specify either scale legends or categorical legends. Moreover, you
can define which properties of the chart reflect the legend variables.

Chart Appearance. You can specify a template, using the CHARTLOOK subcommand, to
override the default chart attribute settings.

Basic Specification

The minimum syntax to create a graph is simply the IGRAPH command, without any variable
assignment. This will create an empty graph. To create an element in a chart, a dependent
variable must be assigned and a chart element specified.

Subcommand Order

• Subcommands can be used in any order.

Syntax Rules

• EFFECT=THREE and COORDINATE=THREE cannot be specified together. If they are, the
EFFECT keyword will be ignored.

Operations

• The chart title, subtitle, and caption are assigned as they are specified on the TITLE, SUB-
TITLE, and CAPTION subcommands. In the absence of any of these subcommands, the
missing title, subtitle, or caption are null.

464 IGRAPH

General Syntax

The following subcommands are the most general purpose. Even so, not all plots will use all
subcommands. For example, if the only element in a chart is a bar, the SIZE subcommand
will not be shown in the graph.

Each general subcommand may be specified only once. If one of these subcommands ap-
pears more than once the last one is used.

X1, Y, and X2 Subcommands

X1, Y, and X2 assign variables to the X1, Y, and X2 dimensions of the chart.

• The variable must be enclosed in parentheses after the VAR keyword.

• Each of these subcommands can include the TITLE keyword, specifying a string with
which to title the corresponding axis.

• Each variable must be either a scale variable, a categorical variable, or a built-in data di-
mension. If a type is not specified, a default type is used from the variable’s definition.

SCALE A scale dimension is interpreted as a measurement on some continu-
ous scale for each case. Optionally, the minimum (MIN) and maximum
(MAX) scale values can be specified. In the absence of MIN and MAX,
the entire data range is used.

CATEGORICAL A categorical dimension partitions cases into exclusive groups (each
case is a member of exactly one group). The categories are represented
by evenly-spaced ticks.

A built-in dimension is a user interface object used to create chart of counts or percentages
and to make casewise chart of elements that usually aggregate data like bars or lines. The
built-in dimensions are count ($COUNT), percentage ($PCT), and case ($CASE).
• To create a chart that displays counts or percentages, one of the built-in data dimensions

is assigned to the range (Y) axis. The VAR keyword is not used for built-in dimensions.

• Built in count and percentage data dimensions cannot be assigned to a domain axis (X1
or X2) or to a legend subcommand.

• The count and percentage data dimensions are all scales, and cannot be changed into cat-
egorizations.

X1LENGTH, YLENGTH, and X2LENGTH Subcommands

X1LENGTH, YLENGTH, and X2LENGTH define the length in inches of the corresponding axis.

IGRAPH 465

Example:

IGRAPH
/VIEWNAME=’Scatterplot’
/Y=VAR(sales96) TYPE=SCALE
/X1=VAR(sales95) TYPE=SCALE
/X2=VAR(region) TYPE=CATEGORICAL
/X1LENGTH=2.39
/YLENGTH=2.42
/X2LENGTH=2.47
/SCATTER.

• Y assigns sales96 to the dependent axis, defining it to be continuous.

• X1 assigns sales95 to the X1 axis, defining it to be a scale variable (continuous).

• X2 assigns region to the X2 axis, defining it to be categorical.
• X1LENGTH, YLENGTH, and X2LENGTH define the length of each axis in inches.

COLOR, STYLE, and SIZE Subcommands

COLOR, STYLE, and SIZE specify variables used to create a legend. Each value of these vari-
ables corresponds to a unique property of the chart. The effect of these variables depends on
the type of chart.
• Most charts use color in a similar fashion; casewise elements draw each case representa-

tion using the color value for the case, and summary elements draw each group represen-
tation in the color that represents a summarized value in the color data dimension.

• For dot-line charts, dot charts, and scatterplots, symbol shape is used for style variables
and symbol size is used for size variables.

• For line charts and lines in a scatterplot, dash patterns encode style variables and line
thickness encodes size variables.

• For bar charts, pie charts, boxplots, histograms, and error bars, fill pattern encodes style
variables. Typically, these charts are not sensitive to size variables.

CATEGORICAL legend variables split the elements in the chart into categories. A categorical
legend shows the reader which color, style, or size is associated with which category of the
variable. The colors, styles, or sizes are assigned according to the discrete categories of the
variable.

SCALE legend variables apply color or size to the elements by the value or a summary val-
ue of the legend variable, creating a continuum across the values. COLOR and SIZE can create
either scale legends or categorical legends. STYLE can create categorical legends only.

Scale variables have the following keywords.

MIN Defines the minimum value of the scale.

MAX Defines the maximum value of the scale.

• The keywords MIN and MAX and their assigned values must be enclosed in parentheses.

In addition, the following keywords are available for COLOR, STYLE, and SIZE:

LEGEND Determines if the legend is displayed or not. The legend explains how to de-
code color, size, or style in a chart.

466 IGRAPH

TITLE Specifies a string used to title the legend.

Example:

IGRAPH
/VIEWNAME=’Scatterplot’
/Y=VAR(sales96) TYPE=SCALE
/X1=VAR(sales95) TYPE=SCALE
/X2=VAR(region) TYPE=CATEGORICAL
/COLOR=VAR(tenure) TYPE=SCALE
/STYLE=VAR(vol94)
/SCATTER.

• The chart contains a three-dimensional scatterplot.

• COLOR defines a scale legend corresponding to the variable TENURE. Points appear in a
continuum of colors, with the point color reflecting the value of TENURE.

• STYLE defines a categorical legend. Points appear with different shapes, with the point
shape reflecting the value of VOL94.

CLUSTER Subcommand

CLUSTER defines the variable used to create clustered pie charts. The variable specified must
be categorical. The cluster will contain as many pies as there are categories in the cluster
variable.

SUMMARYVAR Subcommand

SUMMARYVAR specifies the variable or function for summarizing a Pie element. It can only
have the built-in variables $COUNT, or $PCT, or a user defined variable name.

Specifying a user defined variable on SUMMARYVAR requires specifying a summary
function on the PIE subcommand. Valid summary functions include: SUM, SUMAV, SUMSQ,
NLT(x), NLE(x), NEQ(x), NGT(x), NGE(x). The slices of the pie represent categories defined by
the values of the summary function applied to the SUMMARYVAR.

PANEL Subcommand

PANEL specifies a categorical variable or variables for which separate charts will be created.

• Specifying a single panel variable results in a separate chart for each level of the panel
variable.

• Specifying multiple panel variables results in a separate chart for each combination of
levels of the panel variables.

POINTLABEL Subcommand

POINTLABEL specifies a variable used to label points in a boxplot or scatterplot.
• If a label variable is specified without ALL or NONE, no labels are turned on (NONE).

• The keyword NONE turns all labels off.

IGRAPH 467

COORDINATE Subcommand

COORDINATE specifies the orientation of the chart. Three dimensional charts (THREE) have
a default orientation that cannot be altered. Keywords available for two-dimensional charts
include:

HORIZONTAL The Y variable appears along the horizontal axis and the X1 variable
appears along the vertical axis.

VERTICAL The Y variable appears along the vertical axis and the X1 variable ap-
pears along the horizontal axis.

Example:

IGRAPH
/VIEWNAME=’Scatterplot’
/Y=VAR(sales96) TYPE=SCALE
/X1=VAR(region) TYPE=CATEGORICAL
/COORDINATE=HORIZONTAL
/BAR (mean).

• The COORDINATE subcommand defines the bar chart as horizontal with region on the ver-
tical dimension and means of sales96 on the horizontal dimension..

EFFECT Subcommand

EFFECT displays a two-dimensional chart with additional depth along a third dimension.
Two dimensional objects are displayed as three-dimensional solids.
• EFFECT is unavailable for three-dimensional charts.

TITLE, SUBTITLE, and CAPTION Subcommands

TITLE, SUBTITLE, and CAPTION specify lines of text placed at the top or bottom of a chart.

• Multiple lines of text can be entered using the carriage control character (\n).

• Each title, subtitle, or caption must be enclosed in apostrophes or quotation marks.
• The maximum length of a title, subtitle, or caption is 255 characters.

• The font, point size, color, alignment, and orientation of the title, subtitle, and caption text
is determined by the Chart Look.

VIEWNAME Subcommand

VIEWNAME assigns a name to the chart which will appear in the outline pane of the Output
Viewer. The name can have a maximum of 255 characters.

468 IGRAPH

CHARTLOOK Subcommand

CHARTLOOK identifies a file containing specifications concerning the initial visual proper-
ties of a chart, such as fill, color, font, style, and symbol. By specifying a ChartLook the user
can control cosmetic properties which are not explicitly available as syntax keywords.

Valid ChartLook files have a clo extension. Files designated on CHARTLOOK must either
be included with the software or created using the Chart Properties and ChartLooks items on
the Format menu.

A ChartLook contains values for the following properties:

• Color sequence for categorical color legends
• Color range for scale color legends

• Line style sequence for categorical style legends

• Symbol style sequence for categorical style legends

• Categorical legend fill styles

• Categorical symbol size sequence for categorical size legends

• Symbol size sequence for scale size sequences
• Categorical line weight sequence for categorical size legends

• Font, size, alignment, bold, and italic properties for text objects.

• Fill and border for filled objects.

• Style, weight, and color for line objects

• Font, shape, size, and color for symbol objects

• Style, weight, and color for visual connectors
• Axis Properties: axis line style, color, weight; major tick shape, location, color, size.

Example:

IGRAPH
/VIEWNAME=’Slide 1’
/X1=VAR(sales95) TYPE=SCALE
/Y=VAR(sales96) TYPE=SCALE
/X2=VAR(region) TYPE=CATEGORICAL
/COORDINATE=THREE
/POINTLABEL=VAR(division) NONE
/TITLE=’Scatterplot Comparing Regions’
/SUBTITLE=’Predicting 1996 Sales\nfrom 1995 Sales’
/CHARTLOOK=’Classic.clo’
/SCATTER.

• VIEWNAME assigns the name "Slide 1" to the chart. The outline pane of the Output Viewer
uses this name for the chart.

• Points in the chart are labeled with the values of division. Initially, all labels are off. Labels
for individual points can be turned on interactively after creating the chart.

• TITLE and SUBTITLE define text to appear of the plot. The subtitle contains a carriage re-
turn between "Sales" and "from".

• The appearance of the chart is defined in the Classic ChartLook.

IGRAPH 469

Element Syntax

The following subcommands add elements to a chart. The same subcommand can be speci-
fied more than once. Each subcommand adds another element to the chart.

SCATTER Subcommand

SCATTER produces two- or three-dimensional scatterplots. Scatterplots can use either cate-
gorical or scale dimensions to create color or size legends. Categorical dimensions are re-
quired to create style legends.

The keyword COINCIDENT controls the placement of markers which have identical values
on all axes. COINCIDENT can have one of the following two values:

NONE Places coincident markers on top of one another. This is the default
value.

JITTER(amount) Adds a small amount of random noise to all scale axis dimensions.
Amount indicates the percentage of noise added and ranges from 0 to
10.

Example:

IGRAPH
/Y=VAR(sales96) TYPE=SCALE
/X1=VAR(sales95) TYPE=SCALE
/COORDINATE=VERTICAL
/SCATTER COINCIDENT=JITTER(5).

• COORDINATE defines the chart as two-dimensional with sales96 on the vertical dimen-
sion.

• SCATTER creates a scatterplot of sales96 and sales95.

• The scale axes have 5% random noise added by the JITTER keyword allowing separation
of coincident points.

BAR Subcommand

BAR creates a bar element in a chart, corresponding to the X1, X2, and Y axis assignments.
Bars can by clustered by assigning variables to COLOR or STYLE. Horizontal or vertical ori-
entation is specified by the COORDINATE subcommand.

summary function Defines a function used to summarize the variable defined on the Y
subcommand. If the Y axis assignment is $COUNT or $PCT, the BAR
subcommand cannot have a summary function. If the Y subcommand
specifies TYPE=CATEGORICAL then BAR can only specify MODE as
the summary function. Otherwise, all summary functions described on
page 478 are available.

LABEL Bars can be labeled with the actual values corresponding to the depen-
dent axis (VAL) or with the number of cases included in each bar (N).

470 IGRAPH

The default is no labels. The placement of the labels is inside the bars
(INSIDE) or outside the bars (OUTSIDE).

SHAPE Determines whether the bars are drawn as rectangles (RECTANGLE),
pyramids (PYRAMID), or obelisks (OBELISK). The default is rectangu-
lar bars.

BARBASE For three-dimensional bars, the base can be round (ROUND) or square
(SQUARE). The default is square.

BASELINE The baseline value determines the location from which the bars will
hang (vertical) or extend (horizontal). The default value is 0.

Example:

IGRAPH
/X1=VAR(volume96) TYPE=CATEGORICAL
/Y=$count
/COORDINATE=VERTICAL
/EFFECT=THREE
/BAR LABEL INSIDE N SHAPE=RECTANGLE.

• X1 assigns the categorical variable volume96 to the X1 axis.

• Y assigns the built-in dimension $count to the range axis.

• VERTICAL defines the counts to appear along the vertical dimension.

• BAR adds a bar element to the chart.
• LABEL labels the bars in the chart with the number of cases included in the bars. These

labels appear inside the bars.

• SHAPE indicates that the bars are rectangles. However, EFFECT adds a third dimension
to the chart, yielding three-dimensional solids.

Example:

IGRAPH
/X1=VAR(volume94) TYPE=CATEGORICAL
/Y=VAR(sales96) TYPE=SCALE
/COORDINATE=HORIZONTAL
/EFFECT=NONE
/BAR (MEAN) LABEL OUTSIDE VAL SHAPE=PYRAMID BASELINE=370.00.

• X1 assigns the categorical variable volume94 to the X1 axis.

• Y assigns the scale variable sales96 to the range axis.

• HORIZONTAL defines sales96 to appear along the horizontal dimension.

• EFFECT defines the chart as two-dimensional.

• BAR adds a bar element to the chart.
• MEAN defines the summary function to apply to sales96. Each bar represents the mean

sales96 value for the corresponding category of volume94.

• LABEL labels the bars in the chart with the mean sales96 value. These labels appear out-
side the bars.

• SHAPE indicates that the bars are pyramids.

IGRAPH 471

• BASELINE indicates that bars should extend from 370. Any bar with a mean value above
370 extends to the right. Any bar with a mean value below 370 extends to the left.

PIE Subcommand

A simple pie chart summarizes categories defined by a single variable or by a group of relat-
ed variables. A clustered pie chart contains a cluster of simple pies, all of which are stacked
into categories by the same variable. The pies are of different sizes and appear to be stacked
on top of one another. The cluster contains as many pies as there are categories in the cluster
variable. For both simple and clustered pie charts, the size of each slice represents the count,
the percentage, or a summary function of a variable.

The following keywords are available:

summary function Defines a function used to summarize the variable defined on the SUM-
MARYVAR subcommand. If the SUMMARYVAR assignment is $COUNT
or $PCT, the PIE subcommand cannot have a summary function. Oth-
erwise, of the summary functions described on page 478, SUM,
SUMAV, SUMSQ, NGT(x), NLE(x), NEQ(x), NGE(x), NGT(x), and
NIN(x1,x2) are available.

START num Indicates the starting position of the smallest slice of the pie chart.
Any integer can be specified for num. The value is converted to a num-
ber between 0 and 360, which represents the degree of rotation of the
smallest slice.

CW | CCW Sets the positive rotation of the pie to either clockwise (CW) or coun-
terclockwise (CCW). The default rotation is clockwise.

SLICE Sets the labeling characteristics for the slices of the pie. The pie slices
can be labeled with the category labels (LABEL), the category percent-
ages (PCT), the number of cases (N), and the category values (VAL).
Label position is either all labels inside the pie (INSIDE), all labels out-
side the pie (OUTSIDE), text labels inside the pie with numerical labels
outside (TEXTIN), or numerical labels inside the pie with text labels
outside (NUMIN).

CLUSTER Sets the labeling characteristics for the pies from clusters. The pies
can be labeled with the category labels (LABEL), the category percent-
ages (PCT), the number of cases (N), and the category values (VAL).
Label position is either upper left (ULEFT), upper right (URIGHT), low-
er left (LLEFT), or lower right (LRIGHT) of the figure.

Example:

IGRAPH
/SUMMARYVAR=$count
/COLOR=VAR(volume96) TYPE=CATEGORICAL
/EFFECT=THREE
/PIE START 180 CW SLICE=TEXTIN LABEL PCT N.

• The pie slices represent the number of cases (SUMMARYVAR=$count) in each category of
volume96 (specified on the COLOR subcommand).

472 IGRAPH

• EFFECT yields a pie chart with an additional third dimension.

• PIE creates a pie chart.

• The first slice begins at 180 degrees and the rotation of the pie is clockwise.

• SLICE labels the slices with category labels, the percentage in each category, and the num-
ber of cases in each category. TEXTIN places the text labels (category labels) inside the
pie slices and the numerical labels outside.

Example:

IGRAPH
/SUMMARYVAR=VAR(sales96)
/COLOR=VAR(volume95) TYPE=CATEGORICAL
/X1=VAR(region) TYPE=CATEGORICAL
/Y=VAR(division) TYPE=CATEGORICAL
/COORDINATE=VERTICAL
/PIE (SUM) START 0 CW SLICE=INSIDE VAL.

• The pie slices represent the sums of sales96 values for each category of volume95 (speci-
fied on the COLOR subcommand).

• X1 and Y define two axes representing region and division. A pie chart is created for each
combination of these variables.

• The first slice in each pie begins at 0 degrees and the rotation of the pie is clockwise.

• SUM indicates the summary function applied to the summary variable, sales96. The pie
slices represent the sum of the sales96 values.

• SLICE labels the slices with the value of the summary function. INSIDE places the labels
inside the pie slices.

BOX Subcommand

BOX creates a boxplot, sometimes called a box-and-whiskers plot, showing the median, quar-
tiles, and outlier and extreme values for a scale variable. The interquartile range (IQR) is the
difference between the 75th and 25th percentiles and corresponds to the length of the box.

The following keywords are available:

OUTLIERS Indicates whether outliers should be displayed. Outliers are values be-
tween 1.5 IQR’s and 3 IQR’s from the end of a box. By default, the
boxplot displays outliers (ON).

EXTREME Indicates whether extreme values should be displayed. Values more
than 3 IQR’s from the end of a box are defined as extreme. By default,
the boxplot displays extreme values (ON).

MEDIAN Indicates whether a line representing the median should be included
in the box. By default, the boxplot displays the median line (ON).

LABEL Displays the number of cases (N) represented by each box.

BOXBASE Controls the shape of the box for three dimensional plots. SQUARE re-
sults in rectangular solids. ROUND yields cylinders.

IGRAPH 473

WHISKER Controls the appearance of the whiskers. Whiskers can be straight
lines (LINE), end in a T-shape (T), or end in a fancy T-shape (FANCY).
Fancy whiskers are unavailable for three-dimensional boxplots.

CAPWIDTH(pct) Controls the width of the whisker cap relative to the corresponding
box. Pct equals the percentage of the box width. The default value for
pct is 45.

Example:

IGRAPH
/X1=VAR(region) TYPE=CATEGORICAL
/Y=VAR(sales96) TYPE=SCALE
/COORDINATE=HORIZONTAL
/BOX OUTLIERS=ON EXTREME=ON MEDIAN=ON WHISKER=FANCY.

• X1 assigns the variable region to the X1 axis.
• Y assigns the variable sales96 to the range axis.

• COORDINATE positions the range axis along the horizontal dimension.

• BOX creates a boxplot. The outliers and extreme vales are shown. In addition, a line rep-
resenting the median is added to the box.

• WHISKER yields whiskers ending in a fancy T.

Example:

IGRAPH
/X1=VAR(region) TYPE=CATEGORICAL
/Y=VAR(sales96) TYPE=SCALE
/X2=VAR(division) TYPE=CATEGORICAL
/COORDINATE=THREE
/BOX OUTLIERS=OFF EXTREME=ON MEDIAN=OFF LABEL=N BOXBASE=ROUND WHISKER=T.

• X2 adds a third dimension corresponding to division to the boxplot in the previous exam-
ple.

• COORDINATE indicates that the chart displays the third dimension.

• BOX creates a boxplot without outliers or a median line. Extreme values are shown.
• LABEL labels each box with the number of cases represented by each box.

• BOXBASE defines the three-dimensional representation of the boxes to be cylindrical.

LINE Subcommand

LINE creates line charts, dot charts, and ribbon charts. These charts summarize categories of
one or more variables. Line charts tend to emphasize flow or movement instead of individual
values. They are commonly used to display data over time, and therefore can be used to give
a good sense of trends. A ribbon chart is similar to a line chart, with the lines displayed as
ribbons in a third dimension. Ribbon charts can either have two dimensions displayed with
a 3-D effect, or they can have three dimensions.

The following keywords are available.

474 IGRAPH

summary function Defines a function used to summarize the variable defined on the Y
subcommand. If the Y axis assignment is $COUNT or $PCT, the LINE
subcommand cannot have a summary function. If the Y subcommand
specifies TYPE=CATEGORICAL then LINE can only specify MODE as
the summary function. Otherwise, all summary functions described on
page 478 are available.

STYLE Chart can include dots and lines (DOTLINE), lines only (LINE), or dots
only (DOT). The keyword NONE creates an empty chart.

DROPLINE Indicates whether drop lines between points having the same value of
a variable are included in the chart (ON) or not (OFF). To include
drop lines, specify a categorical variable on the STYLE, COLOR, or
SIZE subcommands.

LABEL Labels points with the actual values corresponding to the dependent
axis (VAL), the percentage of cases (PCT), and the number of cases in-
cluded in each data point (N). The default is no labels.

LINELABEL Labels lines with category labels (CAT), the percentage of cases
(PCT), and the number of cases included in each line (N). The default
is no labels.

BREAK Indicates whether the lines break at missing values (MISSING) or not
(NONE).

The INTERPOLATE keyword determines how the lines connecting the points are drawn. Op-
tions include:

STRAIGHT Straight lines.

LSTEP A horizontal line extends from each data point. A vertical riser con-
nects the line to the next data point.

CSTEP Each data point is centered on a horizontal line which extends half of
the distance between consecutive points. Vertical risers connect the
line to the next horizontal line.

RSTEP A horizontal line terminates at each data point. A vertical riser extends
from each data point, connecting to the next horizontal line.

LJUMP A horizontal line extends from each data point. No vertical risers con-
nect the lines to the points.

RJUMP A horizontal line terminates at each data point. No vertical risers con-
nect the points to the next horizontal line.

CJUMP A horizontal line is centered at each data point, extending half of the
distance between consecutive points. No vertical risers connect the
lines.

SPLINE Connects data points with a cubic spline.

LAGRANGE3 Connects data points with third-order Lagrange interpolations, in
which a third-order polynomial is fit to the nearest four points.

IGRAPH 475

LAGRANGE5 Connects data points with fifth-order Lagrange interpolations, in
which a fifth-order polynomial is fit to the nearest six points.

Example:

IGRAPH
/X1=VAR(volume95) TYPE=CATEGORICAL
/Y=VAR(sales96) TYPE=SCALE
/COLOR=VAR(volume94) TYPE=CATEGORICAL
/COORDINATE=VERTICAL
/LINE (MEAN) STYLE=LINE DROPLINE=ON LABEL VAL

INTERPOLATE=STRAIGHT BREAK=MISSING.

• LINE creates a line chart. The lines represent the mean value of sales96 for each category
of volume95.

• The chart contains a line for each category of volume94, with droplines connecting the
lines at each category of volume95.

• LABEL labels the lines with the mean sales96 value for each category of volume95.

• INTERPOLATE specifies that straight lines connect the mean sales96 values across the
volume95 categories.

• BREAK indicates that the lines will break at any missing values.

ERRORBAR Subcommand

Error bars help you visualize distributions and dispersion by indicating the variability of the
measure being displayed. The mean of a scale variable is plotted for a set of categories, and
the length of an error bar on either side of the mean value indicates a confidence interval or
a specified number of standard errors or standard deviations. Error bars can extend in one
direction or both directions from the mean. Error bars are sometimes displayed in the same
chart with other chart elements, such as bars.

One of the following three keywords indicating the statistic and percentage/multiplier ap-
plied to the error bars must be specified:

CI(Pct) Error bars represent confidence intervals. Pct indicates the level of con-
fidence and varies from 0 to 100.

SD(sdval) Error bars represent standard deviations. Sdval indicates how many stan-
dard deviations above and below the mean the error bars extend. Sdval must
between 0 and 6.

SE(seval) Error bars represent standard errors. Seval indicates how many standard er-
rors above and below the mean the error bars extend. Seval must between 0
and 6.

In addition, the following keywords can be specified:

LABEL Labels error bars with means (VAL) and the number of cases (N).

DIRECTION Error bars can extend both above and below the mean values (BOTH),
only above the mean values (UP), only below the mean values
(DOWN), or above the mean values for error bars above the baseline
and below the mean values for error bars below the baseline (SIGN).

476 IGRAPH

CAPSTYLE For error bars, the style can be T-shaped (T), no cap (NONE), or a cap
with end pieces (FANCY). The default style is T-shaped.

SYMBOL Displays the mean marker (ON). For no symbol, specify OFF.

BASELINE val Defines the value (val) above which the error bars extend above the
bars and below which the error bars extend below the bars.

CAPWIDTH(pct) Controls the width of the cap relative to the distance between catego-
ries. Pct equals the percent of the distance. The default value for pct is
45.

Example:

IGRAPH
/X1=VAR(volume94) TYPE=CATEGORICAL
/Y=VAR(sales96) TYPE=SCALE
/BAR (MEAN) LABEL INSIDE VAL SHAPE=RECTANGLE BASELINE=0.00
/ERRORBAR SE(2.0) DIRECTION=BOTH CAPWIDTH (45) CAPSTYLE=FANCY.

• BAR creates a bar chart with rectangular bars. The bars represent the mean sales96 values
for the volume94 categories.

• ERRORBAR adds error bars to the bar chart. The error bars extend two standard errors
above and below the mean.

HISTOGRAM Subcommand

HISTOGRAM creates a histogram element in a chart, corresponding to the X1, X2, and Y axis
assignments. Horizontal or vertical orientation is specified by the COORDINATE subcom-
mand. A histogram groups the values of a variable into evenly-spaced groups (intervals or
bins) and plots a count of the number of cases in each group. The count can be expressed as
a percentage. Percentages are useful for comparing data sets of different sizes. The count or
percentage can also be accumulated across the groups.

• $COUNT or $PCT must be specified on the Y subcommand.

The following keywords are available:

SHAPE Defines the shape of the histogram. Currently, the only value for
SHAPE is HISTOGRAM.

CUM Specifies a cumulative histogram. Counts or percents are aggregated
across the values of the domain variables.

X1INTERVAL Intervals on the X1 axis can be set automatically, or you can specify
the number of intervals (1 to 250) along the axis (NUM); or the width
of an interval (WIDTH).

X2INTERVAL Intervals on the X2 axis can be set automatically, or you can specify
the number of intervals (1 to 250) along the axis (NUM); or the width
of an interval (WIDTH).

CURVE Superimposes a normal curve on a 2-D histogram. The normal curve
has the same mean and variance as the data.

IGRAPH 477

X1START The starting point along the X1 axis. Indicates the percentage of an in-
terval width above the minimum value along the X1 axis at which to
begin the histogram. The value can range from 0 to 99.

X2START The starting point along the X2 axis. Indicates the percentage of an in-
terval width above the minimum value along the X2 axis at which to
begin the histogram. The value can range from 0 to 99.

Example:

IGRAPH
/X1=VAR(sales96) TYPE=SCALE
/Y=$count
/Histogram SHAPE=HISTOGRAM CURVE=ON X1INTERVAL WIDTH=100.

• Histogram creates a histogram of sales96. The sales96 intervals are 100 units wide.

• CURVE superimposes a normal curve on the histogram.

FITLINE Subcommand

FITLINE adds a line or surface to a scatterplot to help you discern the relationship shown in
the plot. The following four general methods are available:

NONE No line is fit.

REGRESSION Fits a straight line (or surface) using ordinary least squares. Must be fol-
lowed by the keyword LINEAR.

ORIGIN Fits a straight line (or surface) through the origin. Must be followed by the
keyword LINEAR.

MEAN For a 2-D chart, fits a line at the mean of the dependent (Y) variable. For a
3-D chart, the Y mean is shown as a plane.

LLR Fits a local linear regression curve or surface. A normal (NORMAL) kernel
is the default. With EPANECHNIKOV, the curve is not as smooth as with a nor-
mal kernel and is smoother than with a uniform (UNIFORM) kernel. (For
more information, see Simonoff, Jeffrey S., Smoothing Methods in Statis-
tics, 1996, New York: Springer-Verlag.)

The keyword LINE indicates the number of fit lines. TOTAL fits the line to all of the cases.
MEFFECT fits a separate line to the data for each value of a legend variable.

The REGRESSION, ORIGIN, and MEAN methods offer the option of including prediction
intervals with the following keyword:

INTERVAL[(cval)] The intervals are based on the mean (MEAN) or on the individual cases
(INDIVIDUAL). Cval indicates the size of the interval and ranges from
50 to 100.

The local linear regression (LLR) smoother offers the following controls for the smoothing
process:

478 IGRAPH

BANDWIDTH Constrains the bandwidth to be constant across subgroups or panels
(CONSTRAINED). The default is unconstrained (FAST).

X1MULTIPLIER Specifies the bandwidth multiplier for the X1 axis. The bandwidth
multiplier changes the amount of data that is included in each calcula-
tion of a small part of the smoother. The multiplier can be adjusted to
emphasize specific features of the plot that are of interest. Any posi-
tive multiplier (including fractions) is allowed. The larger the multi-
plier, the smoother the curve. The range between 0 and 10 should
suffice in most applications.

X2MULTIPLIER Specifies the bandwidth multiplier for the X2 axis. The bandwidth
multiplier changes the amount of data that is included in each calcula-
tion of a small part of the smoother. The multiplier can be adjusted to
emphasize specific features of the plot that are of interest. Any posi-
tive multiplier (including fractions) is allowed. The larger the multi-
plier, the smoother the curve. The range between 0 and 10 should
suffice in most applications.

Example:

IGRAPH
/X1=VAR(sales95) TYPE=SCALE
/Y=VAR(sales96) TYPE=SCALE
/COLOR=VAR(region) TYPE=CATEGORICAL
/SCATTER
/FITLINE METHOD=LLR EPANECHNIKOV BANDWIDTH=CONSTRAINED

X1MULTIPLIER=2.00 LINE=MEFFECT.

• SCATTER creates a scatterplot of sales96 and sales96.

• FITLINE adds a local linear regression smoother to the scatterplot. The Epanechnikov
smoother is used with an X1 multiplier of 2. A separate line is fit for each category of
region and the bandwidth is constrained to be equal across region categories.

Summary Functions

Summary functions apply to scale variables selected for a dependent axis or a slice summary.
Percentages are based on the specified percent base. For a slice summary, only summary
functions appropriate for the type of chart are available.

The following summary functions are available:

First Values (FIRST). The value found in the first case for each category in the data file at
the time the summary was defined.

Last Values (LAST).The value found in the last case for each category n the data file at the
time the summary was defined.

Minimum Values (MINIMUM). The smallest value within the category.

Maximum Values (MAXIMUM). The largest value for each category.

Means (MEAN). The arithmetic average for each category.

IGRAPH 479

Medians (MEDIAN). The values below which half the cases fall in each category.

Modes (MODE). The most frequently occurring value within each category.

Number of Cases Above (NGT(x)). The number of cases having values above the specified
value.

Number of Cases Between (NIN(x1,x2)). The number of cases between two specified values.

Number of Cases Greater Than or Equal to (NGE(x)). The number of cases having values
above or equal to the specified value.

Number of Cases Equal to (NEQ(x)). The number of cases equal to the specified value.

Number of Cases Less Than (NLT(x)). The number of cases below the specified value.

Number of Cases Less Than or Equal to (NLE(x)). The number of cases below or equal to the
specified value.

Percentage of Cases Above (PGT(x)). The percentage of cases having values above the spec-
ified value.

Percentage of Cases Between (PIN(x1,x2)). The percentage of cases between two specified
values.

Percentage of Cases Equal to (PEQ(x)). The percentage of cases equal to the specified value.

Percentage of Cases Greater Than or Equal to (PGE(x)). The percentage of cases having val-
ues above or equal to the specified value.

Percentage of Cases Less Than (PLT(x)). The percentage of cases having values below the
specified value.

Percentage of Cases Less Than or Equal to (PLE(x)). The percentage of cases having values
below or equal to the specified value.

Percentiles (PTILE(x)). The data value below which the specified percentage of values fall
within each category.

Skewness (SKEW). A measure of the asymmetry of a distribution. The normal distribution
is symmetric, and has a skewness value of zero. A distribution with a significant positive
skewness has a long right tail. A distribution with a significant negative skewness has a
long left tail.

Kurtosis (KURTOSIS). A measure of the extent to which observations cluster around a cen-
tral point. For a normal distribution, the value of the kurtosis statistic is 0. Positive kurto-
sis indicates that the observations cluster more and have longer tails than those in the
normal distribution and negative kurtosis indicates the observations cluster less and have
shorter tails.

Standard Deviations (STDDEV). A measure of dispersion around the mean, expressed in the
same units of measurement as the observations, equal to the square root of the variance.
In a normal distribution, 68% of cases fall within one SD of the mean and 95% of cases
fall within 2 SD.

480 IGRAPH

Standard Errors of the Mean (SEMEAN). A measure of how much the value of the mean may
vary from sample to sample taken from the same distribution. It can be used to roughly
compare the observed mean to a hypothesized value (that is, you can conclude the two
values are different if the ratio of the difference to the standard error is less than -2 or
greater than +2).

Standard Errors of Kurtosis (SEKURT). The ratio of kurtosis to its standard error can be used
as a test of normality (that is, you can reject normality if the ratio is less than -2 or greater
than +2). A large positive value for kurtosis indicates that the tails of the distribution are
longer than those of a normal distribution; a negative value for kurtosis indicates shorter
tails (becoming like those of a box-shaped uniform distribution).

Standard Errors of Skewness (SESKEW). The ratio of skewness to its standard error can be
used as a test of normality (that is, you can reject normality if the ratio is less than -2 or
greater than +2). A large positive value for skewness indicates a long right tail; an ex-
treme negative value, a long left tail.

Sums (SUM). The sums of the values within each category.

Sums of Absolute Values (SUMAV). The sums of the absolute values within each category.

Sums of Squares (SUMSQ). The sums of the squares of the values within each category.

Variances (VARIANCE). A measure of how much observations vary from the mean, ex-
pressed in squared units.

481

IMPORT

IMPORT FILE=file

 [/TYPE={COMM}]
 {TAPE}

 [/KEEP={ALL** }] [/DROP=varlist]
 {varlist}

 [/RENAME=(old varnames=new varnames)...]

 [/MAP]

**Default if the subcommand is omitted.

Example:
IMPORT FILE=NEWDATA /RENAME=(V1 TO V3=ID, SEX, AGE) /MAP.

Overview

IMPORT reads SPSS-format portable data files created with the EXPORT command. A por-
table data file is a data file created by the program and used to transport data between dif-
ferent types of computers and operating systems (such as between IBM CMS and Digital
VAX/VMS) or between SPSS, SPSS/PC+, or other software using the same portable file
format. Like an SPSS-format data file, a portable file contains all of the data and dictionary
information stored in the working data file from which it was created.

The program can also read data files created by other software programs. See GET
TRANSLATE for information on reading files created by spreadsheet and database programs
such as dBASE, Lotus, and Excel.

Options

Format. You can specify the format of the portable file (magnetic tape or communications
program) on the TYPE subcommand. For more information on magnetic tapes and commu-
nications programs, see “Methods of Transporting Portable Files” on p. 315.

Variables. You can read a subset of variables from the working data file with the DROP and
KEEP subcommands. You can rename variables using RENAME. You can also produce a
record of all variables and their names in the working file with the MAP subcommand.

Basic Specification

The basic specification is the FILE subcommand with a file specification. All variables from
the portable file are copied into the working data file with their original names, variable and
value labels, missing-value flags, and print and write formats.

482 IMPORT

Subcommand Order

• FILE and TYPE must precede all other subcommands.

• No specific order is required between FILE and TYPE or among other subcommands.

Operations

• The portable data file and dictionary become the working data file and dictionary.

• A file saved with weighting in effect (using the WEIGHT command) automatically uses
the case weights when the file is read.

Example

IMPORT FILE=NEWDATA /RENAME=(V1 TO V3=ID,SEX,AGE) /MAP.

• The working data file is generated from the portable file NEWDATA.
• Variables V1, V2, and V3 are renamed ID, SEX, and AGE in the working file. Their names

remain V1, V2, and V3 in the portable file. None of the other variables copied into the
working file are renamed.

• MAP requests a display of the variables in the working data file.

FILE Subcommand

FILE specifies the portable file. FILE is the only required subcommand on IMPORT.

TYPE Subcommand

TYPE indicates whether the portable file is formatted for magnetic tape or for a communica-
tions program. TYPE can specify either COMM or TAPE. For more information on magnetic
tapes and communications programs, see EXPORT.

COMM Communications-formatted file. This is the default.

TAPE Tape-formatted file.

Example
IMPORT TYPE=TAPE /FILE=HUBOUT.

• File HUBOUT is read as a tape-formatted portable file.

DROP and KEEP Subcommands

DROP and KEEP are used to read a subset of variables from the portable file.

IMPORT 483

• DROP excludes a variable or list of variables from the working data file. All variables not
named are included in the file.

• KEEP includes a variable or list of variables in the working file. All variables not specified
on KEEP are excluded.

• DROP and KEEP cannot precede the FILE or TYPE subcommands.

• Variables can be specified in any order. The order of variables on KEEP determines the
order of variables in the working file. The order on DROP does not affect the order of vari-
ables in the working file.

• If a variable is referred to twice on the same subcommand, only the first mention is
recognized.

• Multiple DROP and KEEP subcommands are allowed; the effect is cumulative. Specifying
a variable named on a previous DROP or not named on a previous KEEP results in an error
and the command is not executed.

• Keyword TO can be used to specify a group of consecutive variables in the portable file.

• The portable file is not affected by DROP or KEEP.

Example
IMPORT FILE=NEWSUM /DROP=DEPT TO DIVISION.

• The working data file is generated from the portable file NEWSUM. Variables between and
including DEPT and DIVISION in the portable file are excluded from the working file.

• All other variables are copied into the working file.

RENAME Subcommand

RENAME renames variables being read from the portable file. The renamed variables retain
the variable and value labels, missing-value flags, and print formats contained in the portable
file.
• To rename a variable, specify the name of the variable in the portable file, a required

equals sign, and the new name.

• A variable list can be specified on both sides of the equals sign. The number of variables on
both sides must be the same, and the entire specification must be enclosed in parentheses.

• Keyword TO can be used for both variable lists (see “Keyword TO” on p. 20).

• Any DROP or KEEP subcommand after RENAME must use the new variable names.

Example
IMPORT FILE=NEWSUM /DROP=DEPT TO DIVISION

/RENAME=(NAME,WAGE=LNAME,SALARY).

• RENAME renames NAME and WAGE to LNAME and SALARY.

• LNAME and SALARY retain the variable and value labels, missing-value flags, and print
formats assigned to NAME and WAGE.

484 IMPORT

MAP Subcommand

MAP displays a list of variables in the working data file, showing all changes that have been
specified on the RENAME, DROP, or KEEP subcommands.

• MAP can be specified as often as desired.

• MAP confirms only the changes specified on the subcommands that precede the MAP
request.

• Results of subcommands that follow MAP are not mapped. When MAP is specified last, it
also produces a description of the file.

Example
IMPORT FILE=NEWSUM /DROP=DEPT TO DIVISION /MAP

/RENAME NAME=LNAME WAGE=SALARY /MAP.

• The first MAP subcommand produces a listing of the variables in the file after DROP has
dropped the specified variables.

• RENAME renames NAME and WAGE.

• The second MAP subcommand shows the variables in the file after renaming.

485

INCLUDE

INCLUDE FILE=file

Example:
INCLUDE FILE=GSSLABS.

Overview

INCLUDE includes a file of commands in a session. INCLUDE is especially useful for includ-
ing a long series of data definition statements or transformations. Another use for INCLUDE
is to set up a library of commonly used commands and include them in the command se-
quence as they are needed.

INCLUDE allows you to run multiple commands together during a session and can save
time. Complex or repetitive commands can be stored in a command file and included in the
session, while simpler commands or commands unique to the current analysis can be en-
tered during the session, before and after the included file.

Basic Specification

The only specification is the FILE subcommand, which specifies the file to include. When
INCLUDE is executed, the commands in the specified file are processed.

Syntax Rules

• Commands in an included file must begin in column 1, and continuation lines for each
command must be indented at least one column.

• A raw data file can be used as an include file if the first line of the included file contains
the BEGIN DATA command and the last line contains the END DATA command. However,
because the data are specified between BEGIN DATA and END DATA, they are limited to a
maximum of 80 columns (the maximum may be fewer than 80 columns on some systems).

• As many INCLUDE commands as needed can be used in a session.
• INCLUDE commands can be nested so that one set of included commands includes an-

other set of commands. This nesting can go to five levels. However, a file cannot be
included that is still open from a previous step.

Operations

• If an included file contains a FINISH command, the session ends and no further com-
mands are processed.

486 INCLUDE

• If a journal file is created for the session, INCLUDE is copied to the journal file. Com-
mands from the included file are also copied to the journal file but are treated like printed
messages. Thus, INCLUDE can be executed from the journal file if the journal file is later
used as a command file. Commands from the included file are executed only once.

FILE Subcommand

FILE identifies the file containing commands. FILE is the only specification on INCLUDE and
is required.

Example

INCLUDE FILE=GSSLABS.

• INCLUDE includes file GSSLABS in the prompted session. When INCLUDE is executed, the
commands in file GSSLABS are processed.

• Assume the include file GSSLABS contains the following:

DATA LIST FILE=DATA52
/RELIGION 5 OCCUPAT 7 SES 12 ETHNIC 15
PARTY 19 VOTE48 33 VOTE52 41.

The working data file will be defined and ready for analysis after INCLUDE is executed.

487

INFO

This command is not available on all operating systems.

INFO [OUTFILE = file]
 [OVERVIEW]
 [LOCAL]
 [ERRORS]
 [FACILITIES]
 [PROCEDURES]
 [ALL]
 [procedure name] [/procedure name...]
 [SINCE release number]

Example:
INFO LOCAL.

Overview

INFO makes available two kinds of online documentation: local and update.

Local Documentation

Local documentation concerns the environment in which the program is run. It includes
some or all of the following, depending on the operating system:

• Commands or job control language for running the program.
• Conventions for referring to files. These include instructions on how your computer’s

operating system accesses or creates a particular file.

• Conventions for handling tapes and other input/output devices.

• Data formats. The formats the program reads and writes may differ from one computer
and operating system to another.

• Default values for parameters controlled by the SET command. Many defaults for these
parameters are set at the individual installation. The SHOW command displays the values
that are currently in effect. Local documentation may contain information on why one
setting is preferred over another.

• Information about your computer and operating system or your individual installation.

Update Documentation

Update documentation includes changes to existing procedures and facilities made after
publication of this manual, new procedures and facilities, and corrections to this manual.
Update documentation can be requested for all available releases, or for releases after a par-
ticular release.

488 INFO

Basic Specification

• The minimum specification is the command name. When specified by itself, the program
displays an overview of available documents.

Syntax Rules

• Multiple keywords and/or procedure names can be specified on a single INFO command.

• Multiple procedure names must be separated by slashes.

• The order of specifications is unimportant and does not affect the order in which the doc-
umentation is printed.

• Three- or four-character truncation does not apply to INFO command specifications. Spell
all keywords in full. For procedure names, spell the first word in full and subsequent
words through at least the first three characters.

Operations

• By default, the INFO command produces update information only for the current release.
Documentation for earlier releases may also be available; read the INFO overview to find
out whether it is available on your system.

• If overlapping sets of information are requested, only one copy is printed.
• If there is no available documentation for the requested information, only a copyright

page is printed.

• If information is requested for an unrecognized topic, the program prints an error mes-
sage.

• The characteristics of the output produced by the INFO command may vary by computer
type. As implemented at SPSS Inc., the output includes carriage control, with the maximum
length of a page determined by the LENGTH subcommand on SET. A printer width of 132
characters is assumed for some examples, although the text is generally much narrower.

• The program requires more computer resources than most printing utilities. Your installa-
tion may therefore provide an alternative method for printing INFO documentation. In this
case, the INFO command may simply provide instructions for using the alternative method.

Example

INFO OVERVIEW FACILITIES FREQUENCIES / CROSSTABS.

• INFO produces an overview and documentation for any changes made to system facilities
and to the FREQUENCIES and CROSSTABS procedures.

• Because keyword SINCE is not specified, INFO prints only documentation for the current
release.

INFO 489

Types of Information

The following types of information can be requested on INFO:

OVERVIEW Overview of available documentation. This includes a table of contents for
the documentation available with INFO, along with information about SPSS
manuals.

LOCAL Local documentation. See “Local Documentation” on p. 487.

ERRORS List of known unfixed errors. This lists the known unfixed errors in the cur-
rent release of the program. Since ERRORS applies only to the current re-
lease, the SINCE keyword (described below) has no effect with ERRORS.

FACILITIES Update information for system facilities. This covers all differences, except
in procedures, between the system as documented in this manual and the sys-
tem as installed on your computer—whether those differences result from up-
dates to the system, revisions required for conversions to particular operating
systems, or errors in this manual. Only updates for the most current release
are printed unless keyword SINCE is specified.

PROCEDURES Update information for procedures. This includes full documentation for
procedures new in the current release and update information for procedures
that existed prior to the current release.

procedure Documentation for the procedure named. This is the same information as
that printed by the PROCEDURES keyword, but limited to the procedure
named. You can specify multiple procedures, separating each from the other
with a slash.

ALL All available documentation. ALL includes OVERVIEW, LOCAL, ERRORS,
FACILITIES, and PROCEDURES.

SINCE Keyword

Releases of SPSS are numbered by integers, with decimal digits indicating maintenance
releases between major releases. The release number appears in the default heading for
SPSS output. Each SPSS manual is identified in the preface by the number of the release
it documents.

Keyword SINCE obtains information for earlier releases or limits the information to
maintenance releases since the last major release.

• The minimum specification is keyword SINCE followed by a release number.

• SINCE is not inclusive. Specifying 3.0 does not include changes made to the system in
Release 3.0.

• To identify a maintenance release, enter the exact number, with decimal, as in 3.1.
• Information for some earlier releases may not be available. For example, information for

Release 2.2 and earlier is not available if INFO is run with SPSS Release 5.0 or later.

490 INFO

Example
INFO OVERVIEW FACILITIES FREQUENCIES / CROSSTABS SINCE 3.

• INFO prints documentation for all changes to system facilities and to procedures FREQUENCIES
and CROSSTABS since Release 3.0.

OUTFILE Subcommand

By default, the information generated by INFO is part of the output. OUTFILE sends INFO
output to a separate file.

Example
INFO OUTFILE=SPSSDOC ALL SINCE 3.

• INFO creates a text file that includes an overview, local documentation, error, and update
information for facilities and procedures since Release 3.0.

• The OUTFILE subcommand sends the documentation to file SPSSDOC.

491

INPUT PROGRAM—END INPUT PROGRAM

INPUT PROGRAM

commands to create or define cases

END INPUT PROGRAM

Example:
INPUT PROGRAM.
DATA LIST FILE=PRICES /YEAR 1-4 QUARTER 6 PRICE 8-12(2).

DO IF (YEAR GE 1881). /*Stop reading before 1881
END FILE.
END IF.
END INPUT PROGRAM.

Overview

The INPUT PROGRAM and END INPUT PROGRAM commands enclose data definition and
transformation commands that build cases from input records. The input program often en-
closes one or more DO IF—END IF or LOOP—END LOOP structures, and it must include at
least one file definition command, such as DATA LIST. One of the following utility com-
mands is also usually used:

END CASE Build cases from the commands within the input program and pass
the cases to the commands immediately following the input program.

END FILE Terminate processing of a data file before the actual end of the file
or define the end of the file when the input program is used to read
raw data.

REREAD Reread the current record using a different DATA LIST.

REPEATING DATA Read repeating groups of data from the same input record.

For more information on the commands used in an input program, see the discussion of each
command.

Input programs create a dictionary and data for a working file from raw data files; they
cannot be used to read SPSS-format data files. They can be used to process direct-access
and keyed data files. For details, see KEYED DATA LIST.

Input Programs

The program builds the working data file dictionary when it encounters commands that cre-
ate and define variables. At the same time, the program builds an input program that con-
structs cases and an optional transformation program that modifies cases prior to analysis
or display. By the time the program encounters a procedure command that tells it to read the

492 INPUT PROGRAM—END INPUT PROGRAM

data, the working file dictionary is ready, and the programs that construct and modify the cas-
es in the working file are built.

The internal input program is usually built from either a single DATA LIST command or
from any of the commands that read or combine SPSS-format data files (for example, GET,
ADD FILES, MATCH FILES, UPDATE, and so forth). The input program can also be built from
the FILE TYPE—END FILE TYPE structure used to define nested, mixed, or grouped files. The
third type of input program is specified with the INPUT PROGRAM—END INPUT PROGRAM
commands.

With INPUT PROGRAM—END INPUT PROGRAM you can create your own input program
to perform many different operations on raw data. You can use transformation commands to
build cases. You can read nonrectangular files, concatenate raw data files, and build cases
selectively. You can also create a working data file without reading any data at all.

Input State

There are four program states in the program: the initial state, in which there is no working
file dictionary; the input state, in which cases are created from the input file; the transforma-
tion state, in which cases are transformed; and the procedure state, in which procedures are
executed. When you specify INPUT PROGRAM—END INPUT PROGRAM, you must pay atten-
tion to which commands are allowed within the input state, which commands can appear
only within the input state, and which are not allowed within the input state. See Appendix
A for a discussion of program states, command order, and a table that describes what happens
to each command when it is encountered in each of the four states.

Basic Specification

The basic specification is INPUT PROGRAM, the commands used to create cases and define
the working data file, and END INPUT PROGRAM.

• INPUT PROGRAM and END INPUT PROGRAM each must be specified on a separate line
and have no additional specifications.

• To define a working data file, the input program must include at least one DATA LIST or
END FILE command.

Operations

• The INPUT PROGRAM—END INPUT PROGRAM structure defines a working data file and
is not executed until the program encounters a procedure or the EXECUTE command.

• INPUT PROGRAM clears the current working data file.

INPUT PROGRAM—END INPUT PROGRAM 493

Example

* Select cases with an input program.

INPUT PROGRAM.
DATA LIST FILE=PRICES /YEAR 1-4 QUARTER 6 PRICE 8-12(2).

DO IF (YEAR GE 1881). /*Stop reading when reaching 1881
END FILE.
END IF.
END INPUT PROGRAM.

LIST.

• The input program is defined between the INPUT PROGRAM and END INPUT PROGRAM
commands.

• This example assumes that data records are entered chronologically by year. The DO IF—
END IF structure specifies an end of file when the first case with a value of 1881 or later
for YEAR is reached.

• LIST executes the input program and lists cases in the working data file. The case that causes
the end of the file is not included in the working file generated by the input program.

• As an alternative to this input program, you can use N OF CASES to select cases if you
know the exact number of cases. Another alternative is to use SELECT IF to select cases
before 1881, but then the program would unnecessarily read the entire input file.

Example

* Skip the first n records in a file.

INPUT PROGRAM.
NUMERIC #INIT.
DO IF NOT (#INIT).
+ LOOP #I = 1 TO 5.
+ DATA LIST NOTABLE/. /* No data - just skip record
+ END LOOP.
+ COMPUTE #INIT = 1.
END IF.
DATA LIST NOTABLE/ X 1.
END INPUT PROGRAM.

BEGIN DATA
A /* The first 5 records are skipped
B
C
D
E
1
2
3
4
5
END DATA.
LIST.

494 INPUT PROGRAM—END INPUT PROGRAM

• NUMERIC declares scratch variable #INIT, which is initialized to system-missing.

• The DO IF structure is executed as long as #INIT does not equal 1.

• LOOP is executed five times. Within the loop, DATA LIST is specified without variable
names, causing the program to read records in the data file without copying them into the
working file. LOOP is executed five times, so the program reads five records in this man-
ner. END LOOP terminates this loop.

• COMPUTE creates scratch variable #INIT and sets it equal to 1. The DO IF structure is
therefore not executed again.

• END IF terminates the DO IF structure.

• The second DATA LIST specifies numeric variable X, which is located in column 1 of each
record. Because the program has already read five records, the first value for X that is cop-
ied into the working file is read from record 6.

More Examples

For additional examples of input programs, refer to DATA LIST (p. 208), DO IF (p. 283), DO
REPEAT (p. 286), END CASE, END FILE, LOOP, NUMERIC (p. 598), POINT (p. 632),
REPEATING DATA, REREAD, and VECTOR (p. 932).

495

KEYED DATA LIST

KEYED DATA LIST KEY=varname IN=varname

 FILE=file [{TABLE }]
 {NOTABLE}

 /varname {col location [(format)]} [varname ..]
 {(FORTRAN-like format) }

Example:
FILE HANDLE EMPL/ file specifications.
KEYED DATA LIST FILE=EMPL KEY=#NXTCASE IN=#FOUND

/YRHIRED 1-2 SEX 3 JOBCLASS 4.

Overview

KEYED DATA LIST reads raw data from two types of nonsequential files: direct-access files,
which provide direct access by a record number, and keyed files, which provide access by
a record key. An example of a direct-access file is a file of 50 records, each corresponding
to one of the United States. If you know the relationship between the states and the record
numbers, you can retrieve the data for any specific state. An example of a keyed file is a file
containing social security numbers and other information about a firm’s employees. The so-
cial security number can be used to identify the records in the file.

Direct-Access Files

There are various types of direct-access files. This program’s concept of a direct-access file,
however, is very specific. The file must be one from which individual records can be select-
ed according to their number. The records in a 100-record direct-access file, for example,
are numbered from 1 to 100.

Although the concept of record number applies to almost any file, not all files can be
treated by this program as direct-access files. In fact, some operating systems provide no
direct-access capabilities at all, and others permit only a narrowly defined subset of all files
to be treated as direct access.

Very few files turn out to be good candidates for direct-access organization. In the case
of an inventory file, for instance, the usual large gaps in the part numbering sequence would
result in large amounts of wasted file space. Gaps are not a problem, however, if they are
predictable. For instance, if you recognize that telephone area codes have first digits of 2
through 9, second digits of 0 or 1, and third digits of 0 through 9, you can transform an area
code into a record number by using the following COMPUTE statement:

COMPUTE RECNUM = 20*(DIGIT1-2) + 10*DIGIT2 + DIGIT3 + 1.

where DIGIT1, DIGIT2, and DIGIT3 are variables corresponding to the respective digits in the
area code, and RECNUM is the resulting record number. The record numbers would range

496 KEYED DATA LIST

from 1, for the nonexistent area code 200, through 160, for area code 919. The file would
then have a manageable number of unused records.

Keyed Files

Of the many kinds of keyed files, the ones to which the program can provide access are gen-
erally known as indexed sequential files. A file of this kind is basically a sequential file in
which an index is maintained so that the file can be processed either sequentially or selec-
tively. In effect, there is an underlying data file that is accessed through a file of index entries.
The file of index entries may, for example, contain the fact that data record 797 is associated
with social security number 476-77-1359. Depending on the implementation, the underlying
data may or may not be maintained in sequential order.

The key for each record in the file generally comprises one or more pieces of information
found within the record. An example of a complex key is a customer’s last name and house
number, plus the consonants in the street name, plus the zip code, plus a unique digit in case
there are duplicates. Regardless of the information contained in the key, the program treats
it as a character string.

On some systems, more than one key is associated with each record. That is, the records
in a file can be identified according to different types of information. Although the primary
key for a file normally must be unique, sometimes the secondary keys need not be. For ex-
ample, the records in an employee file might be identified by social security number and job
classification.

Options

Data Source. You can specify the name of the keyed file on the FILE subcommand. By default,
the last file that was specified on an input command, such as DATA LIST or REPEATING DATA,
is read.

Summary Table. You can display a table that summarizes the variable definitions.

Basic Specification

• The basic specification requires FILE, KEY, and IN, each of which specifies one variable,
followed by a slash and variable definitions.

• FILE specifies the direct-access or keyed file. The file must have a file handle already defined.

• KEY specifies the variable whose value will be used to read a record. For direct-access
files, the variable must be numeric; for keyed files, it must be string.

• IN creates a logical variable that flags whether a record was successfully read.

• Variable definitions follow all subcommands; the slash preceding them is required. Vari-
able definitions are similar to those specified on DATA LIST.

Subcommand Order

• Subcommands can be named in any order.

KEYED DATA LIST 497

• Variable definitions must follow all specified subcommands.

Syntax Rules

• Specifications for the variable definitions are the same as those described for DATA LIST.
The only difference is that only one record can be defined per case.

• The FILE HANDLE command must be used if the FILE subcommand is specified on KEYED
DATA LIST.

• KEYED DATA LIST can be specified in an input program, or it can be used as a transforma-
tion language to change an existing working data file. This differs from all other input
commands, such as GET and DATA LIST, which create new working files.

Operations

• Variable names are stored in the working file dictionary.

• Formats are stored in the working file dictionary and are used to display and write the
values. To change output formats of numeric variables, use the FORMATS command.

Example

FILE HANDLE EMPL/ file specifications.
KEYED DATA LIST FILE=EMPL KEY=#NXTCASE IN=#FOUND

/YRHIRED 1-2 SEX 3 JOBCLASS 4.

• FILE HANDLE defines the handle for the data file to be read by KEYED DATA LIST. The han-
dle is specified on the FILE subcommand of KEYED DATA LIST.

• KEY on KEYED DATA LIST specifies the variable to be used as the access key. For a direct-
access file, the value of the variable must be between 1 and the number of records in the
file. For a keyed file, the value must be a string.

• IN creates the logical scratch variable #FOUND, whose value will be 1 if the record is
successfully read, or 0 if the record is not found.

• The variable definitions are the same as those used for DATA LIST.

498 KEYED DATA LIST

Example

* Reading a direct-access file: sampling 1 out of every 25 records.

FILE HANDLE EMPL/ file specifications.
INPUT PROGRAM.
COMPUTE #INTRVL = TRUNC(UNIF(48))+1. /* Mean interval = 25
COMPUTE #NXTCASE = #NXTCASE+#INTRVL. /* Next record number
COMPUTE #EOF = #NXTCASE > 1000. /* End of file check
DO IF #EOF.
+ END FILE.
ELSE.
+ KEYED DATA LIST FILE=EMPL, KEY=#NXTCASE, IN=#FOUND, NOTABLE
 /YRHIRED 1-2 SEX 3 JOBCLASS 4.
+ DO IF #FOUND.
+ END CASE. /* Return a case
+ ELSE.
+ PRINT / ’Oops. #NXTCASE=’ #NXTCASE.
+ END IF.
END IF.
END INPUT PROGRAM.
EXECUTE.

• FILE HANDLE defines the handle for the data file to be read by the KEYED DATA LIST com-
mand. The record numbers for this example are generated by the transformation lan-
guage; they are not based on data taken from another file.

• The INPUT PROGRAM and END INPUT PROGRAM commands begin and end the block of
commands that build cases from the input file. Since the session generates cases, an input
program is required.

• The first two COMPUTE statements determine the number of the next record to be select-
ed. This is done in two steps. First, the integer portion is taken from the sum of 1 and a
uniform pseudo-random number between 1 and 49. The result is a mean interval of 25.
Second, the variable #NXTCASE is added to this number to generate the next record num-
ber. This record number, #NXTCASE, will be used for the key variable on the KEYED DATA
LIST command. The third COMPUTE creates a logical scratch variable, #EOF, that has a
value of 0 if the record number is less than or equal to 1000, or 1 if the value of the record
number is greater than 1000.

• The DO IF—END IF structure controls the building of cases. If the record number is greater
than 1000, #EOF equals 1, and the END FILE command tells the program to stop reading
data and end the file.

• If the record number is less than or equal to 1000, the record is read via KEYED DATA LIST
using the value of #NXTCASE. A case is generated if the record exists (#FOUND equals 1).
If not, the program displays the record number and continues to the next case. The sample
will have about 40 records.

• EXECUTE causes the transformations to be executed.

• This example illustrates the difference between DATA LIST, which always reads the next
record in a file, and KEYED DATA LIST, which reads only specified records. The record
numbers must be generated by another command or be contained in the working data file.

KEYED DATA LIST 499

Example

* Reading a keyed file: reading selected records.

GET FILE=STUDENTS/KEEP=AGE,SEX,COURSE.
FILE HANDLE COURSES/ file specifications.
STRING #KEY(A4).
COMPUTE #KEY = STRING(COURSE,N4). /* Create a string key
KEYED DATA LIST FILE=COURSES KEY=#KEY IN=#FOUND NOTABLE

/PERIOD 13 CREDITS 16.
SELECT IF #FOUND.
LIST.

• GET reads the STUDENTS file, which contains information on students, including a course
identification for each student. The course identification will be used as the key for select-
ing one record from a file of courses.

• The FILE HANDLE command defines a file handle for the file of courses.

• The STRING and COMPUTE commands transform the course identification from numeric
to string for use as a key. For keyed files, the key variable must be a string.

• KEYED DATA LIST uses the value of the newly created string variable #KEY as the key to
search the course file. If a record that matches the value of #KEY is found, #FOUND is set
to 1; otherwise, it is set to 0. Note that KEYED DATA LIST appears outside an input program
in this example.

• If the course file contains the requested record, #FOUND equals 1. The variables PERIOD
and CREDITS are added to the case and the case is selected via the SELECT IF command;
otherwise, the case is dropped.

• LIST lists the values of the selected cases.

• This example shows how existing cases can be updated on the basis of information read
from a keyed file.

• This task could also be accomplished by reading the entire course file with DATA LIST and
combining it with the student file via the MATCH FILES command. The technique you
should use depends on the percentage of the records in the course file that need to be ac-
cessed. If fewer than 10% of the course file records are read, KEYED DATA LIST is probably
more efficient. As the percentage of the records that are read increases, reading the entire
course file and using MATCH makes more sense.

FILE Subcommand

FILE specifies the handle for the direct-access or keyed data file. The file handle must have
been defined on a previous FILE HANDLE command (or, in the case of the IBM OS environ-
ment, on a DD statement in the JCL).

KEY Subcommand

KEY specifies the variable whose value will be used as the key. This variable must already
exist as the result of a prior DATA LIST, KEYED DATA LIST, GET, or transformation command.

500 KEYED DATA LIST

• KEY is required. Its only specification is a single variable. The variable can be a permanent
variable or a scratch variable.

• For direct-access files, the key variable must be numeric, and its value must be between
1 and the number of records in the file.

• For keyed files, the key variable must be string. If the keys are numbers, such as social
security numbers, the STRING function can be used to convert the numbers to strings. For
example, the following might be required to get the value of a numeric key into exactly
the same format as used on the keyed file:

COMPUTE #KEY=STRING(123,IB4).

IN Subcommand

IN creates a numeric variable whose value indicates whether or not the specified record is
found.

• IN is required. Its only specification is a single numeric variable. The variable can be a
permanent variable or a scratch variable.

• The value of the variable is 1 if the record is successfully read or 0 if the record is not
found. The IN variable can be used to select all cases that have been updated by KEYED
DATA LIST.

Example
FILE HANDLE EMPL/ file specifications.
KEYED DATA LIST FILE=EMPL KEY=#NXTCASE IN=#FOUND

/YRHIRED 1-2 SEX 3 JOBCLASS 4.

• IN creates the logical scratch variable #FOUND. The values of #FOUND will be 1 if the
record indicated by the key value in #NXTCASE is found or 0 if the record does not exist.

TABLE and NOTABLE Subcommands

TABLE and NOTABLE determine whether the program displays a table that summarizes the
variable definitions. TABLE, the default, displays the table. NOTABLE suppresses the table.
• TABLE and NOTABLE are optional and mutually exclusive.

• The only specification for TABLE or NOTABLE is the subcommand keyword. Neither sub-
command has additional specifications.

501

LEAVE

LEAVE varlist

Example:
COMPUTE TSALARY=TSALARY+SALARY.
LEAVE TSALARY.
FORMAT TSALARY (DOLLAR8)/ SALARY (DOLLAR7).
EXECUTE.

Overview

Normally, the program reinitializes variables each time it prepares to read a new case.
LEAVE suppresses reinitialization and retains the current value of the specified variable or
variables when the program reads the next case. It also sets the initial value received by a
numeric variable to 0 instead of system-missing. LEAVE is frequently used with COMPUTE
to create a variable to store an accumulating sum. LEAVE is also used to spread a variable’s
values across multiple cases when VECTOR is used within an input program to restructure
a data file (see p. 295 for an example).

LEAVE cannot be used with scratch variables. For information on using scratch variables,
see “Scratch Variables” on p. 22.

Basic Specification

The basic specification is the variable(s) whose values are not to be reinitialized as each new
case is read.

Syntax Rules

• Variables named on LEAVE must already exist and cannot be scratch variables.

• Multiple variables can be named. Keyword TO can be used to refer to a list of consecutive
variables.

• String and numeric variables can be specified on the same LEAVE command.

Operations

• Unlike most transformations, which do not take effect until the data are read, LEAVE takes
effect as soon as it is encountered in the command sequence. Thus, special attention
should be paid to its position among commands. For more information, see Universals:
Command Order.

502 LEAVE

• Numeric variables named on LEAVE are initialized to 0 for the first case, and string vari-
ables are initialized to blanks. These variables are not reinitialized when new cases are
read.

Example

COMPUTE TSALARY=TSALARY+SALARY.
LEAVE TSALARY.
FORMAT TSALARY (DOLLAR8)/ SALARY (DOLLAR7).

• These commands keep a running total of salaries across all cases. SALARY is the variable
containing the employee’s salary, and TSALARY is the new variable containing the cu-
mulative salaries for all previous cases.

• For the first case, TSALARY is initialized to 0, and TSALARY equals SALARY. For the rest
of the cases, TSALARY stores the cumulative totals for SALARY.

• LEAVE follows COMPUTE because TSALARY must first be defined before it can be speci-
fied on LEAVE.

• If LEAVE were not specified for this computation, TSALARY would be initialized to system-
missing for all cases. TSALARY would remain system-missing because its value would be
missing for every computation.

Example

SORT CASES DEPT.
IF DEPT NE LAG(DEPT,1) TSALARY=0. /*Initialize for new dept
COMPUTE TSALARY=TSALARY+SALARY. /*Sum salaries
LEAVE TSALARY. /*Prevent initialization
each case
FORMAT TSALARY (DOLLAR8)/ SALARY (DOLLAR7).

• These commands accumulate a sum across cases for each department.

• SORT first sorts cases by the values of variable DEPT.
• IF specifies that if the value of DEPT for the current case is not equal to the value of DEPT

for the previous case, TSALARY equals 0. Thus, TSALARY is reset to 0 each time the value
of DEPT changes. (For the first case in the file, the logical expression on IF is missing.
However, the desired effect is obtained because LEAVE initializes TSALARY to 0 for the
first case, independent of the IF statement.)

• LEAVE prevents TSALARY from being initialized for cases within the same department.

503

LIST

LIST [[VARIABLES=]{ALL** }] [/FORMAT=[{WRAP**}] [{UNNUMBERED**}]]
 {varlist} {SINGLE} {NUMBERED }

 [/CASES=[FROM {1**}] [TO {eof**}] [BY {1**}]]
 {n } {n } {n }

**Default if the subcommand is omitted.

Example:
LIST VARIABLES=V1 V2 /CASES=FROM 10 TO 100 BY 2.

Overview

LIST displays case values for variables in the working data file. The output is similar to the
output produced by the PRINT command. However, LIST is a procedure and reads data,
whereas PRINT is a transformation and requires a procedure (or the EXECUTE command) to
execute it.

Options

Selecting and Ordering Variables. You can specify a list of variables to be listed using the
VARIABLES subcommand.

Format. You can limit each case listing to a single line, and you can display the case number
for each listed case with the FORMAT subcommand.

Selecting Cases. You can limit the listing to a particular sequence of cases using the CASES
subcommand.

Basic Specification

• The basic specification is simply LIST, which displays the values for all variables in the
working data file.

• By default, cases wrap to multiple lines if all the values do not fit within the page width
(the page width is determined by the SET WIDTH command). Case numbers are not dis-
played for the listed cases.

Subcommand Order

All subcommands are optional and can be named in any order.

504 LIST

Operations

• If VARIABLES is not specified, variables are listed in the order in which they appear in the
working file.

• LIST does not display values for scratch or system variables.

• LIST uses print formats contained in the dictionary of the working data file. Alternative
formats cannot be specified on LIST. See FORMATS or PRINT FORMATS for information
on changing print formats.

• LIST output uses the width specified on SET.

• If a numeric value is longer than its defined width, the program first attempts to list the
value by removing punctuation characters, then uses scientific notation, and finally prints
asterisks.

• If a long string variable cannot be listed within the output width, it is truncated.
• Values of the variables listed for a case are always separated by at least one blank.

• System-missing values are displayed as a period for numeric variables and a blank for
string variables.

• If cases fit on one line, the column width for each variable is determined by the length of
the variable name or the format, whichever is greater. If the variable names do not fit on
one line, they are printed vertically.

• If cases do not fit on one line within the output width specified on SET, they are wrapped.
LIST displays a table illustrating the location of the variables in the output and prints the
name of the first variable in each line at the beginning of the line.

• Each execution of LIST begins at the top of a new page. If SPLIT FILE is in effect, each
split also begins at the top of a new page.

Example

LIST.

• LIST by itself requests a display of the values for all variables in the working file.

Example

LIST VARIABLES=V1 V2 /CASES=FROM 10 TO 100 BY 2.

• LIST produces a list of every second case for variables V1 and V2, starting with case 10
and stopping at case 100.

VARIABLES Subcommand

VARIABLES specifies the variables to be listed. The actual keyword VARIABLES can be omitted.

• The variables must already exist, and they cannot be scratch or system variables.

• If VARIABLES is used, only the specified variables are listed.

LIST 505

• Variables are listed in the order in which they are named on VARIABLES.

• If a variable is named more than once, it is listed more than once.

• Keyword ALL (the default) can be used to request all variables. ALL can also be used with
a variable list (see example below).

ALL List all user-defined variables. Variables are listed in the order in which they ap-
pear in the working data file. This is the default if VARIABLES is omitted.

Example
LIST VARIABLES=V15 V31 ALL.

• VARIABLES is used to list values for V15 and V31 before all other variables. Keyword ALL
then lists all variables, including V15 and V31, in the order they appear in the working data
file. Values for V15 and V31 are therefore listed twice.

FORMAT Subcommand

FORMAT controls whether cases wrap if they cannot fit on a single line and whether the case
number is displayed for each listed case. The default display uses more than one line per case
(if necessary) and does not number cases.

• The minimum specification is a single keyword.

• WRAP and SINGLE are alternatives, as are NUMBERED and UNNUMBERED. Only one of
each pair can be specified.

• If SPLIT FILE is in effect for NUMBERED, case numbering restarts at each split. To get se-
quential numbering regardless of splits, create a variable and set it equal to the system
variable $CASENUM and then name this variable as the first variable on the VARIABLES
subcommand. An appropriate format should be specified for the new variable before it is
used on LIST.

WRAP Wrap cases if they do not fit on a single line. Page width is determined by the
SET WIDTH command. This is the default.

SINGLE Limit each case to one line. Only variables that fit on a single line are dis-
played.

UNNUMBERED Do not include the sequence number of each case. This is the default.

NUMBERED Include the sequence number of each case. The sequence number is dis-
played to the left of the listed values.

CASES Subcommand

CASES limits the number of cases listed. By default, all cases in the working data file are
listed.
• Any or all of the keywords below can be used. Defaults that are not changed remain in

effect.

• If LIST is preceded by a SAMPLE or SELECT IF command, case selections specified by
CASES are taken from those cases that were selected by SAMPLE or SELECT IF.

506 LIST

• If SPLIT FILE is in effect, case selections specified by CASES are restarted for each split.

FROM n Number of the first case to be listed. The default is 1.

TO n Number of the last case to be listed. The default is the end of the working file.
CASES 100 is interpreted as CASES TO 100.

BY n Increment used to choose cases for listing. The default is 1.

Example
LIST CASES BY 3 /FORMAT=NUMBERED.

• Every third case is listed for all variables in the working data file. The listing begins with
the first case and includes every third case up to the end of the file.

• FORMAT displays the case number of each listed case.

Example
LIST CASES FROM 10 TO 20.

• Cases from case 10 through case 20 are listed for all variables in the working file.

507

LOOP—END LOOP

LOOP [varname=n TO m [BY {1**}]] [IF [(]logical expression[)]]
 {n }

transformation commands

END LOOP [IF [(]logical expression[)]]

**Default if the subcommand is omitted.

Examples:
SET MXLOOPS=10. /*Maximum number of loops allowed
LOOP. /*Loop with no limit other than MXLOOPS
COMPUTE X=X+1.
END LOOP.

LOOP #I=1 TO 5. /*Loop five times
COMPUTE X=X+1.
END LOOP.

Overview

The LOOP—END LOOP structure performs repeated transformations specified by the com-
mands within the loop until they reach a specified cutoff. The cutoff can be specified by
an indexing clause on the LOOP command, an IF clause on the END LOOP command, or a
BREAK command within the loop structure (see BREAK). In addition, the maximum num-
ber of iterations within a loop can be specified on the MXLOOPS subcommand on SET. The
default MXLOOPS is 40.

The IF clause on the LOOP command can be used to perform repeated transformations
on a subset of cases. The effect is similar to nesting the LOOP—END LOOP structure within
a DO IF—END IF structure, but using IF on LOOP is simpler and more efficient. You have to
use the DO IF—END IF structure, however, if you want to perform different transformations
on different subsets of cases. You can also use IF on LOOP to specify the cutoff, especially
when the cutoff may be reached before the first iteration.

LOOP and END LOOP are usually used within an input program or with the VECTOR com-
mand. Since the loop structure repeats transformations on a single case or on a single input
record containing information on multiple cases, it allows you to read complex data files or
to generate data for a working data file. For more information, see INPUT PROGRAM—END
INPUT PROGRAM and VECTOR.

The loop structure repeats transformations on single cases across variables. It is differ-
ent from the DO REPEAT—END REPEAT structure, which replicates transformations on a
specified set of variables. When both can be used to accomplish a task, such as selectively
transforming data for some cases on some variables, LOOP and END LOOP are generally
more efficient and more flexible, but DO REPEAT allows selection of nonadjacent variables
and use of replacement values with different intervals.

508 LOOP—END LOOP

Options

Missing Values. You can prevent cases with missing values for any of the variables used in
the loop structure from entering the loop (see “Missing Values” on p. 514).

Creating Data. A loop structure within an input program can be used to generate data (see
“Creating Data” on p. 515).

Defining Complex File Structures. A loop structure within an input program can be used to de-
fine complex files that cannot be handled by standard file definition facilities (see pp. 293,
295, and 297 for examples).

Basic Specification

The basic specification is LOOP followed by at least one transformation command. The
structure must end with the END LOOP command. Commands within the loop are executed
until the cutoff is reached.

Syntax Rules

• If LOOP and END LOOP are specified before a working data file exists, they must be spec-
ified within an input program.

• If both an indexing and an IF clause are used on LOOP, the indexing clause must be first.

• Loop structures can be nested within other loop structures or within DO IF structures, and
vice versa.

Operations

• The LOOP command defines the beginning of a loop structure and the END LOOP com-
mand defines its end. The END LOOP command returns control to LOOP unless the cutoff
has been reached. When the cutoff has been reached, control passes to the command im-
mediately following END LOOP.

• When specified within a loop structure, definition commands (such as MISSING VALUES
and VARIABLE LABELS) and utility commands (such as SET and SHOW) are invoked only
once, when they are encountered for the first time within the loop.

Example

SET MXLOOPS=10.
LOOP. /*Loop with no limit other than MXLOOPS
COMPUTE X=X+1.
END LOOP.

• This and the following examples assume that a working data file and all the variables
mentioned in the loop exist.

LOOP—END LOOP 509

• The SET MXLOOPS command limits the number of times the loop is executed to 10. The
function of MXLOOPS is to prevent infinite loops when there is no iteration clause.

• Within the loop structure, each iteration increments X by 1. After ten iterations, the value
of X for all cases is increased by 10, and, as specified on the SET command, the loop is
terminated.

IF Keyword

Keyword IF and a logical expression can be specified on LOOP or on END LOOP to control
iterations through the loop.
• The specification on IF is a logical expression enclosed in parentheses. For more informa-

tion, see “Logical Expressions” on p. 44.

 Example
LOOP.
COMPUTE X=X+1.
END LOOP IF (X EQ 5). /*Loop until X is 5

• Iterations continue until the logical expression on END LOOP is true, which for every case
is when X equals 5. Each case does not go through the same number of iterations.

• This corresponds to the programming notion of DO UNTIL. The loop is always executed
at least once.

Example
LOOP IF (X LT 5). /*Loop while X is less than 5
COMPUTE X=X+1.
END LOOP.

• The IF clause is evaluated each trip through the structure, so looping stops once X equals 5.

• This corresponds to the programming notion of DO WHILE. The loop may not be exe-
cuted at all.

Example
LOOP IF (Y GT 10). /*Loop only for cases with Y GT 10
COMPUTE X=X+1.
END LOOP IF (X EQ 5). /*Loop until X IS 5

• The IF clause on LOOP allows transformations to be performed on a subset of cases. X is
increased by 5 only for cases with values greater than 10 for Y. X is not changed for all
other cases.

Indexing Clause

The indexing clause limits the number of iterations for a loop by specifying the number of
times the program should execute commands within the loop structure.The indexing clause
is specified on the LOOP command and includes an indexing variable followed by initial and
terminal values.

510 LOOP—END LOOP

• The program sets the indexing variable to the initial value and increases it by the specified
increment each time the loop is executed for a case. When the indexing variable reaches
the specified terminal value, the loop is terminated for that case.

• By default, the program increases the indexing variable by 1 for each iteration. Keyword
BY overrides this increment.

• The indexing variable can have any valid variable name. Unless you specify a scratch
variable, the indexing variable is treated as a permanent variable and is saved on the
working data file. If the indexing variable is assigned the same name as an existing vari-
able, the values of the existing variable are altered by the LOOP structure as it is executed,
and the original values are lost.

• The indexing clause overrides the maximum number of loops specified by SET MXLOOPS.

• The initial and terminal values of the indexing clause can be numeric expressions. Non-
integer and negative expressions are allowed.

• If the expression for the initial value is greater than the terminal value, the loop is not ex-
ecuted. For example, #J=X TO Y is a zero-trip loop if X is 0 and Y is −1.

• If the expressions for the initial and terminal values are equal, the loop is executed once.
#J=0 TO Y is a one-trip loop when Y is 0.

• If the loop is exited via BREAK or a conditional clause on the END LOOP statement, the
iteration variable is not updated. If the LOOP statement contains both an indexing clause
and a conditional clause, the indexing clause is executed first, and the iteration variable
is updated regardless of which clause causes the loop to terminate.

Example
LOOP #I=1 TO 5. /*LOOP FIVE TIMES
COMPUTE X=X+1.
END LOOP.

• Scratch variable #I (the indexing variable) is set to the initial value of 1 and increased by
1 each time the loop is executed for a case. When #I increases beyond the terminal value
5, no further loops are executed. Thus, the value of X will be increased by 5 for every case.

Example
LOOP #I=1 TO 5 IF (Y GT 10). /*Loop to X=5 only if Y GT 10
COMPUTE X=X+1.
END LOOP.

• Both an indexing clause and an IF clause are specified on LOOP. X is increased by 5 for
all cases where Y is greater than 10.

Example
LOOP #I=1 TO Y. /*Loop to the value of Y
COMPUTE X=X+1.
END LOOP.

• The number of iterations for a case depends on the value of variable Y for that case. For
a case with value 0 for variable Y, the loop is not executed and X is unchanged. For a case
with value 1 for variable Y, the loop is executed once and X is increased by 1.

LOOP—END LOOP 511

Example
* Factorial routine.

DATA LIST FREE / X.
BEGIN DATA
1 2 3 4 5 6 7
END DATA.

COMPUTE FACTOR=1.
LOOP #I=1 TO X.
COMPUTE FACTOR=FACTOR * #I.
END LOOP.
LIST.

• The loop structure computes FACTOR as the factorial value of X.

Example
* Example of nested loops: compute every possible combination of values
 for each variable.

INPUT PROGRAM.
-LOOP #I=1 TO 4. /* LOOP TO NUMBER OF VALUES FOR I
+ LOOP #J=1 TO 3. /* LOOP TO NUMBER OF VALUES FOR J
@ LOOP #K=1 TO 4. /* LOOP TO NUMBER OF VALUES FOR K

@ COMPUTE I=#I.
@ COMPUTE J=#J.
@ COMPUTE K=#K.
@ END CASE.

@ END LOOP.
+ END LOOP.
-END LOOP.
END FILE.
END INPUT PROGRAM.
LIST.

• The first loop iterates four times. The first iteration sets the indexing variable #I equal to
1 and then passes control to the second loop. #I remains 1 until the second loop has com-
pleted all of its iterations.

• The second loop is executed 12 times, three times for each value of #I. The first iteration
sets the indexing variable #J equal to 1 and then passes control to the third loop. #J re-
mains 1 until the third loop has completed all of its iterations.

• The third loop results in 48 iterations (4×3×4). The first iteration sets #K equal to 1. The
COMPUTE statements set the variables I, J, and K each to 1, and END CASE creates a case.
The third loop iterates a second time, setting #K equal to 2. Variables I, J, and K are then
computed with values 1, 1, 2, respectively, and a second case is created. The third and
fourth iterations of the third loop produce cases with I, J, and K, equal to 1, 1, 3 and 1, 1,
4, respectively. After the fourth iteration within the third loop, control passes back to the
second loop.

• The second loop is executed again. #I remains 1, while #J increases to 2, and control re-
turns to the third loop. The third loop completes its iterations, resulting in four more cases
with I equal to 1, J to 2, and K increasing from 1 to 4. The second loop is executed a third

512 LOOP—END LOOP

time, resulting in cases with I=1, J=3, and K increasing from 1 to 4. Once the second loop
has completed three iterations, control passes back to the first loop, and the entire cycle
is repeated for the next increment of #I.

• Once the first loop completes four iterations, control passes out of the looping structures
to END FILE. END FILE defines the resulting cases as a data file, the input program termi-
nates, and the LIST command is executed.

• This example does not require a LEAVE command because the iteration variables are
scratch variables. If the iteration variables were I, J, and K, LEAVE would be required be-
cause the variables would be reinitialized after each END CASE command.

Example
* Modifying the loop iteration variable.

INPUT PROGRAM.
PRINT SPACE 2.
LOOP A = 1 TO 3. /*Simple iteration
+ PRINT /’A WITHIN LOOP: ’ A(F1).
+ COMPUTE A = 0.
END LOOP
PRINT /’A AFTER LOOP: ’ A(F1).

NUMERIC #B.
LOOP B = 1 TO 3. /*Iteration + UNTIL
+ PRINT /’B WITHIN LOOP: ’ B(F1).
+ COMPUTE B = 0.
+ COMPUTE #B = #B+1.
END LOOP IF #B = 3.
PRINT /’B AFTER LOOP: ’ B(F1).

NUMERIC #C.
LOOP C = 1 TO 3 IF #C NE 3. /*Iteration + WHILE
+ PRINT /’C WITHIN LOOP: ’ C(F1).
+ COMPUTE C = 0.
+ COMPUTE #C = #C+1.
END LOOP.
PRINT /’C AFTER LOOP: ’ C(F1).

NUMERIC #D.
LOOP D = 1 TO 3. /*Iteration + BREAK
+ PRINT /’D WITHIN LOOP: ’ D(F1).
+ COMPUTE D = 0.
+ COMPUTE #D = #D+1.
+ DO IF #D = 3.
+ BREAK.
+ END IF.
END LOOP.
PRINT /’D AFTER LOOP: ’ D(F1).

LOOP E = 3 TO 1. /*Zero-trip iteration
+ PRINT /’E WITHIN LOOP: ’ E(F1).
+ COMPUTE E = 0.
END LOOP.
PRINT /’E AFTER LOOP: ’ E(F1).
END FILE.
END INPUT PROGRAM.
EXECUTE.

LOOP—END LOOP 513

• If a loop is exited via BREAK or a conditional clause on the END LOOP statement, the
iteration variable is not updated.

• If the LOOP statement contains both an iteration clause and a conditional clause, the iter-
ation clause is executed first, and the actual iteration variable will be updated regardless
of which clause causes termination of the loop.

Figure 1 shows the output from this example.

BY Keyword

By default, the program increases the indexing variable by 1 for each iteration. Keyword BY
overrides this increment.

• The increment value can be a numeric expression and can therefore be noninteger or
negative. Zero causes a warning and results in a zero-trip loop.

• If the initial value is greater than the terminal value and the increment is positive, the loop
is never entered. #I=1 TO 0 BY 2 results in a zero-trip loop.

• If the initial value is less than the terminal value and the increment is negative, the loop
is never entered. #I=1 TO 2 BY -1 also results in a zero-trip loop.

• Order is unimportant: 2 BY 2 TO 10 is equivalent to 2 TO 10 BY 2.

Example
LOOP #I=2 TO 10 BY 2. /*Loop five times by 2’S
COMPUTE X=X+1.
END LOOP.

• Scratch variable #I starts at 2 and increases by 2 for each of five iterations until it equals
10 for the last iteration.

Example
LOOP #I=1 TO Y BY Z. /*Loop to Y incrementing by Z
COMPUTE X=X+1.
END LOOP.

Figure 1 Modify the loop iteration variable
 A WITHIN LOOP: 1
 A WITHIN LOOP: 2
 A WITHIN LOOP: 3
 A AFTER LOOP: 4
 B WITHIN LOOP: 1
 B WITHIN LOOP: 2
 B WITHIN LOOP: 3
 B AFTER LOOP: 0
 C WITHIN LOOP: 1
 C WITHIN LOOP: 2
 C WITHIN LOOP: 3
 C AFTER LOOP: 4
 D WITHIN LOOP: 1
 D WITHIN LOOP: 2
 D WITHIN LOOP: 3
 D AFTER LOOP: 0
 E AFTER LOOP: 3

514 LOOP—END LOOP

• The loop is executed once for a case with Y equal to 2 and Z equal to 2 but twice for a case
with Y equal to 3 and Z equal to 2.

Example
* Repeating data using LOOP.

INPUT PROGRAM.
DATA LIST NOTABLE/ ORDER 1-4(N) #BKINFO 6-71(A).
LEAVE ORDER.
LOOP #I = 1 TO 66 BY 6 IF SUBSTR(#BKINFO,#I,6) <> ’ ’.
+ REREAD COLUMN = #I+5.
+ DATA LIST NOTABLE/ ISBN 1-3(N) QUANTITY 4-5.
+ END CASE.
END LOOP.
END INPUT PROGRAM.
SORT CASES BY ISBN ORDER.
BEGIN DATA
1045 182 2 155 1 134 1 153 5
1046 155 3 153 5 163 1
1047 161 5 182 2 163 4 186 6
1048 186 2
1049 155 2 163 2 153 2 074 1 161 1
END DATA.

DO IF $CASENUM = 1.
+ PRINT EJECT /’Order’ 1 ’ISBN’ 7 ’Quantity’ 13.
END IF.
PRINT /ORDER 2-5(N) ISBN 8-10(N) QUANTITY 13-17.
EXECUTE.

• This example uses LOOP to simulate a REPEATING DATA command.

• DATA LIST specifies scratch variable #BKINFO as a string variable (format A) to allow
blanks in the data.

• LOOP is executed if the SUBSTR function returns anything other than a blank or null val-
ue. SUBSTR returns a six-character substring of #BKINFO, beginning with the character
in the position specified by the value of the indexing variable #I. As specified on the in-
dexing clause, #I begins with a value of 1 and is increased by 6 for each iteration of
LOOP, up to a maximum #I value of 61 (1+10×6=61). The next iteration would exceed
the maximum #I value (1+11×6=67).

Missing Values

• If the program encounters a case with a missing value for the initial, terminal, or increment
value or expression, or if the conditional expression on the LOOP command returns missing,
a zero-trip loop results and control is passed to the first command after the END LOOP com-
mand.

• If a case has a missing value for the conditional expression on an END LOOP command,
the loop is terminated after the first iteration.

• To prevent cases with missing values for any variable used in the loop structure from
entering the loop, use the IF clause on the LOOP command (see third example below).

LOOP—END LOOP 515

Example
LOOP #I=1 TO Z IF (Y GT 10). /*Loop to X=Z for cases with Y GT 10
COMPUTE X=X+1.
END LOOP.

• The value of X remains unchanged for cases with a missing value for Y or a missing value
for Z (or if Z is less than 1).

Example
MISSING VALUES X(5).
LOOP.
COMPUTE X=X+1.
END LOOP IF (X GE 10). /*Loop until X is at least 10 or missing

• Looping is terminated when the value of X is 5 because 5 is defined as missing for X.

Example
LOOP IF NOT MISSING(Y). /*Loop only when Y isn’t missing
COMPUTE X=X+Y.
END LOOP IF (X GE 10). /*Loop until X is at least 10

• Variable X is unchanged for cases with a missing value for Y, since the loop is never entered.

Creating Data

A loop structure and an END CASE command within an input program can be used to create
data without any data input. The END FILE command must be used outside the loop (but
within the input program) to terminate processing.

Example
INPUT PROGRAM.
LOOP #I=1 TO 20.
COMPUTE AMOUNT=RND(UNIFORM(5000))/100.
END CASE.
END LOOP.
END FILE.
END INPUT PROGRAM.

PRINT FORMATS AMOUNT (DOLLAR6.2).
PRINT /AMOUNT.
EXECUTE.

• This example creates 20 cases with a single variable, AMOUNT. AMOUNT is a uniformly
distributed number between 0 and 5000, rounded to an integer and divided by 100 to pro-
vide a variable in dollars and cents.

• The END FILE command is required to terminate processing once the loop structure is
complete.

See pp. 286 and 297 for other examples of creating data without any data input.

516

MATCH FILES

MATCH FILES FILE={file} [TABLE={file}]
 {* } {* }

 [/RENAME=(old varnames=new varnames)...]

 [/IN=varname]

 /FILE==... [TABLE= ...]

 [/BY varlist]

 [/MAP]

 [/KEEP={ALL** }] [/DROP=varlist]
 {varlist}

 [/FIRST=varname] [/LAST=varname]

**Default if the subcommand is omitted.

Example:
MATCH FILES FILE=PART1 /FILE=PART2 /FILE=*.

Overview

MATCH FILES combines variables from two up to fifty SPSS-format data files. MATCH
FILES can make parallel or nonparallel matches between different files or perform table
lookups. Parallel matches combine files sequentially by case (they are sometimes re-
ferred to as sequential matches). Nonparallel matches combine files according to the
values of one or more key variables. In a table lookup, MATCH FILES looks up variables
in one file and transfers those variables to a case file.

The files specified on MATCH FILES can be SPSS-format data files created with SAVE or
XSAVE or the working data file. The combined file becomes the new working data file. Sta-
tistical procedures following MATCH FILES use this combined file unless you replace it by
building another working file. You must use the SAVE or XSAVE commands if you want to
save the combined file as an SPSS-format data file.

In general, MATCH FILES is used to combine files containing the same cases but different
variables. To combine files containing the same variables but different cases, use ADD
FILES. To update existing SPSS-format data files, use UPDATE.

MATCH FILES is often used with the AGGREGATE command to add variables with sum-
mary measures (sum, mean, and so forth) to the data. For an example, see p. 86.

Options

Variable Selection. You can specify which variables from each input file are included in the
new working file using the DROP and KEEP subcommands.

MATCH FILES 517

Variable Names. You can rename variables in each input file before combining the files using
the RENAME subcommand. This permits you to combine variables that are the same but
whose names differ in different input files, or to separate variables that are different but have
the same name.

Variable Flag. You can create a variable that indicates whether a case came from a particular
input file using IN. You can use the FIRST or LAST subcommands to create a variable that
flags the first or last case of a group of cases with the same value for the key variable.

Variable Map. You can request a map showing all variables in the new working file, their order,
and the input files from which they came using the MAP subcommand.

Basic Specification

The basic specification is two or more FILE subcommands, each of which specifies a file to
be matched. In addition, BY is required to specify the key variables for nonparallel matches.
Both BY and TABLE are required to match table-lookup files.

• All variables from all input files are included in the new working file unless DROP or
KEEP is specified.

Subcommand Order

• RENAME and IN must immediately follow the FILE subcommand to which they apply.

• BY must follow the FILE and TABLE subcommands and any associated RENAME and IN
subcommands.

• FIRST and LAST must follow all TABLE and FILE subcommands and any associated
RENAME and IN subcommands.

• MAP, DROP, and KEEP must follow all FILE, TABLE, and RENAME subcommands.

Syntax Rules

• RENAME can be repeated after each FILE or TABLE subcommand and applies only to vari-
ables in the file named on the immediately preceding FILE or TABLE.

• IN can be used only for a nonparallel match or for a table lookup. (Thus, IN can be used
only if BY is specified.)

• BY can be specified only once. However, multiple variables can be specified on BY. When
BY is used, all files must be sorted in ascending order of the key variables named on BY.

• MAP can be repeated as often as desired.

Operations

• MATCH FILES reads all files named on FILE or TABLE and builds a new working data file
that replaces any working file created earlier in the session.

518 MATCH FILES

• The new working data file contains complete dictionary information from the input
files, including variable names, labels, print and write formats, and missing-value indi-
cators. The new file also contains the documents from each of the input files. See DROP
DOCUMENTS for information on deleting documents.

• Variables are copied in order from the first file specified, then from the second file spec-
ified, and so on.

• If the same variable name is used in more than one input file, data are taken from the file
specified first. Dictionary information is taken from the first file containing value labels,
missing values, or a variable label for the common variable. If the first file has no such
information, MATCH FILES checks the second file, and so on, seeking dictionary informa-
tion.

• All cases from all input files are included in the combined file. Cases that are absent from
one of the input files will be assigned system-missing values for variables unique to that
file.

• BY specifies that cases should be combined according to a common value on one or more
key variables. All input files must be sorted in ascending order of the key variables.

• If BY is not used, the program performs a parallel (sequential) match, combining the first
case from each file, then the second case from each file, and so on, without regard to any
identifying values that may be present.

• If the working file is named as an input file, any N and SAMPLE commands that have been
specified are applied to that file before files are matched.

Limitations

• Maximum 50 files can be combined on one MATCH FILES command.

• Maximum one BY subcommand. However, BY can specify multiple variables.
• The TEMPORARY command cannot be in effect if the working data file is used as an input file.

Example

MATCH FILES FILE=PART1 /FILE=PART2 /FILE=*.

• MATCH FILES combines three files (the working data file and two SPSS-format data files)
in a parallel match. Cases are combined according to their order in each file.

• The new working data file contains as many cases as are contained in the largest of the
three input files.

FILE Subcommand

FILE identifies the files to be combined (except table files). At least one FILE subcommand
is required on MATCH FILES. A separate FILE subcommand must be used for each input file.
• An asterisk can be specified on FILE to refer to the working data file.

MATCH FILES 519

• The order in which files are specified determines the order of variables in the new work-
ing file. In addition, if the same variable name occurs in more than one input file, the
variable is taken from the file specified first.

• If the files have unequal numbers of cases, cases are generated from the longest file. Cases
that do not exist in the shorter files have system-missing values for variables that are
unique to those files.

Raw Data Files

To add variables from a raw data file, you must first define the raw data as the working data
file using the DATA LIST command. MATCH FILES can then combine the working data file
with an SPSS-format data file.

Example
DATA LIST FILE=GASDATA/1 OZONE 10-12 CO 20-22 SULFUR 30-32.

VARIABLE LABELS OZONE ’LEVEL OF OZONE’
CO ’LEVEL OF CARBON MONOXIDE’
SULFUR ’LEVEL OF SULFUR DIOXIDE’.

MATCH FILES FILE=PARTICLE /FILE=*.

SAVE OUTFILE=POLLUTE.

• The PARTICLE file is a previously saved SPSS-format data file.
• The GASDATA file is a raw data file and is defined on the DATA LIST command. Variable

labels are assigned on the VARIABLE LABELS command.

• MATCH FILES adds the working data file (*), which now contains the gas data, to SPSS-
format data file PARTICLE.

• SAVE saves the new working file as an SPSS-format data file with the filename POLLUTE.

BY Subcommand

BY specifies one or more identification, or key, variables that determine which cases are to
be combined. When BY is specified, cases from one file are matched only with cases from
other files that have the same values for the key variables. BY is required unless all input files
are to be matched sequentially according to the order of cases.

• BY must follow the FILE and TABLE subcommands and any associated RENAME and IN
subcommands.

• BY specifies the names of one or more key variables. The key variables must exist in all
input files. The key variables can be numeric or long or short strings.

• All input files must be sorted in ascending order of the key variables. If necessary, use
SORT CASES before MATCH FILES.

• Missing values for key variables are handled like any other values.

• Unmatched cases are assigned system-missing values (for numeric variables) or blanks
(for string variables) for variables from files that do not contain a match.

520 MATCH FILES

Duplicate Cases

Duplicate cases are those with the same values for the key variables named on the BY sub-
command.
• Duplicate cases are permitted in any input files except table files.

• When there is no table file, the first duplicate case in each file is matched with the first
matching case (if any) from the other files; the second duplicate case is matched with a
second matching duplicate, if any; and so on. (In effect, a parallel match is performed
within groups of duplicate cases.) Unmatched cases are assigned system-missing values
(for numeric variables) or blanks (for string variables) for variables from files that do not
contain a match.

• The program displays a warning if it encounters duplicate keys in one or more of the files
being matched.

TABLE Subcommand

TABLE specifies a table lookup (or keyed table) file. A lookup file contributes variables but
not cases to the new working file. Variables from the table file are added to all cases from
other files that have matching values for the key variables. FILE specifies the files that supply
the cases.
• A separate TABLE subcommand must be used to specify each lookup file, and a separate

FILE subcommand must be used to specify each case file.

• The BY subcommand is required when TABLE is used.

• All specified files must be sorted in ascending order of the key variables. If necessary, use
SORT CASES before MATCH FILES.

• A lookup file cannot contain duplicate cases (cases for which the key variable(s) named
on BY have identical values).

• An asterisk on TABLE refers to the working data file.

• Cases in a case file that do not have matches in a table file are assigned system-missing
values (for numeric variables) or blanks (for string variables) for variables from that table
file.

• Cases in a table file that do not match any cases in a case file are ignored.

Example
MATCH FILES FILE=* /TABLE=MASTER /BY EMP_ID.

• MATCH FILES combines variables from SPSS-format data file MASTER with the working
data file, matching cases by the variable EMP_ID.

• No new cases are added to the working file as a result of the table lookup.

• Cases whose value for EMP_ID is not included in the MASTER file are assigned system-
missing values for variables taken from the table.

MATCH FILES 521

RENAME Subcommand

RENAME renames variables on the input files before they are processed by MATCH FILES.
RENAME must follow the FILE or TABLE subcommand that contains the variables to be
renamed.

• RENAME applies only to the immediately preceding FILE or TABLE subcommand. To re-
name variables from more than one input file, specify a RENAME subcommand after each
FILE or TABLE subcommand.

• Specifications for RENAME consist of a left parenthesis, a list of old variable names, an
equals sign, a list of new variable names, and a right parenthesis. The two variable lists
must name or imply the same number of variables. If only one variable is renamed, the
parentheses are optional.

• More than one rename specification can be specified on a single RENAME subcommand,
each enclosed in parentheses.

• The TO keyword can be used to refer to consecutive variables in the file and to generate
new variable names. (See the TO keyword on p. 20.)

• RENAME takes effect immediately. Any KEEP and DROP subcommands entered prior to
a RENAME must use the old names, while KEEP and DROP subcommands entered after a
RENAME must use the new names.

• All specifications within a single set of parentheses take effect simultaneously. For exam-
ple, the specification RENAME (A,B = B,A) swaps the names of the two variables.

• Variables cannot be renamed to scratch variables.

• Input SPSS-format data files are not changed on disk; only the copy of the file being com-
bined is affected.

Example
MATCH FILES FILE=UPDATE /RENAME=(NEWID = ID)
/FILE=MASTER /BY ID.

• MATCH FILES matches a master SPSS-format data file (MASTER) with an update data file
(UPDATE).

• Variable NEWID in the UPDATE file is renamed ID so that it will have the same name as
the identification variable in the master file and can be used on the BY subcommand.

DROP and KEEP Subcommands

DROP and KEEP are used to include a subset of variables in the new working data file. DROP
specifies a set of variables to exclude and KEEP specifies a set of variables to retain.

• DROP and KEEP do not affect the input files on disk.

• DROP and KEEP must follow all FILE, TABLE, and RENAME subcommands.

• DROP and KEEP must specify one or more variables. If RENAME is used to rename vari-
ables, specify the new names on DROP and KEEP.

• Keyword ALL can be specified on KEEP. ALL must be the last specification on KEEP, and
it refers to all variables not previously named on KEEP.

522 MATCH FILES

• DROP cannot be used with variables created by the IN, FIRST, or LAST subcommands.

• KEEP can be used to change the order of variables in the resulting file. By default, MATCH
FILES first copies the variables in order from the first file, then copies the variables in or-
der from the second file, and so on. With KEEP, variables are kept in the order they are
listed on the subcommand. If a variable is named more than once on KEEP, only the first
mention of the variable is in effect; all subsequent references to that variable name are
ignored.

Example
MATCH FILES FILE=PARTICLE /RENAME=(PARTIC=POLLUTE1)

/FILE=GAS /RENAME=(OZONE TO SULFUR=POLLUTE2 TO POLLUTE4)
/DROP=POLLUTE4.

• The renamed variable POLLUTE4 is dropped from the resulting file. DROP is specified af-
ter all the FILE and RENAME subcommands, and it refers to the dropped variable by its
new name.

IN Subcommand

IN creates a new variable in the resulting file that indicates whether a case came from the in-
put file named on the preceding FILE subcommand. IN applies only to the file specified on
the immediately preceding FILE subcommand.

• IN can be used only for a nonparallel match or table lookup.

• IN has only one specification, the name of the flag variable.

• The variable created by IN has value 1 for every case that came from the associated input
file and value 0 if the case came from a different input file.

• Variables created by IN are automatically attached to the end of the resulting file and can-
not be dropped. If FIRST or LAST is used, the variable created by IN precedes the variables
created by FIRST or LAST.

Example
MATCH FILES FILE=WEEK10 /FILE=WEEK11 /IN=INWEEK11 /BY=EMPID.

• IN creates the variable INWEEK11, which has the value 1 for all cases in the resulting file
that had values in the input file WEEK11 and the value 0 for those cases that were not in
file WEEK11.

FIRST and LAST Subcommands

FIRST and LAST create logical variables that flag the first or last case of a group of cases with
the same value for the BY variables.

• FIRST and LAST must follow all TABLE and FILE subcommands and any associated
RENAME and IN subcommands.

• FIRST and LAST have only one specification, the name of the flag variable.

MATCH FILES 523

• FIRST creates a variable with value 1 for the first case of each group and value 0 for all
other cases.

• LAST creates a variable with value 1 for the last case of each group and value 0 for all
other cases.

• Variables created by FIRST and LAST are automatically attached to the end of the resulting
file and cannot be dropped.

• If one file has several cases with the same values for the key variables, FIRST or LAST can
be used to create a variable that flags the first or last case of the group.

Example
MATCH FILES TABLE=HOUSE /FILE=PERSONS
/BY=HOUSEID /FIRST=HEAD.

• The variable HEAD contains the value 1 for the first person in each household and the val-
ue 0 for all other persons. Assuming that the person file is sorted with the head of house-
hold as the first case for each household, variable HEAD identifies the case for the head of
household.

Example
* Using match files with only one file.

* This example flags the first of several cases with
 the same value for a key variable.

MATCH FILES FILE=PERSONS /BY HOUSEID /FIRST=HEAD.
SELECT IF (HEAD EQ 1).
CROSSTABS JOBCAT BY SEX.

• MATCH FILES is used instead of GET to read SPSS-format data file PERSONS. The BY
subcommand identifies the key variable (HOUSEID), and FIRST creates the variable HEAD
with the value 1 for the first case in each household and value 0 for all other cases.

• SELECT IF selects only the cases with value 1 for HEAD, and the CROSSTABS procedure
is run on these cases.

MAP Subcommand

MAP produces a list of the variables that are in the new working file and the file or files from
which they came. Variables are listed in the order they appear in the resulting file. MAP has
no specifications and must be placed after all FILE, TABLE, and RENAME subcommands.

• Multiple MAP subcommands can be used. Each MAP shows the current status of the work-
ing data file and reflects only the subcommands that precede the MAP subcommand.

• To obtain a map of the resulting file in its final state, specify MAP last.

• If a variable is renamed, its original and new names are listed. Variables created by IN,
FIRST, and LAST are not included in the map, since they are automatically attached to the
end of the file and cannot be dropped.

• MAP can be used with the EDIT command to obtain a list of the variables in the resulting
file without actually reading the data and combining the files.

524 MATCH FILES

525

MATRIX DATA

MATRIX DATA VARIABLES=varlist [/FILE={INLINE**}]
 {file }

 [/FORMAT=[{LIST**}] [{LOWER**}] [{DIAGONAL**}]]
 {FREE } {UPPER } {NODIAGONAL}
 {FULL }

 [/SPLIT=varlist] [/FACTORS=varlist]

 [/CELLS=number of cells] [/N=sample size]

 [/CONTENTS= [CORR**] [COV] [MAT] [MSE] [DFE] [MEAN] [PROX]

 [{STDDEV}] [N_SCALAR] [{N_VECTOR}] [N_MATRIX] [COUNT]]
 {SD } {N }

**Default if the subcommand is omitted.

Example:
MATRIX DATA VARIABLES=ROWTYPE_ SAVINGS POP15 POP75 INCOME GROWTH.
BEGIN DATA
MEAN 9.6710 35.0896 2.2930 1106.7784 3.7576
STDDEV 4.4804 9.1517 1.2907 990.8511 2.8699
N 50 50 50 50 50
CORR 1
CORR -.4555 1
CORR .3165 -.9085 1
CORR .2203 -.7562 .7870 1
CORR .3048 -.0478 .0253 -.1295 1
END DATA.

Overview

MATRIX DATA reads raw matrix materials and converts them to a matrix data file that can be
read by procedures that handle matrix materials. The data can include vector statistics such as
means and standard deviations as well as matrices.

MATRIX DATA is similar to a DATA LIST command: it defines variable names and their or-
der in a raw data file. However, MATRIX DATA can read only data that conform to the general
format of SPSS-format matrices.

Matrix Files

Like the matrix data files created by procedures, the file that MATRIX DATA creates contains
the following variables in the indicated order. If the variables are in a different order in the
raw data file, MATRIX DATA rearranges them in the working data file.

• Split-file variables. These optional variables define split files. There can be up to eight
split variables, and they must have numeric values. Split-file variables will appear in the
order in which they are specified on the SPLIT subcommand.

526 MATRIX DATA

• ROWTYPE_. This is a string variable with A8 format. Its values define the data type for
each record. For example, it might identify a row of values as means, standard deviations,
or correlation coefficients. Every SPSS-format matrix data file has a ROWTYPE_ vari-
able.

• Factor variables. There can be any number of factors. They occur only if the data include
within-cells information, such as the within-cells means. Factors have the system-missing
value on records that define pooled information. Factor variables appear in the order in
which they are specified on the FACTORS subcommand.

• VARNAME_. This is a string variable with A8 format. MATRIX DATA automatically gener-
ates VARNAME_ and its values based on the variables named on VARIABLES. You never
enter values for VARNAME_. Values for VARNAME_ are blank for records that define vec-
tor information. Every matrix in the program has a VARNAME_ variable.

• Continuous variables. These are the variables that were used to generate the correlation
coefficients or other aggregated data. There can be any number of them. Continuous
variables appear in the order in which they are specified on VARIABLES.

Options

Data Files. You can define both inline data and data in an external file.

Data Format. By default, data are assumed to be entered in freefield format with each vector
or row beginning on a new record (keyword LIST on the FORMAT subcommand). If each vec-
tor or row does not begin on a new record, use keyword FREE. You can also use FORMAT to
indicate whether matrices are entered in upper or lower triangular or full square or rectangu-
lar format, and whether or not they include diagonal values.

Variable Types. You can specify split-file and factor variables using the SPLIT and FACTORS
subcommands. You can identify record types by specifying ROWTYPE_ on the VARIABLES
subcommand if ROWTYPE_ values are included in the data, or by implying ROWTYPE_ values
on CONTENTS.

Basic Specification

The basic specification is VARIABLES and a list of variables. Additional specifications are
required as follows:
• FILE is required to specify the data file if the data are not inline.

• If data are in any format other than lower-triangular with diagonal values included, FORMAT
is required.

• If the data contain values in addition to matrix coefficients, such as the mean and standard
deviation, either variable ROWTYPE_ must be specified on VARIABLES and ROWTYPE_
values must be included in the data, or CONTENTS must be used to describe the data.

• If the data include split-file variables, SPLIT is required. If there are factors, FACTORS is
required.

Specifications on most MATRIX DATA subcommands depend on whether ROWTYPE_ is in-
cluded in the data and specified on VARIABLES, or whether it is implied using CONTENTS.

MATRIX DATA 527

Table 1 summarizes the status of each MATRIX DATA subcommand in relation to the
ROWTYPE_ specification.

Subcommand Order

• SPLIT and FACTORS, when used, must follow VARIABLES.

• The remaining subcommands can be specified in any order.

Syntax Rules

• No commands can be specified between MATRIX DATA and BEGIN DATA, not even a
VARIABLE LABELS or FORMAT command. Data transformations cannot be used until af-
ter MATRIX DATA is executed.

Operations

• MATRIX DATA defines and writes data in one step.

• MATRIX DATA clears the working data file and defines a new working file.
• If CONTENTS is not specified and ROWTYPE_ is not specified on VARIABLES, MATRIX

DATA assumes that the data contain only CORR values and issues warning messages to
alert you to its assumptions.

• With the default format, data values, including diagonal values, must be in the lower tri-
angle of the matrix. If MATRIX DATA encounters values in the upper triangle, it ignores
those values and issues a series of warnings.

• With default format, if any matrix rows span records in the data file, MATRIX DATA cannot
form the matrix properly.

Table 1 Subcommand requirements in relation to ROWTYPE_

Subcommand Implicit ROWTYPE_
using CONTENTS

Explicit ROWTYPE_
on VARIABLES

FILE Defaults to INLINE Defaults to INLINE
VARIABLES Required Required
FORMAT Defaults to LOWER DIAG Defaults to LOWER DIAG
SPLIT Required if split files*

* If the data do not contain values for the split-file variables, this subcommand can spec-
ify a single variable, which is not specified on the VARIABLES subcommand.

Required if split files
FACTORS Required if factors Required if factors
CELLS Required if factors Inapplicable
CONTENTS Defaults to CORR Optional
N Optional Optional

528 MATRIX DATA

• MATRIX DATA does not allow format specifications for matrix materials. The procedure
assigns the formats shown in Table 2. To change data formats, execute MATRIX DATA
and then assign new formats with the FORMATS, PRINT FORMATS, or WRITE FORMATS
commands.

Format of the Raw Matrix Data File

• If LIST is in effect on the FORMAT subcommand, the data are entered in freefield format,
with blanks and commas used as separators and each scalar, vector, or row of the matrix
beginning on a new record. Unlike LIST format with DATA LIST, a vector or row of the
matrix can be contained on multiple records. The continuation records do not have a value
for ROWTYPE_.

• ROWTYPE_ values can be enclosed in apostrophes or quotes.

• The order of variables in the raw data file must match the order in which they are specified
on VARIABLES. However, this order does not have to correspond to the order of variables
in the resulting SPSS-format matrix data file.

• The way records are entered for pooled vectors or matrices when factors are present de-
pends upon whether ROWTYPE_ is specified on the VARIABLES subcommand (see the
FACTORS subcommand on p. 537).

• MATRIX DATA recognizes plus and minus signs as field separators when they are not pre-
ceded by the letter D or E. This allows MATRIX DATA to read scientific notation as well as
correlation matrices written by FORTRAN in F10.8 format. A plus sign preceded by a D
or E is read as part of the number in scientific notation.

Example

MATRIX DATA
 VARIABLES=ROWTYPE_ SAVINGS POP15 POP75 INCOME GROWTH.
BEGIN DATA
MEAN 9.6710 35.0896 2.2930 1106.7784 3.7576
STDDEV 4.4804 9.1517 1.2907 990.8511 2.8699
N 50 50 50 50 50
CORR 1
CORR -.4555 1
CORR .3165 -.9085 1
CORR .2203 -.7562 .7870 1
CORR .3048 -.0478 .0253 -.1295 1
END DATA.

Table 2 Print and write formats for matrix variables

Variable type Format

ROWTYPE_, VARNAME_ A8

Split-file variables F4.0

Factors F4.0

Continuous variables F10.4

MATRIX DATA 529

• Variable ROWTYPE_ is specified on VARIABLES. ROWTYPE_ values are included in the
data.

• No other specifications are required.

Example

* Matrix data with procedure DISCRIMINANT’.

 MATRIX DATA VARIABLES=WORLD ROWTYPE_ FOOD APPL SERVICE RENT
 /FACTORS=WORLD.
 BEGIN DATA
 1 N 25 25 25 25
 1 MEAN 76.64 77.32 81.52 101.40
 2 N 7 7 7 7
 2 MEAN 76.1428571 85.2857143 60.8571429 249.571429
 3 N 13 13 13 13
 3 MEAN 55.5384615 76 63.4615385 86.3076923
 . SD 16.4634139 22.5509310 16.8086768 77.1085326
 . CORR 1
 . CORR .1425366 1
 . CORR .5644693 .2762615 1
 . CORR .2133413 -.0499003 .0417468 1
 END DATA.

 DISCRIMINANT GROUPS=WORLD(1,3)
 /VARIABLES=FOOD APPL SERVICE RENT /METHOD=WILKS /MATRIX=IN(*).

• MATRIX DATA is used to generate a working data file that DISCRIMINANT can read.
DISCRIMINANT reads the mean, count (unweighted N), and N (weighted N) for each
cell in the data, as well as pooled values for the standard deviation and correlation
coefficients. If count equals N, only N needs to be supplied.

• ROWTYPE_ is specified on VARIABLES to identify record types in the data. Though
CONTENTS and CELLS can be used to identify record types and distinguish between
within-cells data and pooled values, it is usually easier to specify ROWTYPE_ on
VARIABLES and enter the ROWTYPE_ values in the data.

• Because factors are present in the data, the continuous variables (FOOD, APPL, SERVICE,
and RENT) must be specified last on VARIABLES and must be last in the data.

• The FACTORS subcommand identifies WORLD as the factor variable.

• BEGIN DATA immediately follows MATRIX DATA.

• N and MEAN values for each cell are entered in the data.

• ROWTYPE_ values for the pooled records are SD and COR. MATRIX DATA assigns the
values STDDEV and CORR to the corresponding vectors in the matrix. Records with
pooled information have the system-missing value (.) for the factors.

• Procedure DISCRIMINANT reads the data matrix. An asterisk (*) is specified as the input
file on the MATRIX subcommand because the data are in the working file.

530 MATRIX DATA

Example

* Matrix data with procedure REGRESSION.

MATRIX DATA VARIABLES=SAVINGS POP15 POP75 INCOME GROWTH
 /CONTENTS=MEAN SD N CORR /FORMAT=UPPER NODIAGONAL.

BEGIN DATA
9.6710 35.0896 2.2930 1106.7784 3.7576
4.4804 9.1517 1.2908 990.8511 2.8699
50 50 50 50 50
-.4555 .3165 .2203 .3048
-.9085 -.7562 -.0478
 .7870 .0253
-.1295
END DATA.

REGRESSION MATRIX=IN(*) /VARIABLES=SAVINGS TO GROWTH
 /DEP=SAVINGS /ENTER.

• MATRIX DATA is used to generate a matrix that REGRESSION can read. REGRESSION
reads and writes matrices that always contain the mean, standard deviation, N, and Pearson
correlation coefficients. Data in this example do not have ROWTYPE_ values, and the cor-
relation values are from the upper triangle of the matrix without the diagonal values.

• ROWTYPE_ is not specified on VARIABLES because its values are not included in the data.

• Because there are no ROWTYPE_ values, CONTENTS is required to define the record
types and the order of the records in the file.

• By default, MATRIX DATA reads values from the lower triangle of the matrix, including the
diagonal values. FORMAT is required in this example to indicate that the data are in the
upper triangle and do not include diagonal values.

• BEGIN DATA immediately follows the MATRIX DATA command.

• Procedure REGRESSION reads the data matrix. An asterisk (*) is specified as the input
file on the MATRIX subcommand because the data are in the working file. Since there is
a single vector of N’s in the data, missing values are handled listwise (the default for
REGRESSION).

MATRIX DATA 531

Example

* Matrix data with procedure ONEWAY.

 MATRIX DATA VARIABLES=EDUC ROWTYPE_ WELL /FACTORS=EDUC.
 BEGIN DATA
 1 N 65
 2 N 95
 3 N 181
 4 N 82
 5 N 40
 6 N 37
 1 MEAN 2.6462
 2 MEAN 2.7737
 3 MEAN 4.1796
 4 MEAN 4.5610
 5 MEAN 4.6625
 6 MEAN 5.2297
 . MSE 6.2699
 . DFE 494
 END DATA.

 ONEWAY WELL BY EDUC(1,6) /MATRIX=IN(*)

• One of the two types of matrices that procedure ONEWAY reads includes a vector of fre-
quencies for each factor level, a vector of means for each factor level, a record containing
the pooled variance (within-group mean square error), and the degrees of freedom for the
mean square error. MATRIX DATA is used to generate a working data file containing this
type of matrix data for procedure ONEWAY.

• ROWTYPE_ is explicit on VARIABLES and identifies record types.

• Because factors are present in the data, the continuous variables (WELL) must be specified
last on VARIABLES and must be last in the data.

• The FACTORS subcommand identifies EDUC as the factor variable.

• MSE is entered in the data as the ROWTYPE_ value for the vector of square pooled stan-
dard deviations.

• DFE is entered in the data as the ROWTYPE_ value for the vector of degrees of freedom.

• Records with pooled information have the system-missing value (.) for the factors.

VARIABLES Subcommand

VARIABLES specifies the names of the variables in the raw data and the order in which they
occur.

• VARIABLES is required.

• There is no limit to the number of variables that can be specified.

• If ROWTYPE_ is specified on VARIABLES, the continuous variables must be the last vari-
ables specified on the subcommand and must be last in the data.

• If split-file variables are present, they must also be specified on SPLIT.

• If factor variables are present, they must also be specified on FACTORS.

532 MATRIX DATA

When either of the following is true, the only variables that must be specified on VARIABLES
are the continuous variables:

1. The data contain only correlation coefficients. There can be no additional information,
such as the mean and standard deviation, and no factor information or split-file variables.
MATRIX DATA assigns the record type CORR to all records.

2. CONTENTS is used to define all record types. The data can then contain information
such as the mean and standard deviation, but no factor, split-file, or ROWTYPE_ vari-
ables. MATRIX DATA assigns the record types defined on the CONTENTS subcommand.

Variable VARNAME_

VARNAME_ cannot be specified on the VARIABLES subcommand or anywhere on MATRIX DA-
TA, and its values cannot be included in the data. The MATRIX DATA command generates vari-
able VARNAME_ automatically.

Variable ROWTYPE_

• ROWTYPE_ is a string variable with A8 format. Its values define the data types. All SPSS-
format matrix data files contain a ROWTYPE_ variable.

• If ROWTYPE_ is specified on VARIABLES and its values entered in the data, MATRIX DATA
is primarily used to define the names and order of the variables in the raw data file.

• ROWTYPE_ must precede the continuous variables.

• Valid values for ROWTYPE_ are CORR, COV, MAT, MSE, DFE, MEAN, STDDEV (or
SD), N_VECTOR (or N), N_SCALAR, N_MATRIX, COUNT, or PROX. For definitions
of these values, see the CONTENTS subcommand on p. 539. Three-character abbreviations
for these values are permitted. These values can also be enclosed in quotes or apostrophes.

• If ROWTYPE_ is not specified on VARIABLES, CONTENTS must be used to define the or-
der in which the records occur within the file. MATRIX DATA follows these specifications
strictly and generates a ROWTYPE_ variable according to the CONTENTS specifications.
A data-entry error, especially skipping a record, can cause the procedure to assign the
wrong values to the wrong records.

Example
* ROWTYPE_ is specified on VARIABLES.

MATRIX DATA
 VARIABLES=ROWTYPE_ SAVINGS POP15 POP75 INCOME GROWTH.
BEGIN DATA
MEAN 9.6710 35.0896 2.2930 1106.7784 3.7576
STDDEV 4.4804 9.1517 1.2907 990.8511 2.8699
N 50 50 50 50 50
CORR 1
CORR -.4555 1
CORR .3165 -.9085 1
CORR .2203 -.7562 .7870 1
CORR .3048 -.0478 .0253 -.1295 1
END DATA.

MATRIX DATA 533

• ROWTYPE_ is specified on VARIABLES. ROWTYPE_ values in the data identify each
record type.

• Note that VARNAME_ is not specified on VARIABLES, and its values are not entered in the
data.

Example
* ROWTYPE_ is specified on VARIABLES.

MATRIX DATA
 VARIABLES=ROWTYPE_ SAVINGS POP15 POP75 INCOME GROWTH.
BEGIN DATA
’MEAN ’ 9.6710 35.0896 2.2930 1106.7784 3.7576
’SD ’ 4.4804 9.1517 1.2907 990.8511 2.8699
’N ’ 50 50 50 50 50
"CORR " 1
"CORR " -.4555 1
"CORR " .3165 -.9085 1
"CORR " .2203 -.7562 .7870 1
"CORR " .3048 -.0478 .0253 -.1295 1
END DATA.

• ROWTYPE_ values for the mean, standard deviation, N, and Pearson correlation coeffi-
cients are abbreviated and enclosed in apostrophes or quotations.

Example
* ROWTYPE_ is not specified on VARIABLES.

MATRIX DATA VARIABLES=SAVINGS POP15 POP75 INCOME GROWTH
 /CONTENTS=MEAN SD N CORR.
BEGIN DATA
9.6710 35.0896 2.2930 1106.7784 3.7576
4.4804 9.1517 1.2907 990.8511 2.8699
50 50 50 50 50
 1
-.4555 1
 .3165 -.9085 1
 .2203 -.7562 .7870 1
 .3048 -.0478 .0253 -.1295 1
END DATA.

• ROWTYPE_ is not specified on VARIABLES, and its values are not included in the data.

• CONTENTS is required to define the record types and the order of the records in the file.

FILE Subcommand

FILE specifies the matrix file containing the data. The default specification is INLINE, which
indicates that the data are included within the command sequence between the BEGIN DATA
and END DATA commands.

• If data are in an external file, FILE must specify the file.

• If the FILE subcommand is omitted, data must be inline.

534 MATRIX DATA

Example
MATRIX DATA FILE=RAWMTX /VARIABLES=varlist.

• FILE indicates that data are in the file RAWMTX.

FORMAT Subcommand

FORMAT indicates how the matrix data are formatted. It applies only to matrix values in the
data, not to vector values, such as the mean and standard deviation.

• FORMAT can specify up to three keywords: one to specify the data-entry format, one to
specify matrix shape, and one to specify whether the data include diagonal values.

• The minimum specification is a single keyword.

• Default settings remain in effect unless explicitly overridden.

Data-Entry Format

FORMAT has two keywords that specify the data-entry format:

LIST Each scalar, vector, and matrix row must begin on a new record. A vector or row
of the matrix may be continued on multiple records. This is the default.

FREE Matrix rows do not need to begin on a new record. Any item can begin in the middle
of a record.

Matrix Shape

FORMAT has three keywords that specify the matrix shape. With either triangular shape, no
values—not even missing indicators—are entered for the implied values in the matrix.

LOWER Read data values from the lower triangle. This is the default.

UPPER Read data values from the upper triangle.

FULL Read the full square matrix of data values. FULL cannot be specified with NODIAGONAL.

Diagonal Values

FORMAT has two keywords that refer to the diagonal values:

DIAGONAL Data include the diagonal values. This is the default.

NODIAGONAL Data do not include diagonal values. The diagonal value is set to the system-
missing value for all matrices except the correlation matrices. For correlation
matrices, the diagonal value is set to 1. NODIAGONAL cannot be specified
with FULL.

Table 3 shows how data might be entered for each combination of FORMAT settings that govern
matrix shape and diagonal values. With UPPER NODIAGONAL and LOWER NODIAGONAL, you

MATRIX DATA 535

do not enter the matrix row that has blank values for the continuous variables. If you enter that
row, MATRIX DATA cannot properly form the matrix.

Example
MATRIX DATA VARIABLES=ROWTYPE_ V1 TO V3
 /FORMAT=UPPER NODIAGONAL.
BEGIN DATA
MEAN 5 4 3
SD 3 2 1
N 9 9 9
CORR .6 .7
CORR .8
END DATA.
LIST.

• FORMAT specifies the upper-triangle format with no diagonal values. The default LIST is
in effect for the data-entry format.

Example
MATRIX DATA VARIABLES=ROWTYPE_ V1 TO V3
 /FORMAT=UPPER NODIAGONAL.
BEGIN DATA
MEAN 5 4 3
SD 3 2 1
N 9 9 9
CORR .6 .7
CORR .8
END DATA.
LIST.

• This example is identical to the previous example. It shows that data do not have to be
aligned in columns. Data throughout this chapter are aligned in columns to emphasize the
matrix format.

SPLIT Subcommand

SPLIT specifies the variables whose values define the split files. SPLIT must follow the
VARIABLES subcommand.

Table 3 Various FORMAT settings

FULL

UPPER
DIAGONAL

UPPER
NODIAGONAL

LOWER
DIAGONAL

LOWER
NODIAGONAL

MEAN 5 4 3 MEAN 5 4 3 MEAN 5 4 3 MEAN 5 4 3 MEAN 5 4 3
SD 3 2 1 SD 3 2 1 SD 3 2 1 SD 3 2 1 SD 3 2 1
N 9 9 9 N 9 9 9 N 9 9 9 N 9 9 9 N 9 9 9
CORR 1 .6 .7 CORR 1 .6 .7 CORR .6 .7 CORR 1 CORR .6
CORR .6 1 .8 CORR 1 .8 CORR .8 CORR .6 1 CORR .7 .8
CORR .7 .8 1 CORR 1 CORR .7 .8 1

536 MATRIX DATA

• SPLIT can specify a subset of up to eight of the variables named on VARIABLES. All split
variables must be numeric. Keyword TO can be used to imply variables in the order in
which they are named on VARIABLES.

• A separate matrix must be included in the data for each value of each split variable.
MATRIX DATA generates a complete set of matrix materials for each.

• If the data contain neither ROWTYPE_ nor split-file variables, a single split-file variable
can be specified on SPLIT. This variable is not specified on the VARIABLES subcom-
mand. MATRIX DATA generates a complete set of matrix materials for each set of matrix
materials in the data and assigns values 1, 2, 3, etc., to the split variable until end of data
is encountered.

Example
MATRIX DATA VARIABLES=S1 ROWTYPE_ V1 TO V3 /SPLIT=S1.
BEGIN DATA
0 MEAN 5 4 3
0 SD 1 2 3
0 N 9 9 9
0 CORR 1
0 CORR .6 1
0 CORR .7 .8 1
1 MEAN 9 8 7
1 SD 5 6 7
1 N 9 9 9
1 CORR 1
1 CORR .4 1
1 CORR .3 .2 1
END DATA.
LIST.

• Split variable S1 has two values: 0 and 1. Two separate matrices are entered in the data,
one for each value S1.

• S1 must be specified on both VARIABLES and SPLIT.

Example
MATRIX DATA VARIABLES=V1 TO V3 /CONTENTS=MEAN SD N CORR
 /SPLIT=SPL.
BEGIN DATA
 5 4 3
 1 2 3
 9 9 9
 1
 .6 1
 .7 .8 1
 9 8 7
 5 6 7
 9 9 9
 1
 .4 1
 .3 .2 1
END DATA.
LIST.

• Split variable SPL is not specified on VARIABLES, and values for SPL are not included in
the data.

MATRIX DATA 537

• Two sets of matrix materials are included in the data. MATRIX DATA therefore assigns
values 1 and 2 to variable SPL and generates two matrices in the matrix data file.

FACTORS Subcommand

FACTORS specifies the variables whose values define the cells represented by the within-
cells data. FACTORS must follow the VARIABLES subcommand.

• FACTORS specifies a subset of the variables named on the VARIABLES subcommand.
Keyword TO can be used to imply variables in the order in which they are named on
VARIABLES.

• If ROWTYPE_ is explicit on VARIABLES and its values are included in the data, records
that represent pooled information have the system-missing value (indicated by a period)
for the factors, since the values of ROWTYPE_ are ambiguous.

• If ROWTYPE_ is not specified on VARIABLES and its values are not in the data, enter data
values for the factors only for records that represent within-cells information. Enter noth-
ing for the factors for records that represent pooled information. CELLS must be specified
to indicate the number of within-cells records, and CONTENTS must be specified to indi-
cate which record types have within-cells data.

Example
* Rowtype is explicit.

MATRIX DATA VARIABLES=ROWTYPE_ F1 F2 VAR1 TO VAR3
 /FACTORS=F1 F2.
BEGIN DATA
MEAN 1 1 1 2 3
SD 1 1 5 4 3
N 1 1 9 9 9
MEAN 1 2 4 5 6
SD 1 2 6 5 4
N 1 2 9 9 9
MEAN 2 1 7 8 9
SD 2 1 7 6 5
N 2 1 9 9 9
MEAN 2 2 9 8 7
SD 2 2 8 7 6
N 2 2 9 9 9
CORR . . .1
CORR . . .6 1
CORR . . .7 .8 1
END DATA.

• ROWTYPE_ is specified on VARIABLES.

• Factor variables must be specified on both VARIABLES and FACTORS.

• Periods in the data represent missing values for the CORR factor values.

538 MATRIX DATA

Example
* Rowtype is implicit.

MATRIX DATA VARIABLES=F1 F2 VAR1 TO VAR3
 /FACTORS=F1 F2 /CONTENTS=(MEAN SD N) CORR /CELLS=4.
BEGIN DATA
1 1 1 2 3
1 1 5 4 3
1 1 9 9 9
1 2 4 5 6
1 2 6 5 4
1 2 9 9 9
2 1 7 8 9
2 1 7 6 5
2 1 9 9 9
2 2 9 8 7
2 2 8 7 6
2 2 9 9 9
 1
 .6 1
 .7 .8 1
END DATA.

• ROWTYPE_ is not specified on VARIABLES.

• Nothing is entered for the CORR factor values because the records contain pooled
information.

• CELLS is required because there are factors in the data and ROWTYPE_ is implicit.

• CONTENTS is required to define the record types and to differentiate between the within-
cells and pooled types.

MATRIX DATA 539

CELLS Subcommand

CELLS specifies the number of within-cells records in the data. The only valid specification
for CELLS is a single integer, which indicates the number of sets of within-cells information
that MATRIX DATA must read.

• CELLS is required when there are factors in the data and ROWTYPE_ is implicit.

• If CELLS is used when ROWTYPE_ is specified on VARIABLES, MATRIX DATA issues a
warning and ignores the CELLS subcommand.

Example
MATRIX DATA VARIABLES=F1 VAR1 TO VAR3 /FACTORS=F1 /CELLS=2
 /CONTENTS=(MEAN SD N) CORR.
BEGIN DATA
1 5 4 3
1 3 2 1
1 9 9 9
2 8 7 6
2 6 7 8
2 9 9 9
 1
 .6 1
 .7 .8 1
END DATA.

• The specification for CELLS is 2 because the factor variable F1 has two values (1 and 2)
and there are therefore two sets of within-cells information.

• If there were two factor variables, F1 and F2, and each had two values, 1 and 2, CELLS
would equal 4 to account for all four possible factor combinations (assuming all 4 com-
binations are present in the data).

CONTENTS Subcommand

CONTENTS defines the record types when ROWTYPE_ is not included in the data. The min-
imum specification is a single keyword indicating a type of record. The default is CORR.

• CONTENTS is required to define record types and record order whenever ROWTYPE_ is
not specified on VARIABLES and its values are not in the data. The only exception to this
rule is the rare situation in which all data values represent pooled correlation records and
there are no factors. In that case, MATRIX DATA reads the data values and assigns the de-
fault ROWTYPE_ of CORR to all records.

• The order in which keywords are specified on CONTENTS must correspond to the order
in which records appear in the data. If the keywords on CONTENTS are in the wrong order,
MATRIX DATA will incorrectly assign values.

CORR Matrix of correlation coefficients. This is the default. If ROWTYPE_ is not
specified on the VARIABLES subcommand and you omit the CONTENTS sub-
command, MATRIX DATA assigns the ROWTYPE_ value CORR to all matrix
rows.

COV Matrix of covariance coefficients.

540 MATRIX DATA

MAT Generic square matrix.

MSE Vector of mean squared errors.

DFE Vector of degrees of freedom.

MEAN Vector of means.

STDDEV Vector of standard deviations. SD is a synonym for STDDEV. MATRIX DATA
assigns the ROWTYPE_ value STDDEV to the record if either STDDEV or SD
is specified.

N_VECTOR Vector of counts. N is a synonym for N_VECTOR. MATRIX DATA assigns
ROWTYPE_ value N to the record.

N_SCALAR Count. Scalars are a shorthand mechanism for representing vectors in which
all elements have the same value, such as when a vector of N’s is calculated
using listwise deletion of missing values. Enter N_SCALAR as the
ROWTYPE_ value in the data and then the N_SCALAR value for the first con-
tinuous variable only. MATRIX DATA assigns the ROWTYPE_ value N to the
record and copies the specified N_SCALAR value across all the continuous
variables.

N_MATRIX Square matrix of counts. Enter N_MATRIX as the ROWTYPE_ value for each
row of counts in the data. MATRIX DATA assigns ROWTYPE_ value N to each
of those rows.

COUNT Count vector accepted by procedure DISCRIMINANT. This contains un-
weighted N’s.

Example
MATRIX DATA VARIABLES=V1 TO V3 /CONTENTS=MEAN SD N_SCALAR CORR.
BEGIN DATA
 5 4 3
 3 2 1
 9
 1
 .6 1
 .7 .8 1
END DATA.
LIST.

• ROWTYPE_ is not specified on VARIABLES, and ROWTYPE_ values are not in the data.
CONTENTS is therefore required to identify record types.

• CONTENTS indicates that the matrix records are in the following order: mean, standard
deviation, N, and correlation coefficients.

• The N_SCALAR value is entered for the first continuous variable only.

MATRIX DATA 541

Within-Cells Record Definition

When the data include factors and ROWTYPE_ is not specified, CONTENTS distinguishes be-
tween within-cells and pooled records by enclosing the keywords for within-cells records in
parentheses.

• If the records associated with the within-cells keywords appear together for each set of
factor values, enclose the keywords together within a single set of parentheses.

• If the records associated with each within-cells keyword are grouped together across factor
values, enclose the keyword within its own parentheses

Example
MATRIX DATA VARIABLES=F1 VAR1 TO VAR3 /FACTORS=F1 /CELLS=2
 /CONTENTS=(MEAN SD N) CORR.

• MEAN, SD, and N contain within-cells information and are therefore specified within pa-
rentheses. CORR is outside the parentheses because it identifies pooled records.

• CELLS is required because there is a factor specified and ROWTYPE_ is implicit.

Example
MATRIX DATA VARIABLES=F1 VAR1 TO VAR3 /FACTORS=F1 /CELLS=2
 /CONTENTS=(MEAN SD N) CORR.
BEGIN DATA
1 5 4 3
1 3 2 1
1 9 9 9
2 4 5 6
2 6 5 4
2 9 9 9
 1
 .6 1
 .7 .8 1
END DATA.

• The parentheses around the CONTENTS keywords indicate that the mean, standard devia-
tion, and N for value 1 of factor F1 are together, followed by the mean, standard deviation,
and N for value 2 of factor F1.

Example
MATRIX DATA VARIABLES=F1 VAR1 TO VAR3 /FACTORS=F1 /CELLS=2
 /CONTENTS=(MEAN) (SD) (N) CORR.
BEGIN DATA
1 5 4 3
2 4 5 6
1 3 2 1
2 6 5 4
1 9 9 9
2 9 9 9
 1
 .6 1
 .7 .8 1
END DATA.

542 MATRIX DATA

• The parentheses around each CONTENTS keyword indicate that the data include the
means for all cells, followed by the standard deviations for all cells, followed by the N
values for all the cells.

Example
MATRIX DATA VARIABLES=F1 VAR1 TO VAR3 /FACTORS=F1 /CELLS=2
 /CONTENTS=(MEAN SD) (N) CORR.
BEGIN DATA
1 5 4 3
1 3 2 1
2 4 5 6
2 6 5 4
1 9 9 9
2 9 9 9
 1
 .6 1
 .7 .8 1
END DATA.

• The parentheses around the CONTENTS keywords indicate that the data include the mean
and standard deviation for value 1 of F1, followed by the mean and standard deviation for
value 2 of F1, followed by the N values for all cells.

Optional Specification When ROWTYPE_ Is Explicit

When ROWTYPE_ is explicitly named on VARIABLES, MATRIX DATA uses ROWTYPE_ values
to determine record types.

• When ROWTYPE_ is explicitly named on VARIABLES, CONTENTS can be used for infor-
mational purposes. However, ROWTYPE_ values in the data determine record types.

• If MATRIX DATA reads values for ROWTYPE_ that are not specified on CONTENTS, it issues
a warning.

• Missing values for factors are entered as periods, even though CONTENTS is specified
(see the FACTORS subcommand on p. 537).

Example
MATRIX DATA VARIABLES=ROWTYPE_ F1 F2 VAR1 TO VAR3
 /FACTORS=F1 F2 /CONTENTS=(MEAN SD N) CORR.
BEGIN DATA
MEAN 1 1 1 2 3
SD 1 1 5 4 3
N 1 1 9 9 9
MEAN 1 2 4 5 6
SD 1 2 6 5 4
N 1 2 9 9 9
CORR . . 1
CORR . . .6 1
CORR . . .7 .8 1
END DATA.

• ROWTYPE_ is specified on VARIABLES. MATRIX DATA therefore uses ROWTYPE_ values
in the data to identify record types.

MATRIX DATA 543

• Because ROWTYPE_ is specified on VARIABLES, CONTENTS is optional. However,
CONTENTS is specified for informational purposes. This is most useful when data are
in an external file and the ROWTYPE_ values cannot be seen in the data.

• Missing values for factors are entered as periods, even though CONTENTS is specified.

N Subcommand

N specifies the population N when the data do not include it. The only valid specification is
an integer, which indicates the population N.

• MATRIX DATA generates one record with a ROWTYPE_ of N for each split file, and it uses
the specified N value for each continuous variable.

Example
MATRIX DATA VARIABLES=V1 TO V3 /CONTENTS=MEAN SD CORR
 /N=99.
BEGIN DATA
 5 4 3
 3 4 5
 1
 .6 1
 .7 .8 1
END DATA.

• MATRIX DATA uses 99 as the N value for all continuous variables.

544

MCONVERT

MCONVERT [[/MATRIX=] [IN({* })] [OUT({* })]]
 {file} {file}
 [{/REPLACE}]
 {/APPEND }

Example:
MCONVERT MATRIX=OUT(CORMTX) /APPEND.

Overview

MCONVERT converts covariance matrix materials to correlation matrix materials, or vice
versa. For MCONVERT to convert a correlation matrix, the matrix data must contain CORR
values (Pearson correlation coefficients) and a vector of standard deviations (STDDEV).
For MCONVERT to convert a covariance matrix, only COV values are required in the data.

Options

Matrix Files. MCONVERT can read matrix materials from an external matrix data file, and it
can write converted matrix materials to an external file.

Matrix Materials. MCONVERT can write the converted matrix only or both the converted ma-
trix and the original matrix to the resulting matrix data file.

Basic Specification

The minimum specification is the command itself. By default, MCONVERT reads the original
matrix from the working data file and then replaces it with the converted matrix.

Syntax Rules

• Keywords IN and OUT cannot specify the same external file.

• The APPEND and REPLACE subcommands cannot be specified on the same MCONVERT
command.

Operations

• If the data are covariance matrix materials, MCONVERT converts them to a correlation
matrix plus a vector of standard deviations.

• If the data are a correlation matrix and vector of standard deviations, MCONVERT converts
them to a covariance matrix.

MCONVERT 545

• If there are multiple CORR or COV matrices (for example, one for each grouping (factor)
or one for each split variable), each will be converted to a separate matrix, preserving the
values of any factor or split variables.

• All cases with ROWTYPE_ values other than CORR or COV, such as MEAN, N, and
STDDEV, are always copied into the new matrix data file.

• MCONVERT cannot read raw matrix values. If your data are raw values, use the MATRIX
DATA command.

• Split variables (if any) must occur first in the file that MCONVERT reads, followed by vari-
able ROWTYPE_, the grouping variables (if any), and variable VARNAME_. All variables
following VARNAME_ are the variables for which a matrix will be read and created.

Limitations

• The total number of split variables plus grouping variables cannot exceed eight.

Example

MATRIX DATA VARIABLES=ROWTYPE_ SAVINGS POP15 POP75 INCOME GROWTH
/FORMAT=FULL.

BEGIN DATA
COV 20.0740459 -18.678638 1.8304990 978.181242 3.9190106
COV -18.678638 83.7541100 -10.731666 -6856.9888 -1.2561071
COV 1.8304990 -10.731666 1.6660908 1006.52742 .0937992
COV 978.181242 -6856.9888 1006.52742 981785.907 -368.18652
COV 3.9190106 -1.2561071 .0937992 -368.18652 8.2361574
END DATA.
MCONVERT.

• MATRIX DATA defines the variables in the file and creates a working data file of matrix
materials. The values for variable ROWTYPE_ are COV, indicating that the matrix con-
tains covariance coefficients. The FORMAT subcommand indicates that data are in full
square format.

• MCONVERT converts the covariance matrix to a correlation matrix plus a vector of stan-
dard deviations. By default, the converted matrix is written to the working data file.

MATRIX Subcommand

The MATRIX subcommand specifies the file for the matrix materials. By default, MATRIX
reads the original matrix from the working data file and replaces the working data file with
the converted matrix.

• MATRIX has two keywords, IN and OUT. The specification on both IN and OUT is the name
of an external file in parentheses or an asterisk (*) to refer to the working data file (the
default).

• The actual keyword MATRIX is optional.

• IN and OUT cannot specify the same external file.

546 MCONVERT

• MATRIX=IN cannot be specified unless a working data file has already been defined. To
convert an existing matrix at the beginning of a session, use GET to retrieve the matrix
file and then specify IN(*) on MATRIX.

IN The matrix file to read.

OUT The matrix file to write.

Example
GET FILE=COVMTX.
MCONVERT MATRIX=OUT(CORMTX).

• GET retrieves the SPSS-format matrix data file COVMTX. COVMTX becomes the working
data file.

• By default, MCONVERT reads the original matrix from the working data file. IN(*) can be
specified to make the default explicit.

• Keyword OUT on MATRIX writes the converted matrix to file CORMTX.

REPLACE and APPEND Subcommands

By default, MCONVERT writes only the converted matrix to the resulting matrix file. Use
APPEND to copy both the original matrix and the converted matrix.
• The only specification is the keyword REPLACE or APPEND.

• REPLACE and APPEND are alternatives.

• REPLACE and APPEND affect the resulting matrix file only. The original matrix materials,
whether in the working file or in an external file, remain intact.

APPEND Write the original matrix followed by the converted matrix to the matrix file.
If there are multiple sets of matrix materials, APPEND appends each converted
matrix to the end of a copy of its original matrix.

REPLACE Write the original matrix followed by the covariance matrix to the matrix file.

Example
MCONVERT MATRIX=OUT(COVMTX) /APPEND.

• MCONVERT reads matrix materials from the working file.

• The APPEND subcommand copies original matrix materials, appends each converted ma-
trix to the end of the copy of its original matrix, and writes both sets to file COVMTX.

547

MEANS

MEANS [TABLES=]{varlist} BY varlist [BY...] [/varlist...]
 {ALL }

[/MISSING={TABLE** }]
 {INCLUDE }
 {DEPENDENT}

 [/CELLS= [MEAN**] [COUNT**] [STDDEV**]
 [MEDIAN] [GMEDIAN] [SEMEAN] [SUM]
 [MIN] [MAX] [RANGE] [VARIANCE]
 [KURT] [SEKURT] [SKEW] [SESKEW]
 [FIRST] [LAST]

[NPCT] [SPCT] [NPCT(var)] [SPCT(var)]
[HARMONIC] [GEOMETRIC]
[DEFAULT]

 [ALL] [NONE]]

 [/STATISTICS=[ANOVA] [{LINEARITY}] [NONE**]]
 {ALL }

**Default if the subcommand is omitted.

Example:
MEANS TABLES=V1 TO V5 BY GROUP

/STATISTICS=ANOVA.

Overview

By default, MEANS (alias BREAKDOWN) displays means, standard deviations, and group
counts for a numeric dependent variable and group counts for a string variable within
groups defined by one or more control (independent) variables. Other procedures that dis-
play univariate statistics are SUMMARIZE, FREQUENCIES, and DESCRIPTIVES.

Options

Cell Contents. By default, MEANS displays means, standard deviations, and cell counts for a
dependent variable across groups defined by one or more control variables. You can also
display sums and variances using the CELLS subcommand.

Statistics. In addition to the statistics displayed for each cell of the table, you can obtain a
one-way analysis of variance and test of linearity using the STATISTICS subcommand.

Basic Specification

The basic specification is TABLES with a table list. The actual keyword TABLES can be
omitted.

• The minimum table list specifies a dependent variable, keyword BY, and a control
variable.

548 MEANS

• By default, MEANS displays means, standard deviations, and number of cases.

Subcommand Order

The table list must be first if keyword TABLES is omitted. If keyword TABLES is explicitly
used, subcommands can be specified in any order.

Operations

• MEANS displays the number and percentage of the processed and missing cases in the
Case Process Summary table.

• MEANS displays univariate statistics for the population as a whole and for each value of
each successive control variable defined by the BY keyword on the TABLE subcommand
in the Group Statistics table.

• ANOVA and linearity statistics, if requested, are displayed in the ANOVA and Measures
of Association tables.

• If a control variable is a long string, only the short-string portion is used to identify groups
in the analysis.

• If a string variable is specified as a dependent variable on any table lists, the MEANS
procedure produces limited statistics (COUNT, FIRST, and LAST).

Limitations

• Maximum 200 variables total per MEANS command.

• Maximum 250 tables.

Example

MEANS TABLES=V1 TO V5 BY GROUP
/STATISTICS=ANOVA.

• TABLES specifies that V1 through V5 are the dependent variables. GROUP is the control
variable.

• Assuming that variables V2, V3, and V4 lie between V1 and V5 in the working data file,
five tables are produced: V1 by GROUP, V2 by GROUP, V3 by GROUP, and so on.

• STATISTICS requests one-way analysis-of-variance tables of V1 through V5 by GROUP.

Example

MEANS VARA BY VARB BY VARC/V1 V2 BY V3 V4 BY V5.

• This command contains two TABLES subcommands that omit the optional TABLES
keyword.

MEANS 549

• The first table list produces a Group Statistics table for VARA within groups defined by
each combination of values as well as the totals of VARB and VARC.

• The second table list produces a Group Statistics table displaying statistics for V1 by V3
by V5; V1 by V4 by V5; V2 by V3 by V5; and V2 by V4 by V5.

TABLES Subcommand

TABLES specifies the table list.

• You can specify multiple TABLES subcommands on a single MEANS command. The slash
between the subcommands is required. You can also name multiple table lists separated
by slashes on one TABLES subcommand.

• The dependent variable is specified first. If the dependent variable is a string variable,
MEANS produces only limited statistics (COUNT, FIRST, and LAST). The control (inde-
pendent) variables follow the BY keyword and can be numeric (integer or noninteger) or
string.

• Each use of keyword BY in a table list adds a dimension to the table requested. Statistics
are displayed for each dependent variable by each combination of values and the totals of
the control variables across dimensions.

• The order in which control variables are displayed is the same as the order in which they
are specified on TABLES. The values of the first control variable defined for the table ap-
pear in the leftmost column of the table and change the most slowly in the definition of
groups.

• More than one dependent variable can be specified in a table list, and more than one control
variable can be specified in each dimension of a table list.

CELLS Subcommand

By default, SUMMARIZE displays the means, standard deviations, and cell counts in each cell.
Use CELLS to modify cell information.

• If CELLS is specified without keywords, SUMMARIZE displays the default statistics.

• If any keywords are specified on CELLS, only the requested information is displayed.

• MEDIAN and GMEDIAN are expensive in terms of computer resources and time. Requesting
these statistics (via these keywords or ALL) may slow down performance.

DEFAULT Means, standard deviations, and cell counts. This is the default if CELLS is
omitted.

MEAN Cell means.

STDDEV Cell standard deviations.

COUNT Cell counts.

MEDIAN Cell median.

GMEDIAN Grouped median.

550 MEANS

SEMEAN Standard error of cell mean.

SUM Cell sums.

MIN Cell minimum.

MAX Cell maximum.

RANGE Cell range.

VARIANCE Variances.

KURT Cell kurtosis.

SEKURT Standard error of cell kurtosis.

SKEW Cell skewness.

SESKEW Standard error of cell skewness.

FIRST First value.

LAST Last value.

NPCT Percent of the total number of cases.

SPCT Percent of the total sum.

NPCT(var) Percent of total number of cases within specified variable. The specified
variable must be one of the control variables.

SPCT(var) Percent of total sum within specified variable. The specified variable must
be one of the control variables.

HARMONIC Harmonic mean.

GEOMETRIC Geometric mean.

ALL All cell information.

STATISTICS Subcommand

Use STATISTICS to request a one-way analysis of variance and a test of linearity for each
TABLE list.
• Statistics requested on STATISTICS are computed in addition to the statistics displayed in

the Group Statistics table.

• If STATISTICS is specified without keywords, MEANS computes ANOVA.

• If two or more dimensions are specified, the second and subsequent dimensions are ignored
in the analysis-of-variance table. To obtain a two-way and higher analysis of variance, use
procedure ANOVA or MANOVA. Procedure ONEWAY calculates a one-way analysis of vari-
ance with multiple comparison tests.

ANOVA Analysis of variance. ANOVA displays a standard analysis-of-variance table
and calculates eta and eta squared (displayed in the Measures of Association
table). This is the default if STATISTICS is specified without keywords.

MEANS 551

LINEARITY Test of linearity. LINEARITY (alias ALL) displays additional statistics to the
tables created by the ANOVA keyword: the sums of squares, degrees of
freedom, and mean square associated with linear and nonlinear components,
the F ratio, and significance level for the ANOVA table and Pearson’s r and
r2 for the Measures of Association table. LINEARITY is ignored if the control
variable is a string.

NONE No additional statistics. This is the default if STATISTICS is omitted.

Example
MEANS TABLES=INCOME BY SEX BY RACE

/STATISTICS=ANOVA.

• MEANS produces a Group Statistics table of INCOME by RACE within SEX and computes
an analysis of variance only for INCOME by SEX.

MISSING Subcommand

MISSING controls the treatment of missing values.

TABLE Delete cases with missing values on a tablewide basis. A case with a missing
value for any variable specified for a table is not used. Thus, every case con-
tained in a table has a complete set of nonmissing values for all variables in
that table. When you separate table requests with a slash, missing values are
handled separately for each list. This is the default.

INCLUDE Include user-missing values. This option treats user-missing values as valid
values.

DEPENDENT Exclude user-missing values for dependent variables only. DEPENDENT
treats user-missing values for all control variables as valid.

References

Hays, W. L. 1981. Statistics for the social sciences, 3rd ed. New York: Holt, Rinehart, and Wilson.

552

MISSING VALUES

MISSING VALUES {varlist}(value list) [[/]{varlist} ...]
 {ALL } {ALL }

Keywords for numeric value lists:

LO, LOWEST, HI, HIGHEST, THRU

Example:
MISSING VALUES V1 (8,9) V2 V3 (0) V4 (’X’) V5 TO V9 (’ ’).

Overview

MISSING VALUES declares values for numeric and short string variables as user-missing.
These values can then receive special treatment in data transformations, statistical calcula-
tions, and case selection. By default, user-missing values are treated the same as the system-
missing values. System-missing values are automatically assigned by the program when no
legal value can be produced, such as when an alphabetical character is encountered in the
data for a numeric variable, or when an illegal calculation, such as division by 0, is request-
ed in a data transformation.

Basic Specification

The basic specification is a single variable followed by the user-missing value or values in
parentheses. Each specified value for the variable is treated as user-missing for any analysis.

Syntax Rules

• Each variable can have a maximum of three individual user-missing values. A space or
comma must separate each value. For numeric variables, you can also specify a range of
missing values. See “Specifying Ranges of Missing Values” on p. 554.

• The missing-value specification must correspond to the variable type (numeric or
string).

• The same values can be declared missing for more than one variable by specifying a
variable list followed by the values in parentheses. Variable lists must have either all nu-
meric or all string variables.

• Different values can be declared missing for different variables by specifying separate
values for each variable. An optional slash can be used to separate specifications.

• Missing values cannot be assigned to long string variables or to scratch variables.

MISSING VALUES 553

• Missing values for short string variables must be enclosed in apostrophes or quotation
marks. The value specifications must include any leading or trailing blanks. (See “String
Values in Command Specifications” on p. 5.)

• A variable list followed by an empty set of parentheses () deletes any user-missing
specifications for those variables.

• Keyword ALL can be used to refer to all user-defined variables in the working file, pro-
vided the variables are either all numeric or all string. ALL can refer to both numeric and
string variables if it is followed by an empty set of parentheses. This will delete all user-
missing specifications in the working data file.

• More than one MISSING VALUES command can be specified per session.

Operations

• Unlike most transformations, MISSING VALUES takes effect as soon as it is encountered.
Special attention should be paid to its position among commands. See “Command Order”
on p. 6 for more information.

• Missing-value specifications can be changed between procedures. New specifications
replace previous ones. If a variable is mentioned more than once on one or more MISSING
VALUES commands before a procedure, only the last specification is used.

• Missing-value specifications are saved in SPSS-format data files (see SAVE) and portable
files (see EXPORT).

Example

MISSING VALUES V1 (8,9) V2 V3 (0) V4 (’X’) V5 TO V9 (’ ’).

• Values 8 and 9 are declared missing for numeric variable V1.
• Value 0 is declared missing for numeric variables V2 and V3.

• Value X is declared missing for string variable V4.

• Blanks are declared missing for the string variables between and including V5 and V9. All
of these variables must have a width of four columns.

Example

MISSING VALUES V1 ().

• Any previously declared missing values for V1 are deleted.

Example

MISSING VALUES ALL (9).

• Value 9 is declared missing for all variables in the working data file; the variables must
all be numeric. All previous user-missing specifications are overridden.

554 MISSING VALUES

Example

MISSING VALUES ALL ().

• All previously declared user-missing values for all variables in the working data file are
deleted. The variables in the working data file can be both numeric and string.

Specifying Ranges of Missing Values

A range of values can be specified as missing for numeric variables but not for string variables.

• Keyword THRU indicates an inclusive list of values. Values must be separated from THRU
by at least one blank space.

• Keywords HIGHEST and LOWEST with THRU indicate the highest and lowest values of a
variable. HIGHEST and LOWEST can be abbreviated to HI and LO.

• Only one THRU specification can be used for each variable or variable list. Each THRU
specification can be combined with one additional missing value.

Example
MISSING VALUES V1 (LOWEST THRU 0).

• All negative values and 0 are declared missing for variable V1.

Example
MISSING VALUES V1 (0 THRU 1.5).

• Values from 0 through and including 1.5 are declared missing.

Example
MISSING VALUES V1 (LO THRU 0, 999).

• All negative values, 0, and 999 are declared missing for variable V1.

555

MULT RESPONSE

MULT RESPONSE†

 {/GROUPS=groupname['label'](varlist ({value1,value2}))}
 {value }
 ...[groupname...]

 {/VARIABLES=varlist(min,max) [varlist...] }

 {/FREQUENCIES=varlist }

 {/TABLES=varlist BY varlist... [BY varlist] [(PAIRED)]}
 [/varlist BY...]

 [/MISSING=[{ TABLE**}] [INCLUDE]]
 {MDGROUP}
 {MRGROUP}

 [/FORMAT={ LABELS**} { TABLE** } [DOUBLE]]
 {NOLABELS} {CONDENSE}
 {ONEPAGE }

 [/BASE={ CASES** }]
 {RESPONSES}

 [/CELLS=[COUNT**] [ROW] [COLUMN] [TOTAL] [ALL]]

†A minimum of two subcommands must be used: at least one from the pair GROUPS or VARIABLES and
one from the pair FREQUENCIES or TABLES.
 **Default if the subcommand is omitted.

Example:
MULT RESPONSE GROUPS=MAGS (TIME TO STONE (2))

/FREQUENCIES=MAGS.

Overview

MULT RESPONSE displays frequencies and optional percentages for multiple-response
items in univariate tables and multivariate crosstabulations. Another procedure that ana-
lyzes multiple-response items is TABLES, which has most, but not all, of the capabilities
of MULT RESPONSE. TABLES has special formatting capabilities that make it useful for
presentations.

Multiple-response items are questions that can have more than one value for each case.
For example, the respondent may have been asked to circle all magazines read within the last
month in a list of magazines. You can organize multiple-response data in one of two ways
for use in the program. For each possible response, you can create a variable that can have
one of two values, such as 1 for no and 2 for yes; this is the multiple-dichotomy method. Al-
ternatively, you can estimate the maximum number of possible answers from a respondent
and create that number of variables, each of which can have a value representing one of the
possible answers, such as 1 for Time, 2 for Newsweek, and 3 for PC Week. If an individual

556 MULT RESPONSE

did not give the maximum number of answers, the extra variables receive a missing-value
code. This is the multiple-response or multiple-category method of coding answers.

To analyze the data entered by either method, you combine variables into groups. The
technique depends on whether you have defined multiple-dichotomy or multiple-response
variables. When you create a multiple-dichotomy group, each component variable with at
least one yes value across cases becomes a category of the group variable. When you create
a multiple-response group, each value becomes a category and the program calculates the
frequency for a particular value by adding the frequencies of all component variables with
that value. Both multiple-dichotomy and multiple-response groups can be crosstabulated
with other variables in MULT RESPONSE.

Options

Cell Counts and Percentages. By default, crosstabulations include only counts and no
percentages. You can request row, column, and total table percentages using the CELLS sub-
command. You can also base percentages on responses instead of respondents using BASE.

Format. You can suppress the display of value labels and request condensed format for fre-
quency tables using the FORMAT subcommand.

Basic Specification

The subcommands required for the basic specification fall into two groups: GROUPS and
VARIABLES name the elements to be included in the analysis; FREQUENCIES and TABLES
specify the type of table display to be used for tabulation. The basic specification requires at
least one subcommand from each group:

• GROUPS defines groups of multiple-response items to be analyzed and specifies how the
component variables will be combined.

• VARIABLES identifies all individual variables to be analyzed.

• FREQUENCIES requests frequency tables for the groups and/or individual variables spec-
ified on GROUPS and VARIABLES.

• TABLES requests crosstabulations of groups and/or individual variables specified on
GROUPS and VARIABLES.

Subcommand Order

• The basic subcommands must be used in the following order: GROUPS, VARIABLES,
FREQUENCIES, and TABLES. Only one set of basic subcommands can be specified.

• All basic subcommands must precede all optional subcommands. Optional subcommands
can be used in any order.

MULT RESPONSE 557

Operations

• Empty categories are not displayed in either frequency tables or crosstabulations.
• If you define a multiple-response group with a very wide range, the tables require sub-

stantial amounts of workspace. If the component variables are sparsely distributed, you
should recode them to minimize the workspace required.

• MULT RESPONSE stores category labels in workspace. If there is insufficient space to
store the labels after the tables are built, the labels are not displayed.

Limitations

• The component variables must have integer values. Noninteger values are truncated.

• Maximum 100 existing variables named or implied by GROUPS and VARIABLES together.
• Maximum 20 groups defined on GROUPS.

• Maximum 32,767 categories for a multiple-response group or an individual variable.

• Maximum 10 table lists on TABLES.

• Maximum 5 dimensions per table.

• Maximum 100 groups and variables named or implied on FREQUENCIES and TABLES
together.

• Maximum 200 nonempty rows and 200 nonempty columns in a single table.

GROUPS Subcommand

GROUPS defines both multiple-dichotomy and multiple-response groups.

• Specify a name for the group and an optional label, followed by a list of the component
variables and the value or values to be used in the tabulation.

• Enclose the variable list in parentheses and enclose the values in an inner set of parentheses
following the last variable in the list.

• The label for the group is optional and can be up to 40 characters in length, including
imbedded blanks. Apostrophes or quotes around the label are not required.

• To define a multiple-dichotomy group, specify only one tabulating value (the value that
represents yes) following the variable list. Each component variable becomes a value of
the group variable, and the number of cases that have the tabulating value becomes the
frequency. If there are no cases with the tabulating value for a given component variable,
that variable does not appear in the tabulation.

• To define a multiple-response group, specify two values following the variable list. These
are the minimum and maximum values of the component variables. The group variable
will have the same range of values. The frequency for each value is tabulated across all
component variables in the list.

• You can use any valid variable name for the group except the name of an existing variable
specified on the same MULT RESPONSE command. However, you can reuse a group name
on another MULT RESPONSE command.

558 MULT RESPONSE

• The group names and labels exist only during MULT RESPONSE and disappear once MULT
RESPONSE has been executed. If group names are referred to in other procedures, an er-
ror results.

• For a multiple-dichotomy group, the category labels come from the variable labels
defined for the component variables.

• For a multiple-response group, the category labels come from the value labels for the first
component variable in the group. If categories are missing for the first variable but are
present for other variables in the group, you must define value labels for the missing cat-
egories. (You can use the ADD VALUE LABELS command to define extra value labels.)

Example
MULT RESPONSE GROUPS=MAGS ’MAGAZINES READ’ (TIME TO STONE (2))

/FREQUENCIES=MAGS.

• The GROUPS subcommand creates a multiple-dichotomy group named MAGS. The
variables between and including TIME and STONE become categories of MAGS, and the
frequencies are cases with value 2 (indicating yes, read the magazine) for the component
variables.

• The group label is MAGAZINES READ.

Example
MULT RESPONSE GROUPS=PROBS ’PERCEIVED NATIONAL PROBLEMS’

(PROB1 TO PROB3 (1,9))
/FREQUENCIES=PROBS.

• The GROUPS subcommand creates the multiple-response group PROBS. The component
variables are the existing variables between and including PROB1 and PROB3, and the
frequencies are tabulated for values 1 through 9.

• The frequency for a given value is the number of cases that have that value in any of the
variables PROB1 to PROB3.

VARIABLES Subcommand

VARIABLES specifies existing variables to be used in frequency tables and crosstabulations.
Each variable is followed by parentheses enclosing a minimum and a maximum value, which
are used to allocate cells for the tables for that variable.

• You can specify any numeric variable on VARIABLES, but noninteger values are truncated.

• If GROUPS is also specified, VARIABLES follows GROUPS.
• To provide the same minimum and maximum for each of a set of variables, specify a vari-

able list followed by a range specification.

• The component variables specified on GROUPS can be used in frequency tables and
crosstabulations, but you must specify them again on VARIABLES, along with a range for
the values. You do not have to respecify the component variables if they will not be used
as individual variables in any tables.

MULT RESPONSE 559

Example
MULT RESPONSE GROUPS=MAGS ’MAGAZINES READ’ (TIME TO STONE (2))

/VARIABLES SEX(1,2) EDUC(1,3)
/FREQUENCIES=MAGS SEX EDUC.

• The VARIABLES subcommand names variables SEX and EDUC so that they can be used in
a frequencies table.

Example
MULT RESPONSE GROUPS=MAGS ’MAGAZINES READ’ (TIME TO STONE (2))

/VARIABLES=EDUC (1,3) TIME (1,2).
/TABLES=MAGS BY EDUC TIME.

• The variable TIME is used in a group and also in a table.

FREQUENCIES Subcommand

FREQUENCIES requests frequency tables for groups and individual variables. By default, a
frequency table contains the count for each value, the percentage of responses, and the per-
centage of cases. For another method of producing frequency tables for individual variables,
see the FREQUENCIES procedure.
• All groups must be created by GROUPS, and all individual variables to be tabulated must

be named on VARIABLES.

• You can use keyword TO to imply a set of group or individual variables. TO refers to the
order in which variables are specified on the GROUPS or VARIABLES subcommand.

Example
MULT RESPONSE GROUPS=MAGS ’MAGAZINES READ’ (TIME TO STONE (2))

/FREQUENCIES=MAGS.

• The FREQUENCIES subcommand requests a frequency table for the multiple-dichotomy
group MAGS, tabulating the frequency of value 2 for each of the component variables
TIME to STONE.

Example
MULT RESPONSE
GROUPS=MAGS ’MAGAZINES READ’ (TIME TO STONE (2))

PROBS ’PERCEIVED NATIONAL PROBLEMS’ (PROB1 TO PROB3 (1,9))
MEMS ’SOCIAL ORGANIZATION MEMBERSHIPS’ (VFW AMLEG ELKS (1))

/VARIABLES SEX(1,2) EDUC(1,3)
/FREQUENCIES=MAGS TO MEMS SEX EDUC.

• The FREQUENCIES subcommand requests frequency tables for MAGS, PROBS, MEMS,
SEX, and EDUC.

• You cannot specify MAGS TO EDUC because SEX and EDUC are individual variables, and
MAGS, PROBS, and MEMS are group variables.

560 MULT RESPONSE

TABLES Subcommand

TABLES specifies the crosstabulations to be produced by MULT RESPONSE. Both individual
variables and group variables can be tabulated together.

• The first list defines the rows of the tables; the next list (following BY) defines the col-
umns. Subsequent lists following BY keywords define control variables, which produce
subtables. Use keyword BY to separate the dimensions. You can specify up to five dimen-
sions (four BY keywords) for a table.

• To produce more than one table, name one or more variables for each dimension of the
tables. You can also specify multiple table lists separated by a slash. If you use keyword
TO to imply a set of group or individual variables, TO refers to the order in which groups
or variables are specified on the GROUPS or VARIABLES subcommand.

• If FREQUENCIES is also specified, TABLES follows FREQUENCIES.
• The value labels for columns are displayed on three lines with eight characters per line.

To avoid splitting words, reverse the row and column variables, or redefine the variable
or value labels (depending on whether the variables are multiple-dichotomy or multiple-
response variables).

Example
MULT RESPONSE GROUPS=MAGS ’MAGAZINES READ’ (TIME TO STONE (2))

/VARIABLES=EDUC (1,3)/TABLES=EDUC BY MAGS.

• The TABLES subcommand requests a crosstabulation of variable EDUC by the multiple-
dichotomy group MAGS.

Example
MULT RESPONSE GROUPS=MAGS ’MAGAZINES READ’ (TIME TO STONE (2))

MEMS ’SOCIAL ORGANIZATION MEMBERSHIPS’ (VFW AMLEG ELKS (1))
/VARIABLES EDUC (1,3)/TABLES=MEMS MAGS BY EDUC.

• The TABLES subcommand specifies two crosstabulations—MEMS by EDUC, and MAGS
by EDUC.

Example
MULT RESPONSE GROUPS=MAGS ’MAGAZINES READ’ (TIME TO STONE (2))

/VARIABLES SEX (1,2) EDUC (1,3)
/TABLES=MAGS BY EDUC SEX/EDUC BY SEX/MAGS BY EDUC BY SEX.

• The TABLES subcommand uses slashes to separate three table lists. It produces two tables
from the first table list (MAGS by EDUC and MAGS by SEX) and one table from the second
table list (EDUC by SEX). The third table list produces separate tables for each sex (MAGS
by EDUC for male and for female).

Example
MULT RESPONSE GROUPS=MAGS ’MAGAZINES READ’ (TIME TO STONE (2))

PROBS ’NATIONAL PROBLEMS MENTIONED’ (PROB1 TO PROB3 (1,9))
/TABLES=MAGS BY PROBS.

• The TABLES subcommand requests a crosstabulation of the multiple-dichotomy group
MAGS with the multiple-response group PROBS.

MULT RESPONSE 561

PAIRED Keyword

When MULT RESPONSE crosstabulates two multiple-response groups, by default it tabulates
each variable in the first group with each variable in the second group and sums the counts
for each cell. Thus, some responses can appear more than once in the table. Use PAIRED to
pair the first variable in the first group with the first variable in the second group, the second
variable in the first group with the second variable in the second group, and so on.

• Keyword PAIRED is specified in parentheses on the TABLES subcommand following the
last variable named for a specific table list.

• When you request paired crosstabulations, the order of the component variables on the
GROUPS subcommand determines the construction of the table.

• Although the tables can contain individual variables and multiple-dichotomy groups in a
paired table request, only variables within multiple-response groups are paired.

• PAIRED also applies to a multiple-response group used as a control variable in a three-way
or higher-order table.

• Paired tables are identified in the output by the label PAIRED GROUP.

• Percentages in paired tables are always based on responses rather than cases.

Example
MULT RESPONSE GROUPS=PSEX ’SEX OF CHILD’(P1SEX P2SEX P3SEX (1,2))

/PAGE ’AGE OF ONSET OF PREGNANCY’ (P1AGE P2AGE P3AGE (1,4))
/TABLES=PSEX BY PAGE (PAIRED).

• The PAIRED keyword produces a paired crosstabulation of PSEX by PAGE, which is a
combination of the tables P1SEX by P1AGE, P2SEX by P2AGE, and P3SEX by P3AGE.

Example
MULT RESPONSE GROUPS=PSEX ’SEX OF CHILD’(P1SEX P2SEX P3SEX (1,2))

PAGE ’AGE OF ONSET OF PREGNANCY’ (P1AGE P2AGE P3AGE (1,4))
/VARIABLES=EDUC (1,3)
/TABLES=PSEX BY PAGE BY EDUC (PAIRED).

• The TABLES subcommand pairs only PSEX with PAGE. EDUC is not paired because it is
an individual variable, not a multiple-response group.

CELLS Subcommand

By default, MULT RESPONSE displays cell counts but not percentages in crosstabulations.
CELLS requests percentages for crosstabulations.

• If you specify one or more keywords on CELLS, MULT RESPONSE displays cell counts
plus the percentages you request. The count cannot be eliminated from the table cells.

COUNT Cell counts. This is the default if you omit the CELLS subcommand.

ROW Row percentages.

COLUMN Column percentages.

562 MULT RESPONSE

TOTAL Two-way table total percentages.

ALL Cell counts, row percentages, column percentages, and two-way table total
percentages. This is the default if you specify the CELLS subcommand with-
out keywords.

Example
MULT RESPONSE GROUPS=MAGS ’MAGAZINES READ’ (TIME TO STONE (2))

/VARIABLES=SEX (1,2) (EDUC (1,3)
/TABLES=MAGS BY EDUC SEX
/CELLS=ROW COLUMN.

• The CELLS subcommand requests row and column percentages in addition to counts.

BASE Subcommand

BASE lets you obtain cell percentages and marginal frequencies based on responses rather
than respondents. Specify one of two keywords:

CASES Base cell percentages on cases. This is the default if you omit the BASE sub-
command and do not request paired tables. You cannot use this specification
if you specify PAIRED on TABLE.

RESPONSES Base cell percentages on responses. This is the default if you request paired
tables.

Example
MULT RESPONSE GROUPS=PROBS ’NATIONAL PROBLEMS MENTIONED’

(PROB1 TO PROB3 (1,9))/VARIABLES=EDUC (1,3)
/TABLES=EDUC BY PROBS
/CELLS=ROW COLUMN
/BASE=RESPONSES.

• The BASE subcommand requests marginal frequencies and cell percentages based on
responses.

MISSING Subcommand

MISSING controls missing values. Its minimum specification is a single keyword.
• By default, MULT RESPONSE deletes cases with missing values on a table-by-table basis

for both individual variables and groups. In addition, values falling outside the specified
range are not tabulated and are included in the missing category. Thus, specifying a range
that excludes missing values is equivalent to the default missing-value treatment.

• For a multiple-dichotomy group, a case is considered missing by default if none of the
component variables contains the tabulating value for that case. Keyword MDGROUP
overrides the default and specifies listwise deletion for multiple-dichotomy groups.

• For a multiple-response group, a case is considered missing by default if none of the
components has valid values falling within the tabulating range for that case. Thus, cases
with missing or excluded values on some (but not all) of the components of a group are

MULT RESPONSE 563

included in tabulations of the group variable. Keyword MRGROUP overrides the default
and specifies listwise deletion for multiple-response groups.

• You can use INCLUDE with MDGROUP, MRGROUP, or TABLE. The user-missing value is
tabulated if it is included in the range specification.

TABLE Exclude missing values on a table-by-table basis. Missing values are exclud-
ed on a table-by-table basis for both component variables and groups. This
is the default if you omit the MISSING subcommand.

MDGROUP Exclude missing values listwise for multiple-dichotomy groups. Cases with
missing values for any component dichotomy variable are excluded from the
tabulation of the multiple-dichotomy group.

MRGROUP Exclude missing values listwise for multiple-response groups. Cases with
missing values for any component variable are excluded from the tabulation
of the multiple-response group.

INCLUDE Include user-missing values. User-missing values are treated as valid values
if they are included in the range specification on the GROUPS or VARIABLES
subcommands.

Example
MULT RESPONSE GROUPS=FINANCL ’FINANCIAL PROBLEMS MENTIONED’

(FINPROB1 TO FINPROB3 (1,3))
SOCIAL ’SOCIAL PROBLEMS MENTIONED’(SOCPROB1 TO SOCPROB4 (4,9))
/VARIABLES=EDUC (1,3)
/TABLES=EDUC BY FINANCL SOCIAL
/MISSING=MRGROUP.

• The MISSING subcommand indicates that a case will be excluded from counts in the first
table if any of the variables in the group FINPROB1 to FINPROB3 has a missing value or
a value outside the range 1 to 3. A case is excluded from the second table if any of the
variables in the group SOCPROB1 to SOCPROB4 has a missing value or value outside the
range 4 to 9.

FORMAT Subcommand

FORMAT controls table formats. The minimum specification on FORMAT is a single keyword.
Labels are controlled by two keywords:

LABELS Display value labels in frequency tables and crosstabulations. This is the
default.

NOLABELS Suppress value labels in frequency tables and crosstabulations for multiple-
response variables and individual variables. You cannot suppress the dis-
play of variable labels used as value labels for multiple-dichotomy groups.

The following keywords apply to the format of frequency tables:

DOUBLE Double spacing for frequency tables. By default, MULT RESPONSE uses
single spacing.

564 MULT RESPONSE

TABLE One-column format for frequency tables. This is the default if you omit the
FORMAT subcommand.

CONDENSE Condensed format for frequency tables. This option uses a three-column
condensed format for frequency tables for all multiple-response groups and
individual variables. Labels are suppressed. This option does not apply to
multiple-dichotomy groups.

ONEPAGE Conditional condensed format for frequency tables. Three-column con-
densed format is used if the resulting table would not fit on a page. This option
does not apply to multiple-dichotomy groups.

Example
MULT RESPONSE GROUPS=PROBS ’NATIONAL PROBLEMS MENTIONED’

(PROB1 TO PROB3 (1,9))/VARIABLES=EDUC (1,3)
/FREQUENCIES=EDUC PROBS
/FORMAT=CONDENSE.

• The FORMAT subcommand specifies condensed format, which eliminates category labels
and displays the categories in three parallel sets of columns, each set containing one or
more rows of categories (rather than displaying one set of columns aligned vertically
down the page).

565

N OF CASES

N OF CASES n

Example:
N OF CASES 100.

Overview

N OF CASES (alias N) limits the number of cases in the working data file to the first n cases.

Basic Specification

The basic specification is N OF CASES followed by at least one space and a positive integer.
Cases in the working data file are limited to the specified number.

Syntax Rules

• To limit the number of cases for the next procedure only, use the TEMPORARY command
before N OF CASES (see TEMPORARY).

• In some versions of the program, N OF CASES can be specified only after a working data
file is defined.

Operations

• Unlike most transformations, N OF CASES takes effect as soon as it is encountered in the
command sequence. Thus, special attention should be paid to its position among com-
mands. See “Command Order” on p. 6 for more information.

• N OF CASES limits the number of cases analyzed by all subsequent procedures in the
session. The working data file will have no more than n cases after the first data pass
following the N OF CASES command. Any subsequent N OF CASES command specify-
ing a greater number of cases will be ignored.

• If N OF CASES specifies more cases than can actually be built, the program builds as
many cases as possible.

• If N OF CASES is used with SAMPLE or SELECT IF, the program reads as many records
as required to build the specified n cases. It makes no difference whether the N OF CAS-
ES precedes or follows the SAMPLE or SELECT IF command.

566 N OF CASES

Example

GET FILE=CITY.
N 100.

• N OF CASES limits the number of cases on the working data file to the first 100 cases.
Cases are limited for all subsequent analyses.

Example

DATA LIST FILE=PRSNNL / NAME 1-20 (A) AGE 22-23 SALARY 25-30.
N 25.
SELECT IF (SALARY GT 20000).
LIST.

• DATA LIST defines variables from file PRSNNL.

• N OF CASES limits the working data file to 25 cases after cases have been selected by
SELECT IF.

• SELECT IF selects only cases in which SALARY is greater than $20,000.
• LIST produces a listing of the cases in the working data file. If the original working data

file has fewer than 25 cases in which salary is greater than 20,000, fewer than 25 cases
will be listed.

Example

DATA LIST FILE=PRSNNL / NAME 1-20(A) AGE 22-23
 SALARY 25-30 DEPT 32.
LIST.
TEMPORARY.
N 25.
FREQUENCIES VAR=SALARY.
N 50.
FREQUENCIES VAR=AGE.
REPORT FORMAT=AUTO /VARS=NAME AGE SALARY /BREAK=DEPT
 /SUMMARY=MEAN.

• The first N OF CASES command is temporary. Only 25 cases are used in the first
FREQUENCIES procedure.

• The second N OF CASES command is permanent. The second frequency table and the
report are based on 50 cases from file PRSNNL. The working data file now contains 50
cases (assuming the original working file had at least that many).

567

NEW FILE

NEW FILE

Overview

The NEW FILE command clears the working data file. It is used when you want to build a
new working data file by generating data within an input program (see INPUT PROGRAM—
END INPUT PROGRAM).

Basic Specification

NEW FILE is always specified by itself. No other keyword is required or allowed.

Operations

• NEW FILE clears the working data file. The command takes effect as soon as it is
encountered. You must build a new working data file after this command to continue
your session. Transformations or procedures cannot be used before a working data file
is created.

• When you build a working data file with GET, DATA LIST, or other file definition
commands (such as ADD FILES or MATCH FILES), the working data file is automatically
replaced. It is not necessary to specify NEW FILE.

568

NONPAR CORR

NONPAR CORR [VARIABLES=] varlist [WITH varlist] [/varlist...]

 [/PRINT={TWOTAIL**} {SIG**} {SPEARMAN**}]
 {ONETAIL } {NOSIG} {KENDALL }
 {BOTH }

 [/SAMPLE]

 [/MISSING=[{PAIRWISE**} [INCLUDE]]
 {LISTWISE }

 [/MATRIX=OUT({* })]
 {file}

**Default if the subcommand is omitted.

Example:
NONPAR CORR VARIABLES=PRESTIGE SPPRES PAPRES16 DEGREE PADEG MADEG.

Overview

NONPAR CORR computes two rank-order correlation coefficients, Spearman’s rho and Ken-
dall’s tau-b, with their significance levels. You can obtain either or both coefficients. NON-
PAR CORR automatically computes the ranks and stores the cases in memory. Therefore,
memory requirements are directly proportional to the number of cases being analyzed.

Options

Coefficients and Significance Levels. By default, NONPAR CORR computes Spearman coeffi-
cients and displays the two-tailed significance level. You can request a one-tailed test, and
you can display the significance level for each coefficient as an annotation using the PRINT
subcommand.

Random Sampling. You can request a random sample of cases when there is not enough space
to store all the cases using the SAMPLE subcommand.

Matrix Output. You can write matrix materials to an SPSS-format data file using the MATRIX
subcommand. The matrix materials include the number of cases used to compute each co-
efficient and the Spearman or Kendall coefficients for each variable. These materials can be
read by other procedures.

Basic Specification

The basic specification is VARIABLES and a list of numeric variables. The actual keyword
VARIABLES can be omitted. By default, Spearman correlation coefficients are calculated.

NONPAR CORR 569

Subcommand Order

• VARIABLES must be specified first.
• The remaining subcommands can be used in any order.

Operations

• NONPAR CORR produces one or more matrices of correlation coefficients. For each coef-
ficient, NONPAR CORR displays the number of cases used and the significance level.

• The number of valid cases are always displayed. Depending on the specification on the
MISSING subcommand, it can be displayed for each pair or in a single annotation.

• If all cases have a missing value for a given pair of variables, or if they all have the same
value for a variable, the coefficient cannot be computed. If a correlation cannot be com-
puted, NONPAR CORR displays a decimal point.

• If both Spearman and Kendall coefficients are requested and MATRIX is used to write ma-
trix materials to an SPSS-format matrix data file, only Spearman’s coefficient will be
written with the matrix materials.

Limitations

• Maximum 25 variable lists.

• Maximum 100 variables total per NONPAR CORR command.

Example

NONPAR CORR VARIABLES=PRESTIGE SPPRES PAPRES16 DEGREE PADEG MADEG.

• By default, Spearman correlation coefficients are calculated. The number of cases upon
which the correlations are based and the two-tailed significance level are displayed for
each correlation.

VARIABLES Subcommand

VARIABLES specifies the variable list. The keyword VARIABLES is optional.

• All variables must be numeric.

• If keyword WITH is not used, NONPAR CORR displays the correlations of each variable
with every other variable in the list.

• To obtain a rectangular matrix, specify two variable lists separated by keyword WITH.
NONPAR CORR writes a rectangular matrix of variables in the first list correlated with
variables in the second list.

• Keyword WITH cannot be used when the MATRIX subcommand is used.

• You can request more than one analysis. Use a slash to separate the specifications for each
analysis.

570 NONPAR CORR

Example
NONPAR CORR VARS=PRESTIGE SPPRES PAPRES16 WITH DEGREE PADEG MADEG.

• The three variables listed before WITH define the rows; the three variables listed after
WITH define the columns of the correlation matrix.

• Spearman’s rho is displayed by default.

Example
NONPAR CORR VARIABLES=SPPRES PAPRES16 PRESTIGE

/SATCITY WITH SATHOBBY SATFAM.

• NONPAR CORR produces two Correlations tables.

• By default, Spearman’s rho is displayed.

PRINT Subcommand

By default, NONPAR CORR displays Spearman correlation coefficients. The significance lev-
el(s) are displayed below the coefficients. The significance level is based on a two-tailed test.
Use PRINT to change these defaults.
• The Spearman and Kendall coefficients are both based on ranks.

SPEARMAN Spearman’s rho. Only Spearman coefficients are displayed. This is the default.

KENDALL Kendall’s tau-b. Only Kendall coefficients are displayed.

BOTH Kendall and Spearman coefficients. Both coefficients are displayed. If
MATRIX is used to write the correlation matrix to a matrix data file, only
Spearman coefficients are written with the matrix materials.

SIG Display the significance level. This is the default.

NOSIG Display the significance level in an annotation.

TWOTAIL Two-tailed test of significance. This test is appropriate when the direction of
the relationship cannot be determined in advance, as is often the case in ex-
ploratory data analysis. This is the default.

ONETAIL One-tailed test of significance. This test is appropriate when the direction of
the relationship between a pair of variables can be specified in advance of
the analysis.

SAMPLE Subcommand

NONPAR CORR must store cases in memory to build matrices. SAMPLE selects a random
sample of cases when computer resources are insufficient to store all the cases. To request a
random sample, simply specify the subcommand. SAMPLE has no additional specifications.

NONPAR CORR 571

MISSING Subcommand

MISSING controls missing-value treatments.
• PAIRWISE and LISTWISE are alternatives. You can specify INCLUDE with either PAIRWISE

or LISTWISE.

PAIRWISE Exclude missing values pairwise. Cases with a missing value for one or both
of a pair of variables for a specific correlation coefficient are excluded from
the computation of that coefficient. This allows the maximum information
available to be used in every calculation. This also results in a set of coeffi-
cients based on a varying number of cases. The number is displayed for each
pair. This is the default.

LISTWISE Exclude missing values listwise. Cases with a missing value for any variable
named in a list are excluded from the computation of all coefficients in the
Correlations table. The number of cases used is displayed in a single annota-
tion. Each variable list on a command is evaluated separately. Thus, a case
missing for one matrix might be used in another matrix. This option decreases
the amount of memory required and significantly decreases computational
time.

INCLUDE Include user-missing values. User-missing values are treated as valid values.

MATRIX Subcommand

MATRIX writes matrix materials to a matrix data file. The matrix materials always include the
number of cases used to compute each coefficient, and either the Spearman or the Kendall
correlation coefficient for each variable, whichever is requested. See “Format of the Matrix
Data File” on page 572 for a description of the file.

• You cannot write both Spearman’s and Kendall’s coefficients to the same matrix data file.
To obtain both Spearman’s and Kendall’s coefficients in matrix format, specify separate
NONPAR CORR commands for each coefficient and define different matrix data files for
each command.

• If PRINT=BOTH is in effect, NONPAR CORR displays a matrix in the listing file for both
coefficients but writes only the Spearman coefficients to the matrix data file.

• NONPAR CORR cannot write matrix materials for rectangular matrices (variable lists con-
taining keyword WITH). If more than one variable list is specified, only the last variable
list that does not use keyword WITH is written to the matrix data file.

• The specification on MATRIX is keyword OUT and the name of the matrix file in parentheses.

• If you want to use a correlation matrix written by NONPAR CORR in another procedure,
change the ROWTYPE_ value RHO or TAUB to CORR using the RECODE command.

• Any documents contained in the working data file are not transferred to the matrix file.

OUT (filename) Write a matrix data file. Specify either a file or an asterisk, enclosed in pa-
rentheses. If you specify a file, the file is stored on disk and can be retrieved
at any time. If you specify an asterisk (*), the matrix data file replaces the
working file but is not stored on disk unless you use SAVE or XSAVE.

572 NONPAR CORR

Format of the Matrix Data File

• The matrix data file has two special variables created by the program: ROWTYPE_ and
VARNAME_.

• Variable ROWTYPE_ is a short string variable with values N and RHO for Spearman’s
correlation coefficient. If you specify Kendall’s coefficient, the values are N and TAUB.

• VARNAME_ is a short string variable whose values are the names of the variables used to
form the correlation matrix. When ROWTYPE_ is RHO (or TAUB), VARNAME_ gives the
variable associated with that row of the correlation matrix.

• The remaining variables in the file are the variables used to form the correlation matrix.

Split Files

• When split-file processing is in effect, the first variables in the matrix data file are the split
variables, followed by ROWTYPE_, VARNAME_, and the variables used to form the cor-
relation matrix.

• A full set of matrix materials is written for each split-file group defined by the split variables.
• A split variable cannot have the same name as any other variable written to the matrix

data file.

• If split-file processing is in effect when a matrix is written, the same split file must be in
effect when that matrix is read by a procedure.

Missing Values

• With PAIRWISE treatment of missing values (the default), the matrix of N’s used to com-
pute each coefficient is included with the matrix materials.

• With LISTWISE or INCLUDE treatments, a single N used to calculate all coefficients is in-
cluded with the matrix materials.

Example

GET FILE GSS80 /KEEP PRESTIGE SPPRES PAPRES16 DEGREE PADEG MADEG.
NONPAR CORR VARIABLES=PRESTIGE TO MADEG

/MATRIX OUT(NPMAT).

• NONPAR CORR reads data from file GSS80 and writes one set of correlation matrix ma-
terials to the file NPMAT.

• The working data file is still GSS80. Subsequent commands are executed on file GSS80.

NONPAR CORR 573

Example

GET FILE GSS80 /KEEP PRESTIGE SPPRES PAPRES16 DEGREE PADEG MADEG.
NONPAR CORR VARIABLES=PRESTIGE TO MADEG

/MATRIX OUT(*).
LIST.
DISPLAY DICTIONARY.

• NONPAR CORR writes the same matrix as in the example above. However, the matrix data
file replaces the working file. The LIST and DISPLAY commands are executed on the ma-
trix file, not on the original working file GSS80.

Example

NONPAR CORR VARIABLES=PRESTIGE SPPRES PAPRES16 DEGREE PADEG MADEG
/PRESTIGE TO DEGREE /PRESTIGE WITH DEGREE

/MATRIX OUT(NPMAT).

• Only the matrix for PRESTIGE to DEGREE is written to the matrix data file because it is
the last variable list that does not use keyword WITH.

574

NPAR TESTS

NPAR TESTS [CHISQUARE=varlist[(lo,hi)]/] [/EXPECTED={EQUAL }]
 {f1,f2,...fn}

 [/K-S({UNIFORM [min,max] })=varlist]
 {NORMAL [mean,stddev]}
 {POISSON [mean] }
 {EXPONENTIAL [mean] }

 [/RUNS({MEAN })=varlist]
 {MEDIAN}
 {MODE }
 {value }

 [/BINOMIAL[({.5})]=varlist[({value1,value2})]]
 { p} {value }

 [/MCNEMAR=varlist [WITH varlist [(PAIRED)]]]

 [/SIGN=varlist [WITH varlist [(PAIRED)]]]

 [/WILCOXON=varlist [WITH varlist [(PAIRED)]]]

|/MH=varlist [WITH varlist [(PAIRED)]]]††

 [/COCHRAN=varlist]

 [/FRIEDMAN=varlist]

 [/KENDALL=varlist]

 [/M-W=varlist BY var (value1,value2)]

 [/K-S=varlist BY var (value1,value2)]

 [/W-W=varlist BY var (value1,value2)]

 [/MOSES[(n)]=varlist BY var (value1,value2)]

 [/K-W=varlist BY var (value1,value2)]

 [/J-T=varlist BY var (value1, value2)]††

 [/MEDIAN[(value)]=varlist BY var (value1,value2)]

 [/MISSING=[{ANALYSIS**}] [INCLUDE]]
 {LISTWISE }

 [/SAMPLE]

 [/STATISTICS=[DESCRIPTIVES] [QUARTILES] [ALL]]

[/METHOD={MC [CIN({99.0 })] [SAMPLES({10000})] }]††

 {value} {value}
 {EXACT [TIMER({5 })] }
 {value}

**Default if the subcommand is omitted.
†† Available only if the Exact Tests option is installed.

NPAR TESTS 575

Example:
NPAR TESTS K-S(UNIFORM)=V1 /K-S(NORMAL,0,1)=V2.

Overview

NPAR TESTS is a collection of nonparametric tests. These tests make minimal assumptions
about the underlying distribution of the data and are described in Siegel (1956). In addition
to the nonparametric tests available in NPAR TESTS, the k-sample chi-square and Fisher’s
exact test are available in procedure CROSSTABS.

The tests available in NPAR TESTS can be grouped into three broad categories based on
how the data are organized: one-sample tests, related-samples tests, and independent-
samples tests. A one-sample test analyzes one variable. A test for related samples compares
two or more variables for the same set of cases. An independent-samples test analyzes one
variable grouped by categories of another variable.

The one-sample tests available in procedure NPAR TESTS are:

• BINOMIAL
• CHISQUARE

• K-S (Kolmogorov-Smirnov)
• RUNS

Tests for two related samples are:

• MCNEMAR

• SIGN
• WILCOXON

Tests for k related samples are:

• COCHRAN

• FRIEDMAN
• KENDALL

Tests for two independent samples are:

• M-W (Mann-Whitney)

• K-S (Kolmogorov-Smirnov)
• W-W (Wald-Wolfowitz)
• MOSES

Tests for k independent samples are:

• K-W (Kruskal-Wallis)
• MEDIAN

Tests are described below in alphabetical order.

576 NPAR TESTS

Options

Statistical Display. In addition to the tests, you can request univariate statistics, quartiles, and
counts for all variables specified on the command. You can also control the pairing of vari-
ables in tests for two related samples.

Random Sampling. NPAR TESTS must store cases in memory when computing tests that use
ranks. You can use random sampling when there is not enough space to store all cases.

Basic Specification

The basic specification is a single test subcommand and a list of variables to be tested. Some
tests require additional specifications. CHISQUARE has an optional subcommand.

Subcommand Order

Subcommands can be used in any order.

Syntax Rules

• The STATISTICS, SAMPLE, and MISSING subcommands are optional. Each can be speci-
fied only once per NPAR TESTS command.

• You can request any or all tests, and you can specify a test subcommand more than once
on a single NPAR TESTS command.

• If you specify a variable more than once on a test subcommand, only the first is used.

• Keyword ALL in any variable list refers to all user-defined variables in the working data
file.

• Keyword WITH controls pairing of variables in two-related-samples tests.

• Keyword BY introduces the grouping variable in two- and k-independent-samples tests.
• Keyword PAIRED can be used with keyword WITH on the MCNEMAR, SIGN, and WILCOXON

subcommands to obtain sequential pairing of variables for two related samples.

Operations

• If a string variable is specified on any subcommand, NPAR TESTS will stop executing.

• When ALL is used, requests for tests of variables with themselves are ignored and a warn-
ing is displayed.

Limitations

• Maximum 100 subcommands.

• Maximum 500 variables total per NPAR TESTS command.

NPAR TESTS 577

• Maximum 200 values for subcommand CHISQUARE.

BINOMIAL Subcommand

NPAR TESTS BINOMIAL [({.5})]=varlist[({value,value})]
 {p } {value }

BINOMIAL tests whether the observed distribution of a dichotomous variable is the same as
that expected from a specified binomial distribution. By default, each variable named is
assumed to have only two values, and the distribution of each variable named is compared
to a binomial distribution with p (the proportion of cases expected in the first category)
equal to 0.5. The default output includes the number of valid cases in each group, the test
proportion, and the two-tailed probability of the observed proportion.

Syntax

• The minimum specification is a list of variables to be tested.

• To change the default 0.5 test proportion, specify a value in parentheses immediately after
keyword BINOMIAL.

• A single value in parentheses following the variable list is used as a cutting point. Cases
with values equal to or less than the cutting point form the first category; the remaining
cases form the second.

• If two values appear in parentheses after the variable list, cases with values equal to the
first value form the first category, and cases with values equal to the second value form
the second category.

• If no values are specified, the variables must be dichotomous.

Operations

• The proportion observed in the first category is compared to the test proportion. The
probability of the observed proportion occurring given the test proportion and a binomial
distribution is then computed. A test statistic is calculated for each variable specified.

• If the test proportion is the default (0.5), a two-tailed probability is displayed. For any oth-
er test proportion, a one-tailed probability is displayed. The direction of the one-tailed test
depends on the observed proportion in the first category. If the observed proportion is
more than the test proportion, the significance of observing that many or more in the first
category is reported. If the observed proportion is less than or equal to the test proportion,
the significance of observing that many or fewer in the first category is reported. In other
words, the test is always done in the observed direction.

Example

NPAR TESTS BINOMIAL(.667)=V1(0,1).

578 NPAR TESTS

• NPAR TESTS displays the Binomial Test table showing the number of cases, observed
proportion, test proportion (0.667) and the one-tailed significance for each category.

• If more than 0.667 of the cases have value 0 for V1, BINOMIAL gives the probability of
observing that many or more values of 0 in a binomial distribution with probability 0.667.
If fewer than 0.667 of the cases are 0, the test will be of observing that many or fewer.

CHISQUARE Subcommand

NPAR TESTS CHISQUARE=varlist [(lo,hi)] [/EXPECTED={EQUAL** }]
 {f1,f2,... fn}

The CHISQUARE (alias CHI-SQUARE) one-sample test computes a chi-square statistic based on
the differences between the observed and expected frequencies of categories of a variable. By
default, equal frequencies are expected in each category. The output includes the frequency dis-
tribution, expected frequencies, residuals, chi-square, degrees of freedom, and probability.

Syntax

• The minimum specification is a list of variables to be tested. Optionally, you can specify
a value range in parentheses following the variable list. You can also specify expected
proportions with the EXPECTED subcommand.

• If you use the EXPECTED subcommand to specify unequal expected frequencies, you
must specify a value greater than 0 for each observed category of the variable. The ex-
pected frequencies are specified in ascending order of category value. You can use the
notation n*f to indicate that frequency f is expected for n consecutive categories.

• Specifying keyword EQUAL on the EXPECTED subcommand has the same effect as omit-
ting the EXPECTED subcommand.

• EXPECTED applies to all variables specified on the CHISQUARE subcommand. Use multi-
ple CHISQUARE and EXPECTED subcommands to specify different expected proportions
for variables.

Operations

• If no range is specified for the variables to be tested, a separate Chi-Square Frequency
table is produced for each variable. Each distinct value defines a category.

• If a range is specified, integer-valued categories are established for each value within the
range. Noninteger values are truncated before classification. Cases with values outside
the specified range are excluded. One combined Chi-Square Frequency table is produced
for all specified variables.

• Expected values are interpreted as proportions, not absolute values. Values are summed,
and each value is divided by the total to calculate the proportion of cases expected in the
corresponding category.

• A test statistic is calculated for each variable specified.

NPAR TESTS 579

Example

NPAR TESTS CHISQUARE=V1 (1,5) /EXPECTED= 12, 3*16, 18.

• This example requests the chi-square test for values 1 through 5 of variable V1.

• The observed frequencies for variable V1 are compared with the hypothetical distribution
of 12/78 occurrences of value 1; 16/78 occurrences each of values 2, 3, and 4; and 18/78
occurrences of value 5.

COCHRAN Subcommand

NPAR TESTS COCHRAN=varlist

COCHRAN calculates Cochran’s Q, which tests whether the distribution of values is the same
for k related dichotomous variables. The output shows the frequency distribution for each
variable in the Cochran Frequencies table and the number of cases, Cochran’s Q, degrees of
freedom, and probability in the Test Statistics table.

Syntax

• The minimum specification is a list of two variables.

• The variables must be dichotomous and must be coded with the same two values.

Operations

• A k × 2 contingency table (variables by categories) is constructed for dichotomous vari-
ables and the proportions for each variable are computed. A single test comparing all vari-
ables is calculated.

• Cochran’s Q statistic has approximately a chi-square distribution.

Example

NPAR TESTS COCHRAN=RV1 TO RV3.

• This example tests whether the distribution of values 0 and 1 for RV1, RV2, and RV3 is the
same.

FRIEDMAN Subcommand

NPAR TESTS FRIEDMAN=varlist

FRIEDMAN tests whether k related samples have been drawn from the same population. The
output shows the mean rank for each variable in the Friedman Ranks table and the number
of valid cases, chi-square, degrees of freedom, and probability in the Test Statistics table.

580 NPAR TESTS

Syntax

• The minimum specification is a list of two variables.

• Variables should be at least at the ordinal level of measurement.

Operations

• The values of k variables are ranked from 1 to k for each case and the mean rank is cal-
culated for each variable over all cases.

• The test statistic has approximately a chi-square distribution. A single test statistic
comparing all variables is calculated.

Example

NPAR TESTS FRIEDMAN=V1 V2 V3
/STATISTICS=DESCRIPTIVES.

• This example tests variables V1, V2, and V3, and requests univariate statistics for all three.

J-T Subcommand

NPAR TESTS /J-T=varlist BY variable(value1,value2)

J-T (alias JONCKHEERE-TERPSTRA) performs the Jonckheere-Terpstra test, which tests
whether k independent samples defined by a grouping variable are from the same population.
This test is particularly powerful when the k populations have a natural ordering. The output
shows the number of levels in the grouping variable, the total number of cases, observed,
standardized, mean and standard deviation of the test statistic, the two-tailed asymptotic sig-
nificance, and, if a /METHOD subcommand is specified, one-tailed and two-tailed exact or
Monte Carlo probabilities.

Syntax

• The minimum specification is a test variable, the keyword BY, a grouping variable, and a
pair of values in parentheses.

• Every value in the range defined by the pair of values for the grouping variable forms a
group.

• If the /METHOD subcommand is specified, and the number of populations, k, is greater
than 5, the p value is estimated using the Monte Carlo sampling method. The exact p value
is not available when k exceeds 5.

Operations

• Cases from the k groups are ranked in a single series, and the rank sum for each group is
computed. A test statistic is calculated for each variable specified before BY.

NPAR TESTS 581

• The Jonckheere-Terpstra statistic has approximately a normal distribution.

• Cases with values other than those in the range specified for the grouping variable are
excluded.

• The direction of a one-tailed inference is indicated by the sign of the standardized test
statistic.

Example
NPAR TESTS /J-T=V1 BY V2(0,4)
 /METHOD=EXACT.

• This example performs the Jonckheere-Terpstra test for groups defined by values 0
through 4 of V2. The exact p values are calculated.

K-S Subcommand (One-Sample)

NPAR TESTS K-S({NORMAL [mean,stddev]})=varlist
 {POISSON [mean] }

 {UNIFORM [min,max] }
 {EXPONENTIAL [mean] }

The K-S (alias KOLMOGOROV-SMIRNOV) one-sample test compares the cumulative distribu-
tion function for a variable with a uniform, normal, Poisson, or exponential distribution, and
it tests whether the distributions are homogeneous. The parameters of the test distribution can
be specified; the defaults are the observed parameters. The output shows the number of valid
cases, parameters of the test distribution, most-extreme absolute, positive, and negative dif-
ferences, Kolmogorov-Smirnov Z, and two-tailed probability for each variable.

Syntax

The minimum specification is a distribution keyword and a list of variables. The distribution
keywords are NORMAL, POISSON, EXPONENTIAL, and UNIFORM.

• The distribution keyword and its optional parameters must be enclosed within parentheses.

• The distribution keyword must be separated from its parameters by blanks or commas.

NORMAL [mean, stdev] Normal distribution. The default parameters are the observed mean
and standard deviation.

POISSON [mean] Poisson distribution. The default parameter is the observed mean.

UNIFORM [min,max] Uniform distribution. The default parameters are the observed mini-
mum and maximum values.

EXPONENTIAL [mean] Exponential distribution. The default parameter is the observed mean.

Operations

• The Kolmogorov-Smirnov Z is computed from the largest difference in absolute value
between the observed and test distribution functions.

• The K-S probability levels assume that the test distribution is specified entirely in
advance. The distribution of the test statistic and resulting probabilities are different

582 NPAR TESTS

when the parameters of the test distribution are estimated from the sample. No correction
is made.

• For a mean of 100,000 or larger, a normal approximation to the Poisson distribution is
used.

• A test statistic is calculated for each variable specified.

Example

NPAR TESTS K-S(UNIFORM)=V1 /K-S(NORMAL,0,1)=V2.

• The first K-S subcommand compares the distribution of V1 with a uniform distribution
that has the same range as V1.

• The second K-S subcommand compares the distribution of V2 with a normal distribution
that has a mean of 0 and a standard deviation of 1.

K-S Subcommand (Two-Sample)

NPAR TESTS K-S=varlist BY variable(value1,value2)

K-S (alias KOLMOGOROV-SMIRNOV) tests whether the distribution of a variable is the same
in two independent samples defined by a grouping variable. The test is sensitive to any dif-
ference in median, dispersion, skewness, and so forth, between the two distributions. The
output shows the valid number of cases in each group in the Frequency table and the largest
absolute, positive, and negative differences between the two groups, the Kolmogorov-
Smirnov Z, and the two-tailed probability for each variable in the Test Statistics table.

Syntax

• The minimum specification is a test variable, the keyword BY, a grouping variable, and a
pair of values in parentheses.

• The test variable should be at least at the ordinal level of measurement.

• Cases with the first value form one group and cases with the second value form the other.
The order in which values are specified determines which difference is the largest posi-
tive and which is the largest negative.

Operations

• The observed cumulative distributions for both groups are computed, as are the maximum
positive, negative, and absolute differences. A test statistic is calculated for each variable
named before BY.

• Cases with values other than those specified for the grouping variable are excluded.

NPAR TESTS 583

Example

NPAR TESTS K-S=V1 V2 BY V3(0,1).

• This example specifies two tests. The first compares the distribution of V1 for cases with
value 0 for V3 with the distribution of V1 for cases with value 1 for V3.

• A parallel test is calculated for V2.

K-W Subcommand

NPAR TESTS K-W=varlist BY variable(value1,value2)

K-W (alias KRUSKAL-WALLIS) tests whether k independent samples defined by a grouping
variable are from the same population. The output shows the number of valid cases and the
mean rank of the variable in each group in the Ranks table and the chi-square, degrees of
freedom, and probability in the Test Statistics table.

Syntax

• The minimum specification is a test variable, the keyword BY, a grouping variable, and a
pair of values in parentheses.

• Every value in the range defined by the pair of values for the grouping variable forms a
group.

Operations

• Cases from the k groups are ranked in a single series, and the rank sum for each group is
computed. A test statistic is calculated for each variable specified before BY.

• Kruskal-Wallis H has approximately a chi-square distribution.

• Cases with values other than those in the range specified for the grouping variable are
excluded.

Example

NPAR TESTS K-W=V1 BY V2(0,4).

• This example tests V1 for groups defined by values 0 through 4 of V2.

KENDALL Subcommand

NPAR TESTS KENDALL=varlist

KENDALL tests whether k related samples are from the same population. W is a measure of
agreement among judges or raters where each case is one judge’s rating of several items
(variables). The output includes the mean rank for each variable in the Ranks table and the
valid number of cases, Kendall’s W, chi-square, degrees of freedom, and probability in the
Test Statistics table.

584 NPAR TESTS

Syntax

The minimum specification is a list of two variables.

Operations

• The values of the k variables are ranked from 1 to k for each case, and the mean rank is
calculated for each variable over all cases. Kendall’s W and a corresponding chi-square
statistic are calculated, correcting for ties. In addition, a single test statistic is calculated
for all variables.

• W ranges between 0 (no agreement) and 1 (complete agreement).

Example

DATA LIST /V1 TO V5 1-10.
BEGIN DATA
2 5 4 5 1
3 3 4 5 3
3 4 4 6 2
2 4 3 6 2
END DATA.
NPAR TESTS KENDALL=ALL.

• This example tests four judges (cases) on five items (variables V1 through V5).

M-W Subcommand

NPAR TESTS M-W=varlist BY variable(value1,value2)

M-W (alias MANN-WHITNEY) tests whether two independent samples defined by a grouping
variable are from the same population. The test statistic uses the rank of each case to test
whether the groups are drawn from the same population. The output shows the number of
valid cases of each group, the mean rank of the variable within each group and the sum of
ranks in the Ranks table and the Mann-Whitney U, Wilcoxon W (the rank sum of the smaller
group), Z statistic, and probability in the Test Statistics table.

Syntax

• The minimum specification is a test variable, the keyword BY, a grouping variable, and a
pair of values in parentheses.

• Cases with the first value form one group and cases with the second value form the other.
The order in which the values are specified is unimportant.

Operations

• Cases are ranked in order of increasing size, and test statistic U (the number of times a
score from group 1 precedes a score from group 2) is computed.

NPAR TESTS 585

• An exact significance level is computed if there are 40 or fewer cases. For more than 40
cases, U is transformed into a normally distributed Z statistic and a normal approximation
p value is computed.

• A test statistic is calculated for each variable named before BY.

• Cases with values other than those specified for the grouping variable are excluded.

Example

NPAR TESTS M-W=V1 BY V2(1,2).

• This example tests V1 based on the two groups defined by values 1 and 2 of V2.

MCNEMAR Subcommand

NPAR TESTS MCNEMAR=varlist [WITH varlist [(PAIRED)]]

MCNEMAR tests whether combinations of values between two dichotomous variables are
equally likely. The output includes a Crosstabulation table for each pair and a Test Statistics
table for all pairs showing the number of valid cases, chi-square, and probability for each
pair.

Syntax

• The minimum specification is a list of two variables. Variables must be dichotomous and
must have the same two values.

• If keyword WITH is not specified, each variable is paired with every other variable in the
list.

• If WITH is specified, each variable before WITH is paired with each variable after WITH. If
PAIRED is also specified, the first variable before WITH is paired with the first variable
after WITH, the second variable before WITH with the second variable after WITH, and so
on. PAIRED cannot be specified without WITH.

• With PAIRED, the number of variables specified before and after WITH must be the same.
PAIRED must be specified in parentheses after the second variable list.

Operations

• In computing the test statistics, only combinations for which the values for the two variables
are different are considered.

• If fewer than 25 cases change values from the first variable to the second variable, the
binomial distribution is used to compute the probability.

Example

NPAR TESTS MCNEMAR=V1 V2 V3.

586 NPAR TESTS

• This example performs the MCNEMAR test on variable pairs V1 and V2, V1 and V3, and V2
and V3.

NPAR TESTS 587

MEDIAN Subcommand

NPAR TESTS MEDIAN [(value)]=varlist BY variable(value1,value2)

MEDIAN determines if k independent samples are drawn from populations with the same
median. The independent samples are defined by a grouping variable. For each variable, the
output shows a table of the number of cases greater than and less than or equal to the median
in each category in the Frequency table and the number of valid cases, the median, chi-
square, degrees of freedom, and probability in the Test Statistics table.

Syntax

• The minimum specification is a single test variable, the keyword BY, a grouping variable,
and two values in parentheses.

• If the first grouping value is less than the second, every value in the range defined by the
pair of values forms a group and a k-sample test is performed.

• If the first value is greater than the second, two groups are formed using the two values
and a two-sample test is performed.

• By default, the median is calculated from all cases included in the test.To override the de-
fault, specify a median value in parentheses following the MEDIAN subcommand keyword.

Operations

• A 2 × k contingency table is constructed with counts of the number of cases greater than
the median and less than or equal to the median for the k groups.

• Test statistics are calculated for each variable specified before BY.

• For more than 30 cases, a chi-square statistic is computed. For 30 or fewer cases, Fisher’s
exact procedure (two-tailed) is used instead of chi-square.

• For a two-sample test, cases with values other than the two specified are excluded.

Example

NPAR TESTS MEDIAN(8.4)=V1 BY V2(1,2) /MEDIAN=V1 BY V2(1,2)
/MEDIAN=V1 BY V3(1,4) /MEDIAN=V1 BY V3(4,1).

• The first two MEDIAN subcommands test variable V1 grouped by values 1 and 2 of vari-
able V2. The first test specifies a median of 8.4 and the second uses the observed median.

• The third MEDIAN subcommand requests a four-samples test, dividing the sample into
four groups based on values 1, 2, 3, and 4 of variable V3.

• The last MEDIAN subcommand requests a two-samples test, grouping cases based on
values 1 and 4 of V3 and ignoring all other cases.

MH Subcommand

NPAR TESTS /MH=varlist [WITH varlist [(PAIRED)]]

588 NPAR TESTS

MH performs the marginal homogeneity test, which tests whether combinations of values
between two paired ordinal variables are equally likely. The marginal homogeneity test is
typically used in repeated measures situations. This test is an extension of the McNemar test
from binary response to multinomial response. The output shows the number of distinct
values for all test variables, the number of valid off-diagonal cell counts, mean, standard
deviation, observed and standardized values of the test statistics, the asymptotic two-tailed
probability for each pair of variables, and, if a /METHOD subcommand is specified, one-
tailed and two-tailed exact or Monte Carlo probabilities.

Syntax

• The minimum specification is a list of two variables. Variables must be polychotomous
and must have more than two values. If the variables contain only two values, the McNe-
mar test is performed.

• If keyword WITH is not specified, each variable is paired with every other variable in the
list.

• If WITH is specified, each variable before WITH is paired with each variable after WITH. If
PAIRED is also specified, the first variable before WITH is paired with the first variable
after WITH, the second variable before WITH with the second variable after WITH, and so
on. PAIRED cannot be specified without WITH.

• With PAIRED, the number of variables specified before and after WITH must be the same.
PAIRED must be specified in parentheses after the second variable list.

Operations

• The data consist of paired, dependent responses from two populations. The marginal
homogeneity test tests the equality of two multinomial tables, and the data can
be arranged in the form of a square contingency table. A table is construct-
ed for each off-diagonal cell count. The marginal homogeneity test statistic is computed
for cases with different values for the two variables. Only combinations for which the
values for the two variables are different are considered. The first row of each
table specifies the category chosen by population 1, and the second row specifies the
category chosen by population 2. The test statistic is calculated by summing the first
row scores across all tables.

Example
NPAR TESTS /MH=V1 V2 V3
 /METHOD=MC.

• This example performs the marginal homogeneity test on variable pairs V1 and V2, V1 and
V3, and V2 and V3. The exact p values are estimated using the Monte Carlo sampling meth-
od.

MOSES Subcommand

NPAR TESTS MOSES[(n)]=varlist BY variable(value1,value2)

c 1×
c c× 2 c×

2 c×

2 c×

NPAR TESTS 589

The MOSES test of extreme reactions tests whether the range of an ordinal variable is the
same in a control group and a comparison group. The control and comparison groups are
defined by a grouping variable. The output includes a Frequency table showing for each vari-
able before BY the total number of cases and the number of cases in each group and a Test
Statistics table showing the number of outliers removed, span of the control group before and
after outliers are removed, and one-tailed probability of the span with and without outliers.

Syntax

• The minimum specification is a test variable, the keyword BY, a grouping variable, and
two values in parentheses.

• The test variable must be at least at the ordinal level of measurement.

• The first value of the grouping variable defines the control group and the second value
defines the comparison group.

• By default, 5% of the cases are trimmed from each end of the range of the control group
to remove outliers. You can override the default by specifying a value in parentheses fol-
lowing the MOSES subcommand keyword. This value represents an actual number of
cases, not a percentage.

Operations

• Values from the groups are arranged in a single ascending sequence. The span of the con-
trol group is computed as the number of cases in the sequence containing the lowest and
highest control value.

• No adjustments are made for tied cases.

• Cases with values other than those specified for the grouping variable are excluded.
• Test statistics are calculated for each variable named before BY.

Example

NPAR TESTS MOSES=V1 BY V3(0,1) /MOSES=V1 BY V3(1,0).

• The first MOSES subcommand tests V1 using value 0 of V3 to define the control group
and value 1 for the comparison group. The second MOSES subcommand reverses the
comparison and control groups.

590 NPAR TESTS

RUNS Subcommand

NPAR TESTS RUNS({MEAN })=varlist
 {MEDIAN}
{MODE }
{value }

RUNS tests whether the sequence of values of a dichotomized variable is random. The output
includes a Run Test table showing the test value (cut point used to dichotomize the variable
tested), number of runs, number of cases below the cut point, number of cases greater than
or equal to the cut point, and test statistic Z with its two-tailed probability for each variable.

Syntax

• The minimum specification is a cut point in parentheses followed by a test variable.
• The cut point can be specified by an exact value or one of the keywords MEAN, MEDIAN,

or MODE.

Operations

• All variables tested are treated as dichotomous: cases with values less than the cut point
form one category, and cases with values greater than or equal to the cut point form the
other category.

• Test statistics are calculated for each variable specified.

Example

NPAR TESTS RUNS(MEDIAN)=V2 /RUNS(24.5)=V2 /RUNS(1)=V3.

• This example performs three runs tests. The first tests variable V2 using the median as the
cut point. The second also tests V2, this time using 24.5 as the cut point. The third tests
variable V3 with value 1 specified as the cut point.

SIGN Subcommand

NPAR TESTS SIGN=varlist [WITH varlist [(PAIRED)]]

SIGN tests whether the distribution of two paired variables in a two-related-samples test is
the same. The output includes a Frequency table showing for each pair the number of posi-
tive differences, number of negative differences, number of ties, and the total number and a
Test Statistics table showing the Z statistic and two-tailed probability.

Syntax

• The minimum specification is a list of two variables.

• Variables should be at least at the ordinal level of measurement.

NPAR TESTS 591

• If keyword WITH is not specified, each variable in the list is paired with every other vari-
able in the list.

• If keyword WITH is specified, each variable before WITH is paired with each variable after
WITH. If PAIRED is also specified, the first variable before WITH is paired with the first
variable after WITH, the second variable before WITH with the second variable after WITH,
and so on. PAIRED cannot be specified without WITH.

• With PAIRED, the number of variables specified before and after WITH must be the same.
PAIRED must be specified in parentheses after the second variable list.

Operations

• The positive and negative differences between the pair of variables are counted. Ties are
ignored.

• The probability is taken from the binomial distribution if 25 or fewer differences are ob-
served. Otherwise, the probability comes from the Z distribution.

• Under the null hypothesis for large sample sizes, Z is approximately normally distributed
with a mean of 0 and a variance of 1.

Example

NPAR TESTS SIGN=N1,M1 WITH N2,M2 (PAIRED).

• N1 is tested with N2, and M1 is tested with M2.

W-W Subcommand

NPAR TESTS W-W=varlist BY variable(value1,value2)

W-W (alias WALD-WOLFOWITZ) tests whether the distribution of a variable is the same in two
independent samples. A runs test is performed with group membership as the criterion. The
output includes a Frequency table showing the total number of valid cases for each variable
specified before BY and the number of valid cases in each group, and a Test Statistics table
showing the number of runs, Z, and one-tailed probability of Z. If ties are present, the mini-
mum and maximum number of runs possible, their Z statistics, and one-tailed probabilities
are displayed.

Syntax

• The minimum specification is a single test variable, the keyword BY, a grouping variable,
and two values in parentheses.

• Cases with the first value form one group and cases with the second value form the other.
The order in which values are specified is unimportant.

592 NPAR TESTS

Operations

• Cases are combined from both groups and ranked from lowest to highest, and a runs test
is performed using group membership as the criterion. For ties involving cases from both
groups, both the minimum and maximum number of runs possible are calculated. Test
statistics are calculated for each variable specified before BY.

• For a sample size of 30 or less, the exact one-tailed probability is calculated. For a sample
size greater than 30, the normal approximation is used.

• Cases with values other than those specified for the grouping variable are excluded.

Example

NPAR TESTS W-W=V1 BY V3(0,1).

• This example ranks cases from lowest to highest based on their values for V1 and a runs
test is performed. Cases with value 0 for V3 form one group and cases with value 1 form
the other.

WILCOXON Subcommand

NPAR TESTS WILCOXON=varlist [WITH varlist [(PAIRED)]]

WILCOXON tests whether the distribution of two paired variables in two related samples is
the same. This test takes into account the magnitude of the differences between two paired
variables. The output includes a Ranks table showing for each pair the number of valid cases,
positive and negative differences, their respective mean and sum of ranks, and the number
of ties and a Test Statistics table showing Z and probability of Z.

Syntax

• The minimum specification is a list of two variables.

• If keyword WITH is not specified, each variable is paired with every other variable in the
list.

• If keyword WITH is specified, each variable before WITH is paired with each variable after
WITH. If PAIRED is also specified, the first variable before WITH is paired with the first
variable after WITH, the second variable before WITH with the second variable after WITH,
and so on. PAIRED cannot be specified without WITH.

• With PAIRED, the number of variables specified before and after WITH must be the same.
PAIRED must be specified in parentheses after the second variable list.

NPAR TESTS 593

Operations

• The differences between the pair of variables are counted, the absolute differences
ranked, the positive and negative ranks summed, and the test statistic Z computed from
the positive and negative rank sums.

• Under the null hypothesis for large sample sizes, Z is approximately normally distributed
with a mean of 0 and a variance of 1.

Example

NPAR TESTS WILCOXON=A B WITH C D (PAIRED).

• This example pairs A with C and B with D. If PAIRED were not specified, it would also pair
A with D and B with C.

STATISTICS Subcommand

STATISTICS requests summary statistics for variables named on the NPAR TESTS command.
Summary statistics are displayed in the Descriptive Statistics table before all test output.

• If STATISTICS is specified without keywords, univariate statistics (keyword
DESCRIPTIVES) are displayed.

DESCRIPTIVES Univariate statistics. The displayed statistics include the mean, maximum,
minimum, standard deviation, and number of valid cases for each variable
named on the command.

QUARTILES Quartiles and number of cases. The 25th, 50th, and 75th percentiles are dis-
played for each variable named on the command.

ALL All statistics available on NPAR TESTS.

MISSING Subcommand

MISSING controls the treatment of cases with missing values.

• ANALYSIS and LISTWISE are alternatives. However, each can be specified with INCLUDE.

ANALYSIS Exclude cases with missing values on a test-by-test basis. Cases with missing
values for a variable used for a specific test are omitted from that test. On
subcommands that specify several tests, each test is evaluated separately.
This is the default.

LISTWISE Exclude cases with missing values listwise. Cases with missing values for
any variable named on any subcommand are excluded from all analyses.

INCLUDE Include user-missing values. User-missing values are treated as valid values.

594 NPAR TESTS

SAMPLE Subcommand

NPAR TESTS must store cases in memory. SAMPLE allows you to select a random sample of
cases when there is not enough space on your computer to store all the cases. SAMPLE has
no additional specifications.

• Because sampling would invalidate a runs test, this option is ignored when the RUNS sub-
command is used.

METHOD Subcommand

METHOD displays additional results for each statistic requested. If no METHOD subcommand
is specified, the standard asymptotic results are displayed. If fractional weights have been
specified, results for all methods will be calculated on the weight rounded to the nearest inte-
ger.

MC Displays an unbiased point estimate and confidence interval based on the
Monte Carlo sampling method, for all statistics. Asymptotic results are also
displayed. When exact results can be calculated, they will be provided instead
of the Monte Carlo results. See SPSS Exact Tests for details of the situations
under which exact results are provided instead of Monte Carlo results.

CIN(n) Controls the confidence level for the Monte Carlo estimate. CIN is available
only when /METHOD=MC is specified. CIN has a default value of 99.0. You
can specify a confidence interval between 0.01 and 99.9, inclusive.

SAMPLES Specifies the number of tables sampled from the reference set when calculat-
ing the Monte Carlo estimate of the exact p value. Larger sample sizes lead to
narrower confidence limits but also take longer to calculate. You can specify
any integer between 1 and 1,000,000,000 as the sample size. SAMPLES has a
default value of 10,000.

EXACT Computes the exact significance level for all statistics, in addition to the
asymptotic results. If both the EXACT and MC keywords are specified, only
exact results are provided. Calculating the exact p value can be memory-
intensive. If you have specified /METHOD=EXACT and find that you have
insufficient memory to calculate results, you should first close any other
applications that are currently running in order to make more memory avail-
able. You can also enlarge the size of your swap file (see your Windows
manual for more information). If you still cannot obtain exact results, specify
/METHOD=MC to obtain the Monte Carlo estimate of the exact p value. An
optional TIMER keyword is available if you choose /METHOD=EXACT.

TIMER(n) Specifies the maximum number of minutes allowed to run the exact analysis
for each statistic. If the time limit is reached, the test is terminated, no exact
results are provided, and the program begins to calculate the next test in the
analysis. TIMER is available only when /METHOD=EXACT is specified. You
can specify any integer value for TIMER. Specifying a value of 0 for TIMER
turns the timer off completely. TIMER has a default value of 5 minutes. If a

NPAR TESTS 595

test exceeds a time limit of 30 minutes, it is recommended that you use the
Monte Carlo, rather than the exact, method.

References

Siegel, S. 1956. Nonparametric statistics for the behavioral sciences. New York: McGraw-Hill.

596

NUMBERED and UNNUMBERED

This command is not available on all operating systems.

{NUMBERED }
{UNNUMBERED}

Overview

NUMBERED and UNNUMBERED are IBM-specific commands. Usually IBM systems re-
serve columns 73–80 of each input line for line numbers. NUMBERED reserves columns
73–80 for those line numbers; UNNUMBERED indicates that the columns are not reserved
for numbers. The default may vary by installation. Use the SHOW command to see the de-
fault for your installation.

Basic Specification

The only specification is either NUMBERED or UNNUMBERED. NUMBERED instructs the
program to check only the first 72 columns for data. UNNUMBERED instructs the program
to check all 80 columns for data.

Operations

• If NUMBERED is in effect and data extend beyond column 72, the program issues a warn-
ing message.

• NUMBERED and UNNUMBERED column settings apply only to inline data; they do not
apply to data in an external file.

Example

UNNUMBERED.

• The program checks up to 80 columns of each input line for data.

597

NUMERIC

NUMERIC varlist[(format)] [/varlist...]

Example:
NUMERIC V1 V2 (F4.0) / V3 (F1.0).

Overview

NUMERIC declares new numeric variables that can be referred to in the transformation lan-
guage before they are assigned values. Commands such as COMPUTE, IF, RECODE, and
COUNT can be used to assign values to the new numeric variables.

Basic Specification

The basic specification is the name of the new variables. By default, variables are assigned
a format of F8.2 (or the format specified on the SET command).

Syntax Rules

• A FORTRAN-like format can be specified in parentheses following a variable or vari-
able list. Each format specified applies to all variables in the list. To specify different
formats for different groups of variables, separate each format group with a slash.

• Keyword TO can be used to declare multiple numeric variables. The specified format ap-
plies to each variable named and implied by the TO construction.

• NUMERIC can be used within an input program to predetermine the order of numeric vari-
ables in the dictionary of the working data file. When used for this purpose, NUMERIC
must precede DATA LIST in the input program.

Operations

• Unlike most transformations, NUMERIC takes effect as soon as it is encountered in the
command sequence. Special attention should be paid to its position among commands.
For more information, see “Command Order” on p. 6.

• The specified formats (or the defaults) are used as both print and write formats.

• Permanent or temporary variables are initialized to the system-missing value. Scratch
variables are initialized to 0.

• Variables named on NUMERIC are added to the working file in the order in which they
are specified. The order in which they are used in transformations does not affect their
order in the working data file.

598 NUMERIC

Example

NUMERIC V1 V2 (F4.0) / V3 (F1.0).

• NUMERIC declares variables V1 and V2 with format F4.0, and variable V3 with format
F1.0.

Example

NUMERIC V1 TO V6 (F3.1) / V7 V10 (F6.2).

• NUMERIC declares variables V1, V2, V3, V4, V5, and V6 each with format F3.1, and vari-
ables V7 and V10, each with format F6.2.

Example

NUMERIC SCALE85 IMPACT85 SCALE86 IMPACT86 SCALE87 IMPACT87
SCALE88 IMPACT88.

• Variables SCALE85 to IMPACT88 are added to the working data file in the order specified
on NUMERIC. The order in which they are used in transformations does not affect their
order in the working data file.

Example

* Predetermine variable order.

INPUT PROGRAM.
STRING CITY (A24).
NUMERIC POP81 TO POP83 (F9)/ REV81 TO REV83(F10).
DATA LIST FILE=POPDATA RECORDS=3

/1 POP81 22-30 REV81 31-40
/2 POP82 22-30 REV82 31-40
/3 POP83 22-30 REV83 31-40
/4 CITY 1-24(A).

END INPUT PROGRAM.

• STRING and NUMERIC are specified within an input program to predetermine variable or-
der in the working data file. Though data in the file are in a different order, the working
file dictionary uses the order specified on STRING and NUMERIC. Thus, CITY is the first
variable in the dictionary, followed by POP81, POP82, POP83, REV81, REV82, and REV83.

• Formats are specified for the variables on NUMERIC. Otherwise, the program uses the de-
fault numeric format (F8.2) from the NUMERIC command for the dictionary format, even
though it uses the format on DATA LIST to read the data. In other words, the dictionary uses
the first formats specified, even though DATA LIST may use different formats to read cases.

599

ONEWAY

ONEWAY varlist BY varname

 [/POLYNOMIAL=n] [/CONTRAST=coefficient list] [/CONTRAST=...]

[/POSTHOC=([SNK] [TUKEY] [BTUKEY] [DUNCAN] [SCHEFFE] [DUNNETT[refcat)]
[DUNNETTL(refcat)] [DUNNETTR(refcat)] [BONFERRONI] [;SD]
[SIDAK] [GT2] [GABRIEL] [FREGW] [QREGW] [T2] [T3] [GH] [C]
[WALLER({100** })]) [ALPHA({0.05**})]

{Kratio} {α }

[/RANGES={LSD }([{0.05**}])] [/RANGES=...]
 {DUNCAN } {α }
 {SNK }
 {TUKEYB }
 {TUKEY }
 {MODLSD }
 {SCHEFFE }

[/STATISTICS=[NONE**] [DESCRIPTIVES] [EFFECTS] [HOMOGENEITY] [ALL]

[/PLOT MEANS

[/MISSING=[{ANALYSIS**}] [{EXCLUDE**}]]
 {LISTWISE } {INCLUDE }

 [/MATRIX =[IN({* })] [OUT({* })] [NONE]]
 {file} {file}

**Default if the subcommand is omitted.

Example:
ONEWAY V1 BY V2(1,4).

Overview

ONEWAY produces a one-way analysis of variance for an interval-level dependent variable
by one numeric independent variable that defines the groups for the analysis. Other proce-
dures that perform an analysis of variance are SUMMARIZE, ANOVA, and GLM (GLM is avail-
able in the SPSS Advanced Statistics option). Some tests not included in the other
procedures are available as options in ONEWAY.

Options

Trend and Contrasts. You can partition the between-groups sums of squares into linear, qua-
dratic, cubic, and higher-order trend components using the POLYNOMIAL subcommand. You
can specify up to 10 contrasts to be tested with the t statistic on the CONTRAST subcommand.

Post Hoc Tests. You can specify 20 different post hoc tests for comparisons of all possible pairs
of group means or multiple comparisons using the POSTHOC subcommand.

600 ONEWAY

Statistical Display. In addition to the default display, you can obtain means, standard devia-
tions, and other descriptive statistics for each group using the STATISTICS subcommand.
Fixed- and random-effects statistics as well as Leven’s test for homogeneity of variance are
also available.

Matrix Input and Output. You can write means, standard deviations, and category frequencies
to a matrix data file that can be used in subsequent ONEWAY procedures using the MATRIX
subcommand. You can also read matrix materials consisting of means, category frequencies,
pooled variance, and degrees of freedom for the pooled variance.

Basic Specification

The basic specification is a dependent variable, keyword BY, and an independent variable.
ONEWAY produces an ANOVA table displaying the between- and within-groups sums of
squares, mean squares, degrees of freedom, the F ratio and the probability of F for each de-
pendent variable by the independent variable.

Subcommand Order

• The variable list must be specified first.

• The remaining subcommands can be specified in any order.

Operations

• All values of the independent variable are used. Each different value creates one category.

• If a string variable is specified as an independent or dependent variable, ONEWAY is not
executed.

Limitations

• Maximum 100 dependent variables and 1 independent variable.

• An unlimited number of categories for the independent variable. However, post hoc tests
are not performed if the number of nonempty categories exceeds 50. Contrast tests are not
performed if the total of empty and nonempty categories exceeds 50.

• Maximum 1 POLYNOMIAL subcommand.

• Maximum 1 POSTHOC subcommand.

• Maximum 10 CONTRAST subcommands.

Example

ONEWAY V1 BY V2.

• ONEWAY names V1 as the dependent variable and V2 as the independent variable.

ONEWAY 601

Analysis List

The analysis list consists of a list of dependent variables, keyword BY, and an independent
(grouping) variable.

• Only one analysis list is allowed, and it must be specified before any of the optional sub-
commands.

• All variables named must be numeric.

POLYNOMIAL Subcommand

POLYNOMIAL partitions the between-groups sums of squares into linear, quadratic, cubic, or
higher-order trend components. The display is an expanded analysis-of-variance table that
provides the degrees of freedom, sums of squares, mean square, F, and probability of F for
each partition.

• The value specified on POLYNOMIAL indicates the highest-degree polynomial to be used.

• The polynomial value must be a positive integer less than or equal to 5 and less than the
number of groups. If the polynomial specified is greater than the number of groups, the
highest-degree polynomial possible is assumed.

• Only one POLYNOMIAL subcommand can be specified per ONEWAY command. If more
than one is used, only the last one specified is in effect.

• ONEWAY computes the sums of squares for each order polynomial from weighted poly-
nomial contrasts, using the category of the independent variable as the metric. These
contrasts are orthogonal.

• With unbalanced designs and equal spacing between groups, ONEWAY also computes
sums of squares using the unweighted polynomial contrasts. These contrasts are not
orthogonal.

• The deviation sums of squares are always calculated from the weighted sums of squares
(Speed, 1976).

Example
ONEWAY WELL BY EDUC6

/POLYNOMIAL=2.

• ONEWAY requests an analysis of variance of WELL by EDUC6 with second-order (quadratic)
polynomial contrasts.

• The ANOVA table is expanded to include both linear and quadratic terms.

CONTRAST Subcommand

CONTRAST specifies a priori contrasts to be tested by the t statistic. The specification on
CONTRAST is a vector of coefficients, where each coefficient corresponds to a category of
the independent variable. The Contrast Coefficients table displays the specified contrasts
for each group and the Contrast Tests table displays the value of the contrast and its standard

602 ONEWAY

error, the t statistic, and the degrees of freedom and two-tailed probability of t for each vari-
able. Both pooled- and separate-variance estimates are displayed.

• A contrast coefficient must be specified or implied for every group defined for the inde-
pendent variable. If the number of contrast values is not equal to the number of groups,
the contrast test is not performed.

• The contrast coefficients for a set should sum to 0. If they do not, a warning is issued.
ONEWAY will still give an estimate of this contrast.

• Coefficients are assigned to groups defined by ascending values of the independent variable.

• The notation n*c can be used to indicate that coefficient c is repeated n times.

Example
ONEWAY V1 BY V2

/CONTRAST = -1 -1 1 1
/CONTRAST = -1 0 0 1
/CONTRAST = -1 0 .5 .5.

• V2 has four levels.

• The first CONTRAST subcommand contrasts the combination of the first two groups with
the combination of the last two groups.

• The second CONTRAST subcommand contrasts the first group with the last group.

• The third CONTRAST subcommand contrasts the first group with the combination of the
third and fourth groups.

Example
ONEWAY V1 BY V2

/CONTRAST = -1 1 2*0
/CONTRAST = -1 1 0 0
/CONTRAST = -1 1.

• The first two CONTRAST subcommands specify the same contrast coefficients for a four-
group analysis. The first group is contrasted with the second group in both cases.

• The first CONTRAST uses the n*c notation.

• The last CONTRAST does not work because only two coefficients are specified for four
groups.

POSTHOC Subcommand

POSTHOC produces post hoc tests for comparisons of all possible pairs of group means or mul-
tiple comparisons. In contrast to a priori analyses specified on the CONTRAST subcommand,
post hoc analyses are usually not planned at the beginning of the study but are suggested by
the data in the course of the study.

• Twenty post hoc tests are available. Some detect homogeneity subsets among the groups
of means, some produce pairwise comparisons, and others perform both. POSTHOC pro-
duces a Multiple Comparison table showing up to 10 test categories. Nonempty group
means are sorted in ascending order, with asterisks indicating significantly different

ONEWAY 603

groups. In addition, homogeneous subsets are calculated and displayed in the Homoge-
neous Subsets table if the test is designed to detect homogeneity subsets.

• When the number of valid cases in the groups varies, the harmonic mean of the group sizes
is used as the sample size in the calculation for homogeneity subsets except for QREGW
and FREGW. For QREGW and FREGW and tests for pairwise comparison, the sample sizes
of individual groups are always used.

• You can specify only one POSTHOC subcommand per ONEWAY command. If more than
one is specified, the last specification takes effect.

• You can specify one alpha value used in all POSTHOC tests using keyword ALPHA. The
default is 0.05.

SNK Student-Newman-Keuls procedure based on the Studentized range
test. Used for detecting homogeneity subsets.

TUKEY Tukey’s honestly significant difference. This test uses the Studentized
range statistic to make all pairwise comparisons between groups. Used
for pairwise comparison and for detecting homogeneity subsets.

BTUKEY Tukey’s b. Multiple comparison procedure based on the average of
Studentized range tests. Used for detecting homogeneity subsets.

DUNCAN Duncan’s multiple comparison procedure based on the Studentized
range test. Used for detecting homogeneity subsets.

SCHEFFE Scheffé’s multiple comparison t test. Used for pairwise comparison
and for detecting homogeneity subsets.

DUNNETT(refcat) Dunnett’s two-tailed t test. Used for pairwise comparison. Each group
is compared to a reference category. You can specify a reference cate-
gory in parentheses. The default is the last category. This keyword must
be spelled out in full.

DUNNETTL(refcat) Dunnett’s one-tailed t test. Used for pairwise comparison. This test
indicates whether the mean of each group (except the reference cate-
gory) is smaller than that of the reference category. You can specify a
reference category in parentheses. The default is the last category. This
keyword must be spelled out in full.

DUNNETTR(refcat) Dunnett’s one-tailed t test. Used for pairwise comparison. This test
indicates whether the mean of each group (except the reference cate-
gory) is larger than that of the reference category. You can specify a
reference category in parentheses. The default is the last category. This
keyword must be spelled out in full.

BONFERRONI Bonferroni t test. This test is based on Student’s t statistic and adjusts
the observed significance level for the fact that multiple comparisons
are made. Used for pairwise comparison.

LSD Least significant difference t test. Equivalent to multiple t tests between
all pairs of groups. Used for pairwise comparison. This test does not
control the overall probability of rejecting the hypotheses that some
pairs of means are different, while in fact they are equal.

604 ONEWAY

SIDAK Sidak t test. Used for pairwise comparison. This test provides tighter
bounds than the Bonferroni test.

GT2 Hochberg’s GT2. Used for pairwise comparison and for detecting
homogeneity subsets. This test is based on the Studentized maximum
modulus test. Unless the cell sizes are extremely unbalanced, this test
is fairly robust even for unequal variances.

GABRIEL Gabriel’s pairwise comparisons test based on the Studentized maxi-
mum modulus test. Used for pairwise comparison and for detecting
homogeneity subsets.

FREGW Ryan-Einot-Gabriel-Welsch’s multiple stepdown procedure based on
an F test. Used for detecting homogeneity subsets.

QREGW Ryan-Einot-Gabriel-Welsch’s multiple stepdown procedure based on
the Studentized range test. Used for detecting homogeneity subsets.

T2 Tamhane’s T2. Used for pairwise comparison. This test is based on a
t test and can be applied in situations where the variances are unequal.

T3 Tamhane’s T3. Used for pairwise comparison. This test is based on the
Studentized maximum modulus test and can be applied in situations
where the variances are unequal.

GH Games and Howell’s pairwise comparisons test based on the Studen-
tized range test. Used for pairwise comparison. This test can be applied
in situations where the variances are unequal.

C Dunnett’s C. Used for pairwise comparison. This test is based on the
weighted average of Studentized ranges and can be applied in situa-
tions where the variances are unequal.

WALLER(kratio) Waller-Duncan t test. Used for detecting homogeneity subsets. This
test uses a Bayesian approach. The k-ratio is the Type 1/Type 2 error
seriousness ratio. The default value is 100. You can specify an inte-
ger greater than 1 within parentheses.

Example
ONEWAY WELL BY EDUC6

/POSTHOC=SNK SCHEFFE ALPHA=.01.

• ONEWAY requests two different post hoc tests. The first uses the Student-Newman-Keuls
test and the second uses Scheffé’s test. Both tests use an alpha of 0.01.

RANGES Subcommand

RANGES produces results for some post hoc tests. It is available only through syntax. You
can always produce the same results using the POSTHOC subcommand.

• Up to 10 RANGE subcommands are allowed. The effect is cumulative. If you specify more
than one alpha value for different range tests, the last specified value takes effect for all
tests. The default is 0.05.

ONEWAY 605

• Keyword MODLSD on the RANGE subcommand is equivalent to keyword BONFERRONI
on the POSTHOC subcommand. Keyword LSDMOD is an alias for MODLSD.

PLOT MEANS Subcommand

PLOT MEANS produces a chart that plots the subgroup means (the means for each group de-
fined by values of the factor variable).

STATISTICS Subcommand

By default, ONEWAY displays the ANOVA table showing between- and within-groups sums
of squares, mean squares, degrees of freedom, F ratio, and probability of F. Use STATISTICS
to obtain additional statistics.

DESCRIPTIVES Group descriptive statistics. The statistics include the number of cases,
mean, standard deviation, standard error, minimum, maximum, and 95%
confidence interval for each dependent variable for each group.

EFFECTS Fixed- and random-effects statistics. The statistics include the standard
deviation, standard error, and 95% confidence interval for the fixed-effects
model, and the standard error, 95% confidence interval, and estimate of
between-components variance for the random-effects model.

HOMOGENEITY Homogeneity-of-variance tests. The statistics include Levene statistic, de-
grees of freedom, and the significance level displayed in the Test of
Homogeneity of Variances table.

NONE No optional statistics. This is the default.

ALL All statistics available for ONEWAY.

MISSING Subcommand

MISSING controls the treatment of missing values.

• Keywords ANALYSIS and LISTWISE are alternatives. Each can be used with INCLUDE or
EXCLUDE. The default is ANALYSIS and EXCLUDE.

• A case outside the range specified for the grouping variable is not used.

ANALYSIS Exclude cases with missing values on a pair-by-pair basis. A case with a
missing value for the dependent or grouping variable for a given analysis is
not used for that analysis. This is the default.

LISTWISE Exclude cases with missing values listwise. Cases with missing values for
any variable named are excluded from all analyses.

EXCLUDE Exclude cases with user-missing values. User-missing values are treated as
missing. This is the default.

INCLUDE Include user-missing values. User-missing values are treated as valid values.

606 ONEWAY

MATRIX Subcommand

MATRIX reads and writes matrix data files.

• Either IN or OUT and a matrix file in parentheses are required.

• You cannot specify both IN and OUT on the same ONEWAY procedure.

• Use MATRIX=NONE to explicitly indicate that a matrix data file is not being written or
read.

OUT (filename) Write a matrix data file. Specify either a filename or an asterisk, enclosed in
parentheses. If you specify a filename, the file is stored on disk and can be
retrieved at any time. If you specify an asterisk (*), the matrix data file re-
places the working file but is not stored on disk unless you use SAVE or
XSAVE.

IN (filename) Read a matrix data file. If the matrix data file is the working data file, specify
an asterisk (*) in parentheses. If the matrix data file is another file, specify
the filename in parentheses. A matrix file read from an external file does not
replace the working data file.

NONE Do not read or write matrix data materials. This is the default.

Matrix Output

• ONEWAY writes means, standard deviations, and frequencies to a matrix data file that can
be used by subsequent ONEWAY procedures. See “Format of the Matrix Data File” below
for a description of the file.

Matrix Input

• ONEWAY can read the matrices it writes, and it can also read matrix materials that include
the means, category frequencies, pooled variance, and degrees of freedom for the pooled
variance. The pooled variance has a ROWTYPE_ value MSE, and the vector of degrees of
freedom for the pooled variance has the ROWTYPE_ value DFE.

• The dependent variables named on ONEWAY can be a subset of the dependent variables
in the matrix data file.

• MATRIX=IN cannot be specified unless a working data file has already been defined. To
read an existing matrix data file at the beginning of a session, use GET to retrieve the ma-
trix file and then specify IN(*) on MATRIX.

Format of the Matrix Data File

• The matrix data file includes two special variables created by the program: ROWTYPE_
and VARNAME_.

• ROWTYPE_ is a short string variable with values MEAN, STDDEV, and N.

ONEWAY 607

• VARNAME_ is a short string variable that never has values for procedure ONEWAY.
VARNAME_ is included with the matrix materials so that matrices written by ONEWAY can
be read by procedures that expect to read a VARNAME_ variable.

• The independent variable is between variables ROWTYPE_ and VARNAME_.

• The remaining variables in the matrix file are the dependent variables.

Split Files

• When split-file processing is in effect, the first variables in the matrix data file are the split
variables, followed by ROWTYPE_, the independent variable, VARNAME_, and the depen-
dent variables.

• A full set of matrix materials is written for each split-file group defined by the split
variable(s).

• A split variable cannot have the same variable name as any other variable written to the
matrix data file.

• If split-file processing is in effect when a matrix is written, the same split file must be in
effect when that matrix is read by any procedure.

• Generally, matrix rows, independent variables, and dependent variables can be in any or-
der in the matrix data file read by keyword IN. However, all split-file variables must pre-
cede variable ROWTYPE_, and all split-group rows must be consecutive. ONEWAY ignores
unrecognized ROWTYPE_ values.

Missing Values

Missing-value treatment affects the values written to an matrix data file. When reading a ma-
trix data file, be sure to specify a missing-value treatment on ONEWAY that is compatible with
the treatment that was in effect when the matrix materials were generated.

Example

GET FILE=GSS80.
ONEWAY WELL BY EDUC6

/MATRIX=OUT(ONEMTX).

• ONEWAY reads data from file GSS80 and writes one set of matrix materials to the file
ONEMTX.

• The working data file is still GSS80. Subsequent commands are executed on GSS80.

Example

GET FILE=GSS80.
ONEWAY WELL BY EDUC6

/MATRIX=OUT(*).
LIST.

608 ONEWAY

• ONEWAY writes the same matrix as in the example above. However, the matrix data file
replaces the working data file. The LIST command is executed on the matrix file, not on
the GSS80 file.

Example

GET FILE=PRSNNL.
FREQUENCIES VARIABLE=AGE.
ONEWAY WELL BY EDUC6
/MATRIX=IN(ONEMTX).

• This example performs a frequencies analysis on PRSNNL and then uses a different file
for ONEWAY. The file is an existing matrix data file.

• MATRIX=IN specifies the matrix data file.

• ONEMTX does not replace PRSNNL as the working data file.

Example

GET FILE=ONEMTX.
ONEWAY WELL BY EDUC6

/MATRIX=IN(*).

• The GET command retrieves the matrix data file ONEMTX.

• MATRIX=IN specifies an asterisk because the working data file is the matrix data file
ONEMTX. If MATRIX=IN(ONEMTX) is specified, the program issues an error message, since
ONEMTX is already open.

• If the GET command is omitted, the program issues an error message.

References

Speed, M. F. 1976. Response curves in the one way classification with unequal numbers of ob-
servations per cell. Proceedings of the Statistical Computing Section. American Statistical
Association.

609

PACF

PACF [VARIABLES=] series names

 [/DIFF={1}]
 {n}

 [/SDIFF={1}]
 {n}

 [/PERIOD=n]

 [/{NOLOG**}]
 {LN }

 [/SEASONAL]

 [/MXAUTO={16**}]
 {n }

 [/APPLY [=’model name’]]

**Default if the subcommand is omitted and there is no corresponding specification on the TSET command.

Example:
PACF TICKETS
 /LN
 /DIFF=1
 /SDIFF=1
 /PERIOD=12
 /MXAUTO=25.

Overview

PACF displays and plots the sample partial autocorrelation function of one or more time se-
ries. You can also display and plot the partial autocorrelations of transformed series by re-
questing natural log and differencing transformations from within the procedure.

Options

Modifying the Series. You can request a natural log transformation of the series using the
LN subcommand and seasonal and nonseasonal differencing to any degree using the
SDIFF and DIFF subcommands. With seasonal differencing, you can specify the period-
icity on the PERIOD subcommand.

Statistical Output. With the MXAUTO subcommand, you can specify the number of lags for
which you want values displayed and plotted, overriding the maximum specified on TSET.
You can also display and plot values only at periodic lags using the SEASONAL subcommand.

610 PACF

Basic Specification

The basic specification is one or more series names. For each series specified, PACF auto-
matically displays the partial autocorrelation value and standard error value for each lag. It
also plots the partial autocorrelations and marks the bounds of two standard errors on the
plot. By default, PACF displays and plots partial autocorrelations for up to 16 lags or the num-
ber of lags specified on TSET.

Subcommand Order

• Subcommands can be specified in any order.

Syntax Rules

• VARIABLES can be specified only once.
• Other subcommands can be specified more than once, but only the last specification of

each one is executed.

Operations

• Subcommand specifications apply to all series named on the PACF command.

• If the LN subcommand is specified, any differencing requested on that PACF command is
done on log-transformed series.

• Confidence limits are displayed in the plot, marking the bounds of two standard errors at
each lag.

Limitations

• Maximum 1 VARIABLES subcommand. There is no limit on the number of series named
on the list.

Example

PACF TICKETS
 /LN
 /DIFF=1
 /SDIFF=1
 /PERIOD=12
 /MXAUTO=25.

• This example produces a plot of the partial autocorrelation function for the series TICKETS
after a natural log transformation, differencing, and seasonal differencing have been ap-
plied to the series. Along with the plot, the partial autocorrelation value and standard error
are displayed for each lag.

• LN transforms the data using the natural logarithm (base e) of the series.

PACF 611

• DIFF differences the series once.

• SDIFF and PERIOD apply one degree of seasonal differencing with a period of 12.

• MXAUTO specifies that the maximum number of lags for which output is to be produced
is 25.

VARIABLES Subcommand

VARIABLES specifies the series names and is the only required subcommand. The actual key-
word VARIABLES can be omitted.

DIFF Subcommand

DIFF specifies the degree of differencing used to convert a nonstationary series to a stationary
one with a constant mean and variance before the partial autocorrelations are computed.
• You can specify any positive integer on DIFF.

• If DIFF is specified without a value, the default is 1.

• The number of values used in the calculations decreases by 1 for each degree of differencing.

Example
PACF SALES
 /DIFF=1.

• In this example, the series SALES will be differenced once before the partial autocorrela-
tions are computed and plotted.

SDIFF Subcommand

If the series exhibits a seasonal or periodic pattern, you can use the SDIFF subcommand to
seasonally difference the series before obtaining partial autocorrelations.

• The specification on SDIFF indicates the degree of seasonal differencing and can be any
positive integer.

• If SDIFF is specified without a value, the degree of seasonal differencing defaults to 1.

• The number of seasons used in the calculations decreases by 1 for each degree of seasonal
differencing.

• The length of the period used by SDIFF is specified on the PERIOD subcommand. If the
PERIOD subcommand is not specified, the periodicity established on the TSET or DATE
command is used (see the PERIOD subcommand below).

612 PACF

PERIOD Subcommand

PERIOD indicates the length of the period to be used by the SDIFF or SEASONAL subcommand.

• The specification on PERIOD indicates how many observations are in one period or sea-
son and can be any positive integer.

• PERIOD is ignored if it is used without the SDIFF or SEASONAL subcommand.

• If PERIOD is not specified, the periodicity established on TSET PERIOD is in effect. If
TSET PERIOD is not specified, the periodicity established on the DATE command is used.
If periodicity was not established anywhere, the SDIFF and SEASONAL subcommands
will not be executed.

Example
PACF SALES
 /SDIFF=1
 /PERIOD=12.

• This PACF command applies one degree of seasonal differencing with a periodicity of 12
to the series SALES before partial autocorrelations are computed and plotted.

LN and NOLOG Subcommands

LN transforms the data using the natural logarithm (base e) of the series and is used to remove
varying amplitude over time. NOLOG indicates that the data should not be log transformed.
NOLOG is the default.

• If you specify LN on a PACF command, any differencing requested on that command will
be done on the log-transformed series.

• There are no additional specifications on LN or NOLOG.

• Only the last LN or NOLOG subcommand on a PACF command is executed.

• If a natural log transformation is requested when there are values in the series that are
less than or equal to 0, the PACF will not be produced for that series because nonpositive
values cannot be log transformed.

• NOLOG is generally used with an APPLY subcommand to turn off a previous LN specification.

Example
PACF SALES
 /LN.

• This command transforms the series SALES using the natural log transformation and then
computes and plots partial autocorrelations.

SEASONAL Subcommand

Use SEASONAL to focus attention on the seasonal component by displaying and plotting au-
tocorrelations only at periodic lags.

• There are no additional specifications on SEASONAL.

PACF 613

• If SEASONAL is specified, values are displayed and plotted at the periodic lags indicated on
the PERIOD subcommand. If PERIOD is not specified, the periodicity established on the
TSET or DATE command is used (see the PERIOD subcommand on p. 612).

• If SEASONAL is not specified, partial autocorrelations for all lags up to the maximum are
displayed and plotted.

Example
PACF SALES
 /SEASONAL
 /PERIOD=12.

• In this example, partial autocorrelations are displayed and plotted at every 12th lag.

MXAUTO Subcommand

MXAUTO specifies the maximum number of lags for a series.
• The specification on MXAUTO must be a positive integer.

• If MXAUTO is not specified, the default number of lags is the value set on TSET MXAUTO.
If TSET MXAUTO is not specified, the default is 16.

• The value on MXAUTO overrides the value set on TSET MXAUTO.

Example
PACF SALES
 /MXAUTO=14.

• This command specifies 14 for the maximum number of partial autocorrelations that can
be displayed and plotted for series SALES.

APPLY Subcommand

APPLY allows you to use a previously defined PACF model without having to repeat the
specifications.
• The only specification on APPLY is the name of a previous model enclosed in apostrophes.

If a model name is not specified, the model specified on the previous PACF command is
used.

• To change one or more model specifications, specify the subcommands of only those por-
tions you want to change after the APPLY subcommand.

• If no series are specified on the PACF command, the series that were originally specified
with the model being reapplied are used.

• To change the series used with the model, enter new series names before or after the APPLY
subcommand.

614 PACF

Example
PACF TICKETS
 /LN
 /DIFF=1
 /SDIFF=1
 /PER=12
 /MXAUTO=25.
PACF ROUNDTRP
 /APPLY.

• The first command specifies a maximum of 25 partial autocorrelations for the series
TICKETS after it has been log transformed, differenced once, and had one degree of sea-
sonal differencing with a periodicity of 12 applied to it. This model is assigned the default
name MOD_1.

• The second command displays and plots partial autocorrelations for series ROUNDTRP
using the same model that was specified for series TICKETS.

References

Box, G. E. P., and G. M. Jenkins. 1976. Time series analysis: Forecasting and control. San Fran-
cisco: Holden-Day.

615

PARTIAL CORR

PARTIAL CORR [VARIABLES=] varlist [WITH varlist]
 BY varlist [(levels)] [/varlist...]

 [/SIGNIFICANCE={TWOTAIL**}]
 {ONETAIL }

 [/STATISTICS=[NONE**] [CORR] [DESCRIPTIVES] [BADCORR] [ALL]]

 [/FORMAT={MATRIX** }]
 {SERIAL }
 {CONDENSED}

 [/MISSING=[{LISTWISE**}] [{EXCLUDE**}]]
 {ANALYSIS } {INCLUDE }

 [/MATRIX= [IN({* })] [OUT({* })]]
 {file} {file}

**Default if the subcommand is omitted.

Example:
PARTIAL CORR VARIABLES=PUBTRANS MECHANIC BUSDRVER BY NETPURSE(1).

Overview

PARTIAL CORR produces partial correlation coefficients that describe the relationship be-
tween two variables while adjusting for the effects of one or more additional variables.
PARTIAL CORR calculates a matrix of Pearson product-moment correlations. It can also
read the zero-order correlation matrix as input. Other procedures producing zero-order
correlation matrices that can be read by PARTIAL CORR include CORRELATIONS,
REGRESSION, DISCRIMINANT, and FACTOR.

Options

Significance Levels. By default, the significance level for each partial correlation coeffi-
cient is based on a two-tailed test. Optionally, you can request a one-tailed test using the
SIGNIFICANCE subcommand.

Statistics. In addition to the partial correlation coefficient, degrees of freedom, and signifi-
cance level, you can obtain the mean, standard deviation, and number of nonmissing cases
for each variable, and zero-order correlation coefficients for each pair of variables using the
STATISTICS subcommand.

Format. You can specify condensed format, which suppresses the degrees of freedom and
significance level for each coefficient, and you can print only nonredundant coefficients in
serial string format using the FORMAT subcommand.

Matrix Input and Output. You can read and write zero-order correlation matrices using the MA-
TRIX subcommand.

616 PARTIAL CORR

Basic Specification

The basic specification is the VARIABLES subcommand, which specifies a list of variables
to be correlated and one or more control variables following keyword BY. PARTIAL CORR
calculates the partial correlation of each variable with every other variable specified on the
correlation variable list.

Subcommand Order

Subcommands can be specified in any order.

• If VARIABLES is the first subcommand used on PARTIAL CORR, keyword VARIABLES can
be omitted.

• If VARIABLES is not the first subcommand specified on PARTIAL CORR, both the subcom-
mand keyword VARIABLES and the equals sign are required.

Operations

PARTIAL CORR produces one matrix of partial correlation coefficients for each of up to five
order values. For each coefficient, PARTIAL CORR prints the degrees of freedom and the sig-
nificance level.

Limitations

• Maximum 25 variable lists on a single PARTIAL CORR command. Each variable list
contains a correlation list, a control list, and order values.

• Maximum 400 variables total can be named or implied per PARTIAL CORR command.

• Maximum 100 control variables.

• Maximum 5 different order values per single list. The largest order value that can be
specified is 100.

Example

PARTIAL CORR VARIABLES=PUBTRANS MECHANIC BUSDRVER BY NETPURSE(1).

• PARTIAL CORR produces a square matrix containing three unique first-order partial cor-
relations: PUBTRANS with MECHANIC controlling for NETPURSE; PUBTRANS with
BUSDRVER controlling for NETPURSE; and MECHANIC with BUSDRVER controlling for
NETPURSE.

PARTIAL CORR 617

VARIABLES Subcommand

VARIABLES requires a correlation list of one or more pairs of variables for which partial cor-
relations are desired and a control list of one or more variables that will be used as controls
for the variables in the correlation list, followed by optional order values in parentheses.

• The correlation list specifies pairs of variables to be correlated while controlling for the
variables in the control list.

• To request a square or lower-triangular matrix, do not use keyword WITH in the correla-
tion list. This obtains the partial correlation of every variable with every other variable in
the list.

• To request a rectangular matrix, specify a list of correlation variables followed by key-
word WITH and a second list of variables. This obtains the partial correlation of specific
variable pairs. The first variable list defines the rows of the matrix and the second list de-
fines the columns.

• The control list is specified after keyword BY.
• The correlation between a pair of variables is referred to as a zero-order correlation. Con-

trolling for one variable produces a first-order partial correlation, controlling for two vari-
ables produces a second-order partial, and so on.

• You can specify order values in parentheses following the control list to indicate the exact
partials to be computed. These values also determine the partial correlation matrix or ma-
trices to be printed. Up to five order values can be specified. Separate each value with at
least one space or comma. The default order value is the number of control variables.

• One partial is produced for every unique combination of control variables for each order
value.

• To specify multiple analyses, use multiple VARIABLES subcommands or a slash to sepa-
rate each set of specifications on one VARIABLES subcommand. PARTIAL CORR computes
the zero-order correlation matrix for each analysis list separately.

Example
PARTIAL CORR RENT FOOD PUBTRANS WITH TEACHER MANAGER BY NETSALRY(1).

• PARTIAL CORR produces a rectangular matrix. Variables RENT, FOOD, and PUBTRANS
form the matrix rows, and variables TEACHER and MANAGER form the columns.

• Keyword VARIABLES is omitted. This is allowed because the variable list is the first spec-
ification on PARTIAL CORR.

Example
PARTIAL CORR RENT WITH TEACHER BY NETSALRY, NETPRICE (1).
PARTIAL CORR RENT WITH TEACHER BY NETSALRY, NETPRICE (2).
PARTIAL CORR RENT WITH TEACHER BY NETSALRY, NETPRICE (1,2).
PARTIAL CORR RENT FOOD PUBTRANS BY NETSALRY NETPURSE NETPRICE
(1,3).

• The first PARTIAL CORR produces two first-order partials: RENT with TEACHER control-
ling for NETSALRY, and RENT with TEACHER controlling for NETPRICE.

618 PARTIAL CORR

• The second PARTIAL CORR produces one second-order partial of RENT with TEACHER
controlling simultaneously for NETSALRY and NETPRICE.

• The third PARTIAL CORR specifies both sets of partials specified by the previous two
commands.

• The fourth PARTIAL CORR produces three first-order partials (controlling for NETSALRY,
NETPURSE, and NETPRICE individually) and one third-order partial (controlling for all
three control variables simultaneously).

Example
PARTIAL CORR RENT FOOD WITH TEACHER BY NETSALRY NETPRICE (1,2)

/WCLOTHES MCLOTHES BY NETPRICE (1).

• PARTIAL CORR produces three matrices for the first correlation list, control list, and order
values.

• The second correlation list, control list, and order value produce one matrix.

SIGNIFICANCE Subcommand

SIGNIFICANCE determines whether the significance level is based on a one-tailed or two-
tailed test.
• By default, the significance level is based on a two-tailed test. This is appropriate when

the direction of the relationship between a pair of variables cannot be specified in advance
of the analysis.

• When the direction of the relationship can be determined in advance, a one-tailed test is
appropriate.

TWOTAIL Two-tailed test of significance. This is the default.

ONETAIL One-tailed test of significance.

STATISTICS Subcommand

By default, the partial correlation coefficient, degrees of freedom, and significance level are
displayed. Use STATISTICS to obtain additional statistics.

• If both CORR and BADCORR are requested, CORR takes precedence over BADCORR and
the zero-order correlations are displayed.

CORR Zero-order correlations with degrees of freedom and significance level.

DESCRIPTIVES Mean, standard deviation, and number of nonmissing cases. Descriptive sta-
tistics are not available with matrix input.

BADCORR Zero-order correlation coefficients only if any of the zero-order correlations
cannot be computed. Noncomputable coefficients are displayed as a period.

NONE No additional statistics. This is the default.

ALL All additional statistics available with PARTIAL CORR.

PARTIAL CORR 619

FORMAT Subcommand

FORMAT determines page format.
• If both CONDENSED and SERIAL are specified, only SERIAL is in effect.

MATRIX Display degrees of freedom and significance level in matrix format. This for-
mat requires four lines per matrix row and displays the degrees of freedom
and the significance level. The output includes redundant coefficients. This
is the default.

CONDENSED Suppress the degrees of freedom and significance level. This format requires
only one line per matrix row and suppresses the degrees of freedom and sig-
nificance. A single asterisk (*) following a coefficient indicates a signifi-
cance level of 0.05 or less. Two asterisks (**) following a coefficient indi-
cate a significance level of 0.01 or less.

SERIAL Display only the nonredundant coefficients in serial string format. The coef-
ficients, degrees of freedom, and significance levels from the first row of the
matrix are displayed first, followed by all the unique coefficients from the
second row and so on for all the rows of the matrix.

MISSING Subcommand

MISSING controls the treatment of cases with missing values.

• When multiple analysis lists are specified, missing values are handled separately for each
analysis list. Thus, different sets of cases can be used for different lists.

• When pairwise deletion is in effect (keyword ANALYSIS), the degrees of freedom for a
particular partial coefficient are based on the smallest number of cases used in the calcu-
lation of any of the simple correlations.

• LISTWISE and ANALYSIS are alternatives. However, each can be used with either INCLUDE
or EXCLUDE. The default is LISTWISE and EXCLUDE.

LISTWISE Exclude cases with missing values listwise. Cases with missing values for
any of the variables listed for an analysis, including control variables, are not
used in the calculation of the zero-order correlation coefficient. This is the
default.

ANALYSIS Exclude cases with missing values on a pair-by-pair basis. Cases with miss-
ing for one or both of a pair of variables are not used in the calculation of
zero-order correlation coefficients.

EXCLUDE Exclude user-missing values. User-missing values are treated as missing.
This is the default.

INCLUDE Include user-missing values. User-missing values are treated as valid values.

620 PARTIAL CORR

MATRIX Subcommand

MATRIX reads and writes matrix data files.

• Either IN or OUT and a matrix file in parentheses is required. When both IN and OUT are
used on the same PARTIAL CORR procedure, they can be specified on separate MATRIX
subcommands or both on the same subcommand.

OUT (filename) Write the (zero-order) correlation matrix to a file. Specify either a filename
or an asterisk, enclosed in parentheses. If you specify a filename, the file is
stored on disk and can be retrieved at any time. If you specify an asterisk (*),
the matrix data file replaces the working data file but is not stored on disk
unless you use SAVE or XSAVE.

IN (filename) Read a matrix data file. If the matrix data file is the working data file, specify
an asterisk (*) in parentheses. If the matrix data file is another file, specify a
filename in parentheses. Both the working data file and the matrix data file
must contain all the variables specified on the VARIABLES subcommands on
PARTIAL CORR. A matrix file read from an external file does not replace the
working data file.

Matrix Output

• The matrix materials that PARTIAL CORR writes can be used by subsequent PARTIAL
CORR procedures or by other procedures that read correlation-type matrices.

• In addition to the Pearson correlation coefficients, the matrix materials PARTIAL CORR
writes include the mean, standard deviation, and number of cases used to compute each
coefficient (see “Format of the Matrix Data File” on p. 621 for a description of the file).
If PARTIAL CORR reads matrix data and then writes matrix materials based on those data,
the matrix data file that it writes will not include means and standard deviations.

• PARTIAL CORR writes a full square matrix for the analysis specified on the first VARIABLES
subcommand (or the first analysis list if keyword VARIABLES is omitted). No matrix is writ-
ten for subsequent variable lists.

• Any documents contained in the working data file are not transferred to the matrix file.

Matrix Input

• When matrix materials are read from a file other than the working data file, both the work-
ing data file and the matrix data file specified on IN must contain all the variables speci-
fied on the VARIABLES subcommands.

• MATRIX=IN cannot be specified unless a working data file has already been defined. To
read an existing matrix data file at the beginning of a session, use GET to retrieve the ma-
trix file and then specify IN(*) on MATRIX.

• PARTIAL CORR can read correlation-type matrices written by other procedures.

• The program reads variable names, variable and value labels, and print and write formats
from the dictionary of the matrix data file.

PARTIAL CORR 621

Format of the Matrix Data File

• The matrix data file includes two special variables created by the program: ROWTYPE_
and VARNAME_.

• ROWTYPE_ is a short string variable with values N, MEAN, STDDEV, and CORR (for
Pearson’s correlation coefficient).

• VARNAME_ is a short string variable whose values are the names of the variables used to
form the correlation matrix. When ROWTYPE_ is CORR, VARNAME_ gives the variable
associated with that row of the correlation matrix.

• The remaining variables in the file are the variables used to form the correlation matrix.

Split Files

• When split-file processing is in effect, the first variables in the matrix data file are the split
variables, followed by ROWTYPE_, VARNAME_, and the variables used to form the corre-
lation matrix.

• A full set of matrix materials is written for each split-file group defined by the split variables.

• A split variable cannot have the same variable name as any other variable written to the
matrix data file.

• If split-file processing is in effect when a matrix is written, the same split file must be in
effect when that matrix is read by any procedure.

Missing Values

• With pairwise treatment of missing values (MISSING=ANALYSIS is specified), the matrix
of N’s used to compute each coefficient is included with the matrix materials.

• With LISTWISE treatment, a single N used to calculate all coefficients is included with the
matrix materials.

• When reading a matrix data file, be sure to specify a missing-value treatment on PARTIAL
CORR that is compatible with the missing-value treatment that was in effect when the matrix
materials were produced.

Example

GET FILE=CITY.
PARTIAL CORR VARIABLES=BUSDRVER MECHANIC ENGINEER TEACHER COOK
 BY NETSALRY(1)

/MATRIX=OUT(PTMTX).

• PARTIAL CORR reads data from file CITY and writes one set of matrix materials to file PTMTX.

• The working data file is still CITY. Subsequent commands are executed on CITY.

622 PARTIAL CORR

Example

GET FILE=CITY.
PARTIAL CORR VARIABLES=BUSDRVER MECHANIC ENGINEER TEACHER COOK
 BY NETSALRY(1) /MATRIX=OUT(*).
LIST.

• PARTIAL CORR writes the same matrix as in the example above. However, the matrix data
file replaces the working data file. The LIST command is executed on the matrix file, not
on the CITY file.

Example

GET FILE=PRSNNL.
FREQUENCIES VARIABLE=AGE.
PARTIAL CORR VARIABLES=BUSDRVER MECHANIC ENGINEER TEACHER COOK
 BY NETSALRY(1) /MATRIX=IN(CORMTX).

• This example performs a frequencies analysis on file PRSNNL and then uses a different
file for PARTIAL CORR. The file is an existing matrix data file.

• MATRIX=IN specifies the matrix data file. Both the working data file and the CORMTX file
must contain all variables specified on the VARIABLES subcommand on PARTIAL CORR.

• CORMTX does not replace PRSNNL as the working data file.

Example

GET FILE=CORMTX.
PARTIAL CORR VARIABLES=BUSDRVER MECHANIC ENGINEER TEACHER COOK
 BY NETSALRY(1)

/MATRIX=IN(*).

• The GET command retrieves the matrix data file CORMTX.

• MATRIX=IN specifies an asterisk because the working data file is the matrix file CORMTX.
If MATRIX=IN(CORMTX) is specified, the program issues an error message.

• If the GET command is omitted, the program issues an error message.

Example

GET FILE=CITY.
REGRESSION MATRIX=OUT(*)
 /VARIABLES=NETPURSE PUBTRANS MECHANIC BUSDRVER
/DEPENDENT=NETPURSE /ENTER.

PARTIAL CORR PUBTRANS MECHANIC BUSDRVER BY NETPURSE(1) /MATRIX=IN(*)
.

• GET retrieves the SPSS-format data file CITY.

PARTIAL CORR 623

• REGRESSION computes correlations among the specified variables. MATRIX=OUT(*)
writes a matrix data file that replaces the working data file.

• The MATRIX=IN(*) specification on PARTIAL CORR reads the matrix materials in the work-
ing data file.

624

PLOT

PLOT
 [/MISSING=[{PLOTWISE**}] [INCLUDE] [DEFAULT**]]
 {LISTWISE }

 [/FORMAT={DEFAULT** }]
 {OVERLAY }
 {CONTOUR††[({ 10})]}
 { {n } }
 {REGRESSION }

 [/TITLE='title']

 [/HORIZONTAL=['label'] [STANDARDIZE] [REFERENCE(value list)]
 [MIN(n)] [MAX(n)] [UNIFORM]]

 [/VERTICAL=['label'] [STANDARDIZE] [REFERENCE(value list)]
 [MIN(n)] [MAX(n)] [UNIFORM]]

 /PLOT={varlist} WITH varlist [(PAIR)] [BY varname] [;varlist...]
 {ALL }

 [/PLOT=...]

**Default if the subcommand is omitted.

Example:
PLOT FORMAT=OVERLAY

/TITLE=’Marriage and Divorce Rates’
/VERTICAL=’Rates per 1000 population’
/HORIZONTAL=’Year’ REFERENCE (1918, 1945) MIN (1880) MAX (2000)
/PLOT=MARRATE DIVRATE WITH YEAR.

Overview

PLOT produces two-dimensional plots, including simple bivariate scatterplots, scatterplots
with a control variable, contour plots, and overlay plots. You can also request bivariate re-
gression statistics. You can choose from a variety of options for plot symbols, and you can
add reference lines. You have control over size, labeling, and scaling of each axis, and you
can constrain the axes to be uniform for a series of plots. Many of these plots can also be
produced with the GRAPH command.

Options

Types of Plots. You can introduce a control variable for bivariate scatterplots and request
regression plots with or without a control variable, contour plots, and overlay plots using
the FORMAT subcommand.

PLOT 625

Basic Specification

The basic specification is a PLOT subcommand that names the variables for the vertical (y)
axis, keyword WITH, and the variables for the horizontal (x) axis. By default, PLOT produces
separate bivariate scatterplots for all combinations formed by each variable on the left side
of WITH with each variable on the right.

Subcommand Order

• No subcommand can be specified after the last PLOT subcommand specified. Other than
this, subcommands can be specified in any order.

Syntax Rules

• The PLOT subcommand can be specified more than once.

• Subcommands HORIZONTAL, VERTICAL, FORMAT, and TITLE can be specified more than
once and apply only to the following PLOT subcommand.

Limitations

There are no limitations on the number of plots requested or on the number of variables spec-
ified on a PLOT command. The following limitations apply to the optional subcommands:

• Maximum 60 characters for a title specified on TITLE.

• Maximum 10 reference points on each HORIZONTAL or VERTICAL subcommand.

• Maximum 40 characters per label on each HORIZONTAL or VERTICAL subcommand.

Example

PLOT FORMAT=OVERLAY
/TITLE=’Marriage and Divorce Rates’
/VERTICAL=’Rates per 1000 population’
/HORIZONTAL=’Year’ REFERENCE (1918, 1945) MIN (1900) MAX (1983)
/PLOT=MARRATE DIVRATE WITH YEAR.

• This example produces an overlay plot of marriage and divorce rates by year.

• TITLE specifies a plot title.

• VERTICAL provides a title for the vertical axis.

• HORIZONTAL provides a title for the horizontal axis. The REFERENCE keyword provides
reference lines at values 1918 and 1945. MIN and MAX specify minimum and maximum
scale values for the horizontal axis.

626 PLOT

PLOT Subcommand

The PLOT subcommand names the variables to be plotted on each axis. PLOT can also name
a control or contour variable.

• PLOT is the only required subcommand.

• Multiple PLOT subcommands are allowed.

• No other subcommands can follow the last PLOT subcommand.
• The basic specification on PLOT is a list of variables to be plotted on the vertical axis, key-

word WITH, and a list of variables to be plotted on the horizontal axis.

• By default, PLOT creates a separate plot for each variable specified before WITH with each
variable specified after WITH.

• To request special pairing of variables, specify keyword PAIR in parentheses following
the second variable list. The first variable before WITH is plotted against the first variable
after WITH, the second against the second, and so on.

• Use semicolons to separate multiple plot lists on a single PLOT subcommand.

• Keyword ALL can be used to refer to all user-defined variables.

• An optional control variable can be specified following keyword BY. Only one control
variable can be specified on any plot list.

• If a control variable is specified for a bivariate scatterplot (the default), PLOT uses the first
character of the control variable’s value label as the plot symbol. If value labels have not
been specified, the first character of the value is used. The symbol $ indicates that more
than one control value occurs at that position.

Example
PLOT PLOT=MARRATE WITH YEAR AGE;

BIRTHS DEATHS WITH INCOME1 INCOME2 (PAIR);
DIVRATE WITH AGE BY YEAR.

• The PLOT subcommand contains three plot lists. The first requests a plot of MARRATE
with YEAR and of MARRATE with AGE.

• The second uses the keyword PAIR to request two plots: BIRTHS with INCOME1 and
DEATHS with INCOME2.

• The third requests a plot of DIVRATE with AGE using YEAR as a control variable. The first
character of the value labels for YEAR as the plot symbol.

FORMAT Subcommand

FORMAT controls the type of plot produced.

• FORMAT can be specified once before each PLOT subcommand and applies only to plots
requested on that PLOT subcommand.

• If FORMAT is not used or keyword DEFAULT is specified, bivariate scatterplots are displayed.
• Only one keyword can be specified on each FORMAT subcommand.

PLOT 627

DEFAULT Bivariate scatterplot. When there is no control variable, each symbol repre-
sents the case count at that position. When a control variable is specified,
each symbol represents the first character of the control variable’s value la-
bel, or the first character of the value if no labels have been defined.

OVERLAY Overlay plots. All bivariate plots on the next PLOT subcommand appear in
one plot frame. PLOT selects a unique symbol for each plot to be overlaid,
plus a symbol to represent multiple plot points at one position.

REGRESSION Regression of the y axis variable on the x axis variable. The regression-line
intercepts are marked with the letter R. When there is no control variable,
each symbol represents the frequency of cases at that position. If a control
variable is specified, regression statistics are pooled over all categories and
each symbol represents the first character of the control variable’s value la-
bel, or the first character of the value if no labels have been defined.

VERTICAL and HORIZONTAL Subcommands

VERTICAL and HORIZONTAL control labeling and scaling for the vertical and horizontal axes.

• VERTICAL and HORIZONTAL can each be specified once before each PLOT subcommand
and apply only to plots requested by that subcommand.

• If VERTICAL and HORIZONTAL are omitted, all defaults are in effect. If VERTICAL and
HORIZONTAL are included, only those defaults explicitly altered are changed.

The following keywords are available for both VERTICAL and HORIZONTAL:

’label’ Label for axis. The label can contain up to 40 characters. A label that
cannot fit in the frame is truncated. The default is the variable label for
the variable plotted on that axis, or the variable name if no variable la-
bel has been specified.

MIN (n) Minimum axis value. If you specify a minimum value greater than the
observed minimum value, some points will not be included in the plot.
The default is the minimum observed value.

MAX (n) Maximum axis value. If you specify a maximum value less than the ob-
served maximum value, some points will not be included in the plot.
The default is the maximum observed value.

UNIFORM Uniform values on axis. All plots specified on that PLOT subcommand
will have the same scale on that axis. A uniform scale is implied when
both MIN and MAX are specified. If UNIFORM is specified, PLOT deter-
mines the minimum and maximum observed values across all vari-
ables on the PLOT subcommand.

REFERENCE(values) Reference lines. The values at which reference lines should be drawn
are separated by blanks or commas. The default is no reference lines.

STANDARDIZE Plot standardized variables. Standardized variables are useful for
overlay plots of variables with different scales. The default is to plot
observed values.

628 PLOT

TITLE Subcommand

TITLE provides titles for plots.

• TITLE can be specified once before each PLOT subcommand and applies to all plots
named on that PLOT subcommand.

• The default title for a bivariate scatterplot or regression plot is the names of the variables
in the plot. For other plots, the default is the plot type requested on FORMAT.

• The title can be up to 60 characters long and follows the usual rules for specifying strings
(see “String Values in Command Specifications” on p. 5).

• The title is truncated if it exceeds the width specified on the HSIZE subcommand.

MISSING Subcommand

MISSING controls the treatment of cases with missing values.

• MISSING can be specified only once per PLOT command and applies to all plots requested.

• Keywords LISTWISE and PLOTWISE are alternatives. Either one can be specified with
INCLUDE. The default is PLOTWISE.

DEFAULT Exclude cases with system- or user-missing values for any variables in a plot
from that plot.

PLOTWISE Delete cases with missing values plotwise. Cases with missing values for any
variable in a plot are not included in that plot. In overlay plots, PLOTWISE
applies separately to each overlaid plot in the frame, not to the full list spec-
ified on the PLOT subcommand.

LISTWISE Delete cases with missing values listwise. Cases with missing values for any
variable named on the PLOT subcommand are deleted from all plots speci-
fied on that PLOT subcommand.

INCLUDE Treat user-missing values as valid values. Only cases with system-missing
values are excluded according to the missing-value treatment specified.

PLOT 629

630 PLOT

631

POINT

POINT KEY=varname [FILE=file]

Example:
FILE HANDLE DRIVERS/ file specifications.
POINT FILE=DRIVERS /KEY=#FRSTAGE.

Overview

POINT establishes the location at which sequential access begins (or resumes) in a keyed
file. A keyed file is a file that provides access to information by a record key. An example
of a keyed file is a file containing a social security number and other information about a
firm’s employees. The social security number can be used to identify the records in the file.
For additional information on keyed files, see KEYED DATA LIST.

POINT prepares for reading the key-sequenced data set sequentially from a point that the
key value controls. Data selection commands can then be used to limit the file to the portion
you want to analyze. A DATA LIST command is used to read the data. To read keyed files
(and also direct access files), see the KEYED DATA LIST command.

Basic Specification

The basic specification is the KEY subcommand and a string variable. The value of the string
variable is used as the file key for determining where sequential retrieval (via DATA LIST)
begins or resumes.

Subcommand Order

• Subcommands can be named in any order.

• Each POINT command must precede its corresponding DATA LIST command.

Syntax Rules

• POINT can be used more than once to change the order of retrieval during processing.

• POINT must be specified in an input program and therefore cannot be used to add cases
to an existing file.

Operations

• The next DATA LIST command executed after the POINT command (for the same file) will
read a record whose key value is at least as large as that of the specified key. To prevent

632 POINT

an infinite loop in which the same record is read again and again, either the value of the
variable specified on KEY must change from case to case or the POINT command must be
set up to execute only once.

• If the file contains a record whose key exactly matches the value of the KEY variable, the
next execution of DATA LIST will read that record, the second execution of DATA LIST will
read the next record, and so on.

• If an exact match is not found, the results depend on the operating system. On IBM im-
plementations, reading will begin or resume at the record that has the next higher key. If
the value of the key is shorter than the file key, the value of the key variable is logically
extended with the lowest character in the collating sequence. For example, if the value of
the key variable is the single letter M, retrieval would begin or resume at the first record
that had a key (regardless of length) beginning with the letter M or a character higher in
the collating sequence.

• POINT does not report on whether the file contains a record that exactly matches the spec-
ified key. The only way to check for missing records is to display the data read by the
subsequent DATA LIST command using LIST.

Example

* Select a subset of records from a keyed file.

FILE HANDLE DRIVERS/ file specifications.
INPUT PROGRAM.
STRING #FRSTAGE(A2).
DO IF #FRSTAGE = ’ ’. /* First case check
+ COMPUTE #FRSTAGE = ’26’. /* Initial key
+ POINT FILE=DRIVERS /KEY=#FRSTAGE.
END IF.
DATA LIST FILE=DRIVERS NOTABLE/

AGE 19-20(A) SEX 21(A) TICKETS 12-13.
DO IF AGE > ’30’.
+ END FILE.
END IF.
END INPUT PROGRAM.
LIST.

• This example illustrates how to execute POINT for only the first case. The file contains
information about traffic violations, and it uses the individual’s age as the key. Ages be-
tween 26 and 30 are selected.

• FILE HANDLE specifies the file handle DRIVERS.

• The INPUT PROGRAM and END INPUT PROGRAM commands begin and end the block of
commands that build cases. POINT must appear in an input program.

• STRING declares the string variable #FRSTAGE, whose value will be used as the key on
the POINT command. Since #FRSTAGE is a string variable, it is initialized as blanks.

• The first DO IF—END IF structure is executed only if no records have been read; that is,
when #FRSTAGE is blank. When #FRSTAGE is blank, COMPUTE resets #FRSTAGE to 26,
which is the initial value. POINT is executed, and it causes the first execution of DATA LIST
to read a record whose key is at least 26. Since the value of #FRSTAGE is now 26, the DO
IF—END IF structure is not executed again.

POINT 633

• DATA LIST reads the variables AGE, SEX, and TICKETS from the file DRIVERS.

• The second DO IF—END IF structure executes an END FILE command as soon as a record
is read that contains a driver’s age greater than 30. The program does not add this last case
to the working file when it ends the file (see END FILE).

Example

FILE HANDLE DRIVERS/ file specifications.
POINT FILE=DRIVERS /KEY=#FRSTAGE.

• FILE HANDLE defines the handle for the data file to be read by POINT. The handle is spec-
ified on the FILE subcommand on POINT.

• KEY on POINT specifies the key variable. The key variable must be a string, and it must
already exist as the result of a prior DATA LIST, KEYED DATA LIST, or transformation com-
mand.

FILE Subcommand

FILE specifies a file handle for the keyed data file.The file handle must have been previously
defined on a FILE HANDLE command .

• FILE is optional.
• If FILE is omitted, POINT reads from the last file specified on an input command, such as

DATA LIST.

Example
FILE HANDLE DRIVERS/ file specifications.
POINT FILE=DRIVERS /KEY=#NXTCASE.

• FILE HANDLE specifies DRIVERS as the file handle for the data. The FILE subcommand on
POINT specifies file handle DRIVERS.

KEY Subcommand

KEY specifies the variable whose value will be used as the file key for determining where
sequential retrieval by DATA LIST will begin or resume. This variable must be a string vari-
able, and it must already exist as the result of a prior DATA LIST, KEYED DATA LIST, or trans-
formation command.
• KEY is required. Its only specification is a single variable. The variable can be a perma-

nent variable or a scratch variable.

• Where the keys on a file are inherently numbers, such as social security numbers, the
STRING function can be used to convert the numeric variable to a string (see “Conversion
Functions” on p. 44).

634 POINT

Example
FILE HANDLE DRIVERS/ file specifications.
POINT FILE=DRIVERS /KEY=#NXTCASE.

• KEY indicates that the value of the existing scratch variable #FRSTAGE will be used as the
key to reading each record.

• Variable #FRSTAGE must be an existing string variable.

635

PPLOT

PPLOT [VARIABLES=] varlist

 [/DISTRIBUTION={NORMAL(a,b)** }]
 {EXPONENTIAL(a)}
 {WEIBUL(a,b) }
 {PARETO(a,b) }
 {LNORMAL(a,b) }
 {BETA(a,b) }
 {GAMMA(a,b) }
 {LOGISTIC(a,b) }
 {LAPLACE(a,b) }
 {UNIFORM(a,b) }
 {HNORMAL(a) }
 {CHI(df) }
 {STUDENT(df) }

 [/FRACTION={BLOM**}]
 {RANKIT}
 {TUKEY }
 {VW }

 [/TIES={MEAN** }]
 {LOW }
 {HIGH }
 {CONDENSE}

 [/{NOSTANDARDIZE**}]
 {STANDARDIZE }

 [/TYPE={Q-Q**}]
 {P-P }

 [/PLOT={BOTH** }]
 {NORMAL }
 {DETRENDED}

 [/DIFF={1}]
 {n}

 [/SDIFF={1}]
 {n}

 [/PERIOD=n]

 [/{NOLOG**}]
 {LN }

 [/APPLY [=’model name’]]

**Default if the subcommand is omitted.

Example:
PPLOT VARX
 /FRACTION=TUKEY
 /DIFF=2.

636 PPLOT

Overview

PPLOT (alias NPPLOT) produces probability plots of one or more sequence or time series
variables. The variables can be standardized, differenced, and/or transformed before plot-
ting. Expected normal values or deviations from expected normal values can be plotted.

Options

Modifying the Variables. You can request a natural log transformation of the sequence or time
series variables using the LN subcommand and seasonal and nonseasonal differencing to any
degree using the SDIFF and DIFF subcommands. With seasonal differencing, you can specify
the periodicity on the PERIOD subcommand. You can also plot standardized series using the
STANDARDIZE subcommand.

Plot Type. You can request p-p (proportion-proportion) or q-q (quantile-quantile) plots on the
TYPE subcommand. With the PLOT subcommand you can display normal plots, detrended
plots, or both.

Distribution Type. You can specify the distribution type on the DISTRIBUTION subcommand.
The cumulative distribution function (CDF) and the inverse distribution function (IDF) for
the specified distribution type are used to compute the expected values in the p-p and q-q
plots, respectively.

Score Calculations. On the FRACTION subcommand, you can specify one of several frac-
tional rank formulas to use for estimating the empirical distribution in p-p plots and com-
puting expected quantiles in q-q plots. You can specify the treatment of tied values on the
TIE subcommand.

Basic Specification

The basic specification is one or more variable names.

• For each variable specified, PPLOT produces two q-q plots of the observed values, one
versus expected normal values and the other versus deviations from normal values. By
default, expected normal values are calculated using Blom’s transformation.

• Observed values define the horizontal axis, and expected normal values or deviations de-
fine the vertical axis.

Subcommand Order

• Subcommands can be specified in any order.

Syntax Rules

• VARIABLES can be specified only once.

• Other subcommands can be specified more than once, but only the last specification of
each one is executed.

PPLOT 637

Operations

• Subcommand specifications apply to all plots produced by PPLOT.
• If the LN subcommand is specified, any differencing or standardization requested on that

PPLOT is done on the log-transformed series.

• If differencing (DIFF or SDIFF) is specified, any standardization is done on the differenced
series.

Limitations

• Maximum 1 VARIABLES subcommand. There is no limit on the number of variables
named on the list.

Example

PPLOT VARX
 /FRACTION=TUKEY
 /DIFF=2.

• This command produces two normal q-q plots of VARX, one not detrended and the other
detrended.

• The expected quantile values are calculated using Tukey’s transformation.

• The variable is differenced twice before plotting.

VARIABLES Subcommand

VARIABLES specifies the sequence or time series variables to be plotted and is the only re-
quired subcommand. The actual keyword VARIABLES can be omitted.

DISTRIBUTION Subcommand

DISTRIBUTION specifies the distribution type of your data. The default is NORMAL if the sub-
command is not specified or is specified without a keyword. If the parameters of the distri-
bution type are not specified, DISTRIBUTION estimates them from the sample data and
displays them with the plots.

NORMAL(a,b) Normal distribution. The location parameter a can be any numeric
value while the scale parameter b must be positive. If they are not
specified, DISTRIBUTION estimates them from the sample mean and
sample standard deviation.

EXPONENTIAL(a) Exponential distribution. The scale parameter a must be positive. If
the parameter is not specified, DISTRIBUTION estimates it from the
sample mean. Negative observations are not allowed.

638 PPLOT

WEIBULL(a,b) Weibull distribution. The scale and shape parameters a and b must be
positive. If they are not specified, DISTRIBUTION estimates them using
the least square method. Negative observations are not allowed.

PARETO(a,b) Pareto distribution. The threshold and shape parameters a and b must
be positive. If they are not specified, DISTRIBUTION assumes a equals
the minimum observation and estimates b by the maximum likelihood
method. Negative observations are not allowed.

LNORMAL(a,b) Lognormal distribution. The scale and shape parameters a and b must
be positive. If they are not specified, DISTRIBUTION estimates them
from the mean and standard deviation of the natural logarithm of the
sample data. Negative observations are not allowed.

BETA(a,b) Beta distribution. The shape1 and shape2 parameters a and b must be
positive. If they are not specified, DISTRIBUTION estimates them from
the sample mean and sample standard deviation. All observations
must be between 0 and 1, inclusive.

GAMMA(a,b) Gamma distribution. The shape and scale parameters a and b must be
positive. If they are not specified, DISTRIBUTION estimates them from
the sample mean and sample standard deviation if they are not speci-
fied. Negative observations are not allowed.

LOGISTIC(a,b) Logistic distribution. LOGISTIC takes a location and a scale parameter
(a and b). The scale parameter (b) must be positive. If the parameters
are not specified, DISTRIBUTION estimates them from the sample
mean and sample standard deviation.

LAPLACE(a,b) Laplace or double exponential distribution. LAPLACE takes a location
and a scale parameter (a and b). The scale parameter (b) must be pos-
itive. If the parameters are not specified, DISTRIBUTION estimates
them from the sample mean and sample standard deviation.

UNIFORM(a,b) Uniform distribution. UNIFORM takes a minimum and a maximum
parameter (a and b). a must be equal to or greater than b. If the param-
eters are not specified, DISTRIBUTION assumes them from the sample
data.

HNORMAL(a) Half-normal distribution. Data are assumed to be location free or cen-
tralized. (Location parameter=0.) You can specify the scale parameter
a or let DISTRIBUTION estimate it using the maximum likelihood
method.

CHI (df) Chi-square distribution. You must specify the degrees of freedom df.
Negative observations are not allowed.

STUDENT(df) Student’s t distribution. You must specify the degrees of freedom df.

PPLOT 639

FRACTION Subcommand

FRACTION specifies the formula to be used in estimating the empirical distribution in p-p
plots and calculating the expected quantile values in q-q plots.

• Only one formula can be specified. If more than one is specified, only the first is used.

• If the FRACTION subcommand is not specified, BLOM is used by default.

• These formulas will produce noticeable differences only for short series.

Four formulas are available:

BLOM Blom’s transformation, defined by the formula (r − (3/8)) / (n + (1/4)), where n is
the number of observations and r is the rank, ranging from 1 to n (Blom, 1958).

RANKIT Uses the formula (r − (1/2)) / n, where n is the number of observations and r is the
rank, ranging from 1 to n (Chambers et al., 1983).

TUKEY Tukey’s transformation, defined by the formula (r − (1/3)) / (n + (1/3)), where n is
the number of observations and r is the rank, ranging from 1 to n (Tukey, 1962).

VW Van der Waerden’s transformation, defined by the formula r / (n +1), where n is the
number of observations and r is the rank, ranging from 1 to n (Lehmann, 1975).

Example
PPLOT VARX
 /FRACTION=VW.

• This PPLOT command uses van der Waerden’s transformation to approximate the propor-
tion estimate p, which is used in the inverse distribution function.

• By default, two q-q plots are produced.

TIES Subcommand

TIES determines the way tied values are handled. The default method is MEAN.

MEAN Mean rank of tied values is used for ties. This is the default.

LOW Lowest rank of tied values is used for ties.

HIGH Highest rank of tied values is used for ties.

CONDENSE Consecutive ranks with ties sharing the same value. Each distinct value of
the ranked variable is assigned a consecutive rank. Ties share the same rank.

TYPE Subcommand

TYPE specifies the type of plot to produce. The default is Q-Q. Figure 1 shows a quantile-
quantile plot and Figure 2 shows a proportion-proportion plot using the same data (with a
normal distribution).

Q-Q Quantile-quantile plots. The quantiles of the observed values are plotted against the
quantiles of the specified distribution.

640 PPLOT

P-P Proportion-proportion plots. The observed cumulative proportion is plotted
against the expected cumulative proportion if the data were a sample from a spec-
ified distribution.

PLOT Subcommand

PLOT specifies whether to produce a plot of observed values versus expected values, a plot
of observed values versus deviations from expected values, or both. Figure 1 and Figure 2
are nondetrended plots. Figure 3 shows a detrended q-q plot.

BOTH Display both detrended and nondetrended normal plots. This is the default.

NORMAL Display nondetrended normal plots. The observed values are plotted against
the expected values.

DETRENDED Display detrended plots. The observed values are plotted against the devia-
tions from the expected values.

• If you specify PLOT more than once, only the last specification is executed.

• Deviations are calculated by subtracting the expected value from the observed value.

Figure 1 Normal q-q plot of current salary

Figure 2 Normal p-p plot of current salary

PPLOT 641

• In low resolution, a dash is used in a detrended plot to indicate where the deviation from
the expected is 0.

STANDARDIZE and NOSTANDARDIZE Subcommands

STANDARDIZE transforms the sequence or time series variables into a sample with a mean of
0 and a standard deviation of 1. NOSTANDARDIZE indicates that the series should not be stan-
dardized and is the default.

• There are no additional specifications on the STANDARDIZE or NOSTANDARDIZE
subcommands.

• Only the last STANDARDIZE or NOSTANDARDIZE subcommand on the PPLOT command
is executed.

• The STANDARDIZE and NOSTANDARDIZE subcommands have no effect on expected
values, which are always standardized.

• NOSTANDARDIZE is generally used with an APPLY subcommand to turn off a previous
STANDARDIZE specification.

Example
PPLOT VARX
 /STANDARDIZE.

• This example produces two q-q normal probability plots of VARX with standardized ob-
served values.

DIFF Subcommand

DIFF specifies the degree of differencing used before plotting to convert a nonstationary vari-
able to a stationary one with a constant mean and variance.

• You can specify any positive integer on DIFF.

• If DIFF is specified without a value, the default is 1.

• The number of values plotted decreases by 1 for each degree of differencing.

Figure 3 Detrended normal q-q plot of current salary

642 PPLOT

Example
PPLOT TICKETS
 /DIFF=2.

• In this example, TICKETS is differenced twice before the expected and observed values
are plotted.

SDIFF Subcommand

If the variable exhibits a seasonal or periodic pattern, you can use the SDIFF subcommand to
seasonally difference the variable before plotting.

• The specification on SDIFF indicates the degree of seasonal differencing and can be any
positive integer.

• If SDIFF is specified without a value, the degree of seasonal differencing defaults to 1.

• The number of seasons plotted decreases by 1 for each degree of seasonal differencing.

• The length of the period used by SDIFF is specified on the PERIOD subcommand. If the
PERIOD subcommand is not specified, the periodicity established on the TSET or DATE
command is used (see the PERIOD subcommand below).

PERIOD Subcommand

PERIOD indicates the length of the period to be used by the SDIFF subcommand.

• The specification on PERIOD indicates how many observations are in one period or sea-
son. You can specify any positive integer on PERIOD.

• The PERIOD subcommand is ignored if it is used without the SDIFF subcommand.

• If PERIOD is not specified, the periodicity established on TSET PERIOD is in effect. If
TSET PERIOD is not specified either, the periodicity established on the DATE command
is used. If periodicity was not established anywhere, the SDIFF subcommand will not be
executed.

Example
PPLOT TICKETS
 /SDIFF=1
 /PERIOD=12.

• This command applies 1 degree of seasonal differencing with 12 observations per season
to the variable TICKETS.

LN and NOLOG Subcommands

LN transforms the data using the natural logarithm (base e) to remove varying amplitude.
NOLOG indicates that the data should not be log transformed. NOLOG is the default.

• There are no additional specifications on LN or NOLOG.

• Only the last LN or NOLOG subcommand on a PPLOT command is executed.

PPLOT 643

• If a natural log transformation is requested, cases with values that are less than or equal
to 0 will be set to system-missing, since nonpositive values cannot be log-transformed.

• NOLOG is generally used with an APPLY subcommand to turn off a previous LN
specification.

Example
PPLOT TICKETS
 /FRACTION=TUKEY
 /DIFF=1
 /LN.
PPLOT EARNINGS
 /APPLY
 /NOLOG.

• The first command requests a natural log transformation of variable TICKETS before
plotting.

• The second command applies the previous PPLOT specifications to variable EARNINGS.
However, EARNINGS is not log-transformed before plotting.

APPLY Subcommand

APPLY allows you to produce a plot using previously defined specifications without having
to repeat the PPLOT subcommands.

• The only specification on APPLY is the name of a previous model in quotes. If a model
name is not specified, the model specified on the previous PPLOT command is used.

• To change any plot specifications, specify the subcommands of only those portions you
want to change after the APPLY subcommand.

• If no variables are specified, the variables that were specified for the original plot are
used.

• To change the variables used with the model, enter new variable names before or after the
APPLY subcommand.

• The distribution type is applied but the parameters are not.

Example
PPLOT X1
 /FRACTION=TUKEY.
PPLOT Z1
 /APPLY.

• The first command produces two q-q normal probability plots of X1 using Tukey’s trans-
formation to compute the expected values.

• The second command requests the same plots for variable Z1.

644 PPLOT

Example

PPLOT X1 Y1 Z1
 /FRACTION=VW.
PPLOT APPLY
 /FRACTION=BLOM.

• The first command uses van der Waerden’s transformation to calculate expected normal
values of X1, Y1, and Z1.

• The second command uses Blom’s transformation for the same three series.

Example

PPLOT VARX
 /FRACTION=RANKIT
 /DIFF
 /STANDARDIZE.
PPLOT VARY
 /APPLY
 /NOSTANDARDIZE.

• The first command differences and standardizes series VARX and then produces a normal
probability plot using the RANKIT transformation.

• The second command applies the previous plot specifications to VARY but does not stan-
dardize the series.

References

Blom, G. 1958. Statistical estimates and transformed beta variables. New York: John Wiley and
Sons.

Chambers, J. M., W. S. Cleveland, B. Kleiner, and P. A. Tukey. 1983. Graphical methods for data
analysis. Belmont, Calif.: Wadsworth International Group; Boston: Duxbury Press.

Lehmann, E. L. 1975. Nonparametrics: Statistical methods based on ranks. San Francisco:
Holden-Day.

Tukey, J. W. 1962. The future of data analysis. Annals of Mathematical Statistics, 33:22.

645

PREDICT

PREDICT [{start date }] [THRU [{end date }]]
 {start case number} {end case number}
 {END }

Example:
PREDICT Y 61 THRU Y 65.

Overview

PREDICT specifies the observations that mark the beginning and end of the forecast period.
If the forecast period extends beyond the length of the series, PREDICT extends the series
in the working data file to allow room for the forecast observations.

Basic Specification

The minimum specification on PREDICT is either the start or the end of the range, or key-
word THRU. PREDICT sets up a forecast period beginning and ending with the dates or case
numbers specified. The default starting point is the observation immediately after the end
of the series or, if USE is specified, the observation immediately after the end of the use
range (the historical period). The default end is the last observation in the series.

Syntax Rules

• You can specify a start, an end, or both.

• The start and end are specified as either date specifications or case (observation) numbers.
• Date specifications and case numbers cannot be mixed on one PREDICT command.

• Keyword THRU is required if the end of the range is specified.

• Keyword THRU by itself defines a PREDICT range starting with the first observation
after the use range and ending with the end of the series. If USE has not been specified,
PREDICT THRU is meaningless.

Date Specifications

• A date specification consists of DATE keyword(s) and value(s) (see DATE). These spec-
ifications must correspond to existing date variables.

• If more than one date variable exists, the highest-order one must be included in the date
specification.

646 PREDICT

• Values on keyword YEAR must have the same format (2 or 4 digits) as the YEAR specifi-
cations on the DATE command.

Case Specifications

The case number specification is the sequence number of the case (observation) as it is read
by the program.

Valid Range

• The start date must precede the end date.

• The start case number must be less than the end case number.
• The start can be any observation ranging from the second observation in the historical pe-

riod specified on USE to the observation immediately following the end of the historical
period. If USE is not specified, the start can be any observation ranging from the second
observation in the series to the observation immediately following the end of the series.

• For most models, the start of the predict period should not be too close to the start of the
use period.

• The predict and use periods should not be exactly the same.

• The start of the predict period should not precede the start of the use period.

Operations

• PREDICT is executed when the data are read for the next forecasting procedure (ARIMA in
SPSS Trends, CURVEFIT in SPSS Base system, and 2SLS in SPSS Professional Statistics).

• PREDICT is ignored by non-forecasting procedures.

• Case number specifications refer to the sequential numbers assigned to cases as they are
read.

• If the forecast period extends beyond the length of the series, PREDICT extends the series
in the working data file to allow room for the forecast observations.

• New observations added to the end of existing series will contain non-missing date vari-
ables, forecast values (variable FIT#n), confidence interval limits (variables LCL#n and
UCL#n), and, for ARIMA models, standard error of the predicted value (SEP#n). For all oth-
er variables, including the original series, the new cases will be system-missing.

• PREDICT cannot forecast beyond the end of the series for ARIMA with regressors, and
2SLS. However, it can forecast values for the dependent variable if the independent vari-
ables have valid values in the predict period.

• If the use and predict periods overlap, the model is still estimated using all observations
in the use period.

• USE and PREDICT can be used together to perform forecasting validation. To do this,
specify a use period that ends before the existing end of the series, and specify a predict
period starting with the next observation.

PREDICT 647

• If there is a gap between the end of the use period and the start of the specified predict
period, the program will use the first observation after the end of the use period as the start
of the predict period. (This is the default.)

• The DATE command turns off all existing USE and PREDICT specifications.

• PREDICT remains in effect in a session until it is changed by another PREDICT command
or until a new DATE command is issued.

• If more than one forecasting procedure is specified after PREDICT, the USE command
should be specified between procedures so that the original series without any new, sys-
tem-missing cases will be used each time. Alternatively, you can specify

TSET NEWVAR = NONE

before the first forecasting procedure so that you can evaluate model statistics without
creating new variables or adding new cases with missing values to the original series.

Limitations

Maximum 1 range (one start and/or one end) can be specified per PREDICT command.

Example

PREDICT Y 61 THRU Y 65.

• This command specifies a forecast period from 1961 to 1965.
• The working data file must include variable YEAR_, which in this example contains only

the last 2 digits of each year.

• If variable MONTH_ also exists, the above command is equivalent to

PREDICT Y 61 M 1 THRU Y 65 M 12.

Example

PREDICT 61 THRU 65.

• This command specifies a forecast period from the 61st case (observation) to the 65th
case.

Example

PREDICT W 28 THRU W 56.

• This command specifies a forecast period from the 28th week to the 56th week.
• The working data file must include variable WEEK_.

648 PREDICT

• If variable DAY_ also exists, the above command is equivalent to

PREDICT W 28 D 1 THRU W 56 D 7.

Example

PREDICT THRU Y 65.

• This command uses the default start date, which is the observation immediately following
the end of the use period. If USE is not specified, the default start is the observation im-
mediately following the end of the series.

• The forecast period extends from the start date through year ’65.

• The working data file must include variable YEAR_.

• Keyword THRU is required.

Example

PREDICT THRU CYCLE 4 OBS 17.

• This example uses the date variables OBS_ and CYCLE_, which must exist in the working
data file.

• CYCLE, the highest order, must be included on PREDICT.

• Keyword THRU is required.

• The forecast period extends from the default start up to the 17th observation of cycle 4.

649

PRESERVE

PRESERVE

Overview

PRESERVE stores current SET specifications that can later be restored by the RESTORE
command. PRESERVE and RESTORE are especially useful with the macro facility. PRE-
SERVE—RESTORE sequences can be nested up to five levels.

Basic Specification

The only specification is the command keyword. PRESERVE has no additional specifications.

Example

GET FILE=PRSNNL.
FREQUENCIES VAR=DIVISION /STATISTICS=ALL.
PRESERVE.
SET XSORT=NO WIDTH=90 UNDEFINED=NOWARN BLANKS=000 CASE=UPLOW.
SORT CASES BY DIVISION.
REPORT FORMAT=AUTO LIST /VARS=LNAME FNAME DEPT SOCSEC SALARY

/BREAK=DIVISION /SUMMARY=MEAN.
RESTORE.

• GET reads SPSS-format data file PRSNNL.

• FREQUENCIES requests a frequency table and all statistics for variable DIVISION.

• PRESERVE stores all current SET specifications.
• SET changes several subcommand settings.

• SORT sorts cases in preparation for a report. Because SET XSORT=NO, the sort program
is not used to sort cases; another sort program must be available.

• REPORT requests a report organized by variable DIVISION.

• RESTORE reestablishes the SET specifications that were in effect when PRESERVE was
specified.

650

PRINT

PRINT [OUTFILE=file] [RECORDS={1}] [{NOTABLE}]
 {n} {TABLE }

 /{1 } varlist [{col location [(format)]}] [varlist...]
 {rec #} {(format list) }
 {* }

 [/{2 }...]
 {rec #}

Example:
PRINT / MOHIRED YRHIRED DEPT SALARY NAME.
EXECUTE.

Overview

PRINT displays the values of variables for each case in the data. PRINT is designed to be sim-
ple enough for a quick check on data definitions and transformations and yet flexible
enough for formatting simple reports.

Options

Formats. You can specify formats for the variables (see “Formats” on p. 652).

Strings. You can specify string values within the variable specifications. The strings can be
used to label values or to create extra space between values. Strings can also be used as col-
umn headings. (See “Strings” on p. 653.)

Output File. You can direct the output to a specified file using the OUTFILE subcommand.

Summary Table. You can display a table that summarizes variable formats with the TABLE
subcommand.

Basic Specification

The basic specification is a slash followed by a variable list. The values for all variables
named on the list are displayed in the output.

Subcommand Order

Subcommands can be specified in any order. However, all subcommands must be specified
before the slash that precedes the start of the variable specifications.

PRINT 651

Syntax Rules

• A slash must precede the variable specifications. The first slash begins the definition of
the first (and possibly only) line per case of the PRINT display.

• Specified variables must already exist, but they can be numeric, string, scratch, tempo-
rary, or system variables. Subscripted variable names, such as X(1) for the first element in
vector X, cannot be used.

• Keyword ALL can be used to display the values of all user-defined variables in the work-
ing data file.

Operations

• PRINT is executed once for each case constructed from the data file.
• PRINT is a transformation and will not be executed unless it is followed by a procedure or

the EXECUTE command.

• Because PRINT is a transformation command, the output might be mixed with casewise
procedure output. Procedures that produce individual case listings (such as LIST) should
not be used immediately after PRINT. An intervening EXECUTE or procedure command
should be specified.

• Values are displayed with a blank space between them. However, if a format is specified
for a variable, the blank space for that variable’s values is suppressed.

• Values are displayed in the output as the data are read. The PRINT output appears before
the output from the first procedure.

• If more variables are specified than can be displayed in 132 columns or within the width
specified on SET WIDTH, the program displays an error message. You must reduce the
number of variables or split the output into several records.

• User-missing values are displayed just like valid values. System-missing values are rep-
resented by a period.

Example

PRINT / MOHIRED YRHIRED DEPT SALARY NAME.
FREQUENCIES VARIABLES=DEPT.

• PRINT displays values for each variable on the variable list. The FREQUENCIES proce-
dure reads the data and causes PRINT to be executed.

• All variables are displayed using their dictionary formats. One blank space separates the
values of each variable.

Example

PRINT /ALL.
EXECUTE.

652 PRINT

• PRINT displays values for all user-defined variables in the working data file. The EXECUTE
command executes PRINT.

Formats

By default, PRINT uses the dictionary print formats. You can specify formats for some or all
variables specified on PRINT. For a string variable, the specified format must have a width at
least as large as that of the dictionary format. String values are truncated if the specified
width is smaller than that of the dictionary format.

• Format specifications can be either column-style or FORTRAN-like (see DATA LIST). The
column location specified with column-style formats or implied with FORTRAN-like
formats refers to the column in which the variable will be displayed.

• A format specification following a list of variables applies to all the variables in the list.
Use an asterisk to prevent the specified format from applying to variables preceding the
asterisk. The specification of columns locations implies a default print format, and that
format will apply to all previous variables if no asterisk is used.

• Printable numeric formats are F, COMMA, DOLLAR, CC, DOT, N, E, PCT, PIBHEX, RBHEX,
Z, and the date and time formats. Printable string formats are A and AHEX. Note that hex
and binary formats use different widths. For example, the AHEX format must have a width
twice that of the corresponding A format. For more information on specifying formats and
on the formats available, see DATA LIST and “Variable Formats” on p. 22.

• Format specifications are in effect only for the PRINT command. They do not change the
dictionary print formats.

• When a format is specified for a variable, the automatic blank following the variable in
the output is suppressed. To preserve the blank between variables, use a string (see
“Strings” on p. 653), specify blank columns in the format, or use an X or T format element
(see DATA LIST for information on X and T).

Example
PRINT / TENURE (F2.0) ’ ’ MOHIRED YRHIRED DEPT *

SALARY85 TO SALARY88 (4(DOLLAR8,1X)) NAME.
EXECUTE.

• Format F2.0 is specified for TENURE. A blank string is specified after TENURE because
the automatic blank following the variable is suppressed by the format specification.

• MOHIRED, YRHIRED, and DEPT are displayed with default formats because the asterisk
prevents them from receiving the DOLLAR8 format specified for SALARY85 to SALARY88.
The automatic blank is preserved for MOHIRED, YRHIRED, and DEPT, but the blank is
suppressed for SALARY85 to SALARY88 by the format specification. The 1X format ele-
ment is therefore specified with DOLLAR8 to add one blank after each value of SALARY85
to SALARY88.

• NAME uses the default dictionary format.

PRINT 653

 Strings

You can specify string values within the variable list. Strings must be enclosed in apostrophes
or quotation marks.

• If a format is specified for a variable list, the application of the format is interrupted by a
specified string. Thus, the string has the same effect within a variable list as an asterisk.

• Strings can be used to create column headings for the displayed variables. The PRINT
command that specifies the column headings must be used within a DO IF—END IF struc-
ture. If you want the column headings to begin a new page in the output, use a PRINT
EJECT command rather than PRINT to specify the headings (see PRINT EJECT).

Example
PRINT / NAME ’HIRED=’ MOHIRED(F2) ’/’ YRHIRED

’ SALARY=’ SALARY (DOLLAR8).
EXECUTE.

• Three strings are specified. The strings HIRED= and SALARY= label the values being
displayed. The slash specified between month hired (MOHIRED) and year hired (YRHIRED)
creates a composite hiring date. The F2 format is supplied for variable MOHIRED in order
to suppress the blank that would follow it if the dictionary format were used.

• NAME and YRHIRED are displayed with default formats. The 'HIRED=' specification pre-
vents the F2 format from applying to NAME, and the 'SALARY=' specification prevents the
DOLLAR8 format from applying to YRHIRED.

Example
DO IF $CASENUM EQ 1.
PRINT /’ NAME ’ 1 ’DEPT’ 25 ’HIRED’ 30 ’ SALARY’ 35.
END IF.
PRINT / NAME DEPT *

MOHIRED 30-31 ’/’ YRHIRED *
SALARY 35-42(DOLLAR).

EXECUTE.

• The first PRINT command specifies strings only. The integer after each string specifies the
beginning column number of the string. The strings will be used as column headings for
the variables. DO IF $CASENUM EQ 1 causes the first PRINT command to be executed only
once, as the first case is processed. END IF closes the structure.

• The second PRINT command specifies the variables to be displayed. It is executed once
for each case in the data. Column locations are specified to align the values with the col-
umn headings. In this example, the T format element could also have been used to align
the variables and the column headings. For example, MOHIRED (T30,F2) begins the dis-
play of values for variable MOHIRED in column 30.

• The asterisk after DEPT prevents the format specified for MOHIRED from applying to
NAME and DEPT. The asterisk after YRHIRED prevents the format specified for SALARY
from applying to YRHIRED.

654 PRINT

RECORDS Subcommand

RECORDS indicates the total number of lines displayed per case. The number specified on
RECORDS is informational only. The actual specification that causes variables to display on a
new line is a slash within the variable specifications. Each new line is requested by another slash.

• RECORDS must be specified before the slash that precedes the start of the variable
specifications.

• The only specification on RECORDS is an integer to indicate the number of records for
the output. If the number does not agree with the actual number of records indicated by
slashes, the program issues a warning and ignores the specification on RECORDS.

• Specifications for each line of output must begin with a slash. An integer can follow the
slash, indicating the line on which values are to be displayed. The integer is informational
only. It cannot be used to rearrange the order of records in the output. If the integer does
not agree with the actual record number indicated by the number of slashes in the variable
specifications, the integer is ignored.

• A slash that is not followed by a variable list generates a blank line in the output.

Example
PRINT RECORDS=3 /EMPLOYID NAME DEPT

/EMPLOYID TENURE SALARY
/.

EXECUTE.

• PRINT displays the values of an individual’s name and department on one line, tenure and
salary on the next line, and the employee identification number on both lines, followed
by a blank third line. Two lines are displayed for each case, and cases in the output are
separated by a blank line.

Example
PRINT RECORDS=3 /1 EMPLOYID NAME DEPT

/2 EMPLOYID TENURE SALARY
/3.

• This PRINT command is equivalent to that in the preceding example.

Example
PRINT / EMPLOYID NAME DEPT / EMPLOYID TENURE SALARY /.

• This PRINT command is equivalent to those in the two preceding examples.

OUTFILE Subcommand

OUTFILE specifies a file for the output from the PRINT command. By default, PRINT output
is included with the rest of the output from the session.

• OUTFILE must be specified before the slash preceding the start of the variable specifications.

• The output from PRINT cannot exceed 132 characters, even if the external file is defined
with a longer record length.

PRINT 655

Example
PRINT OUTFILE=PRINTOUT

/1 EMPLOYID DEPT SALARY /2 NAME.
EXECUTE.

• OUTFILE specifies PRINTOUT as the file that receives the PRINT output.

TABLE Subcommand

TABLE requests a table showing how the variable information is formatted. NOTABLE, which
suppresses the format table, is the default.

• TABLE must be specified before the slash that precedes the start of the variable specifications.

Example
PRINT TABLE /1 EMPLOYID DEPT SALARY /2 NAME.
EXECUTE.

• TABLE requests a summary table describing the PRINT specifications. The table is included
with the PRINT output.

656

PRINT EJECT

PRINT EJECT [OUTFILE=file] [RECORDS={1}] [{NOTABLE}]
 {n} {TABLE }

 /{1 } varlist [{col location [(format)]}] [varlist...]
 {rec #} {(format list) }
 {* }

 [/{2 }...]
 {rec #}

Example:
DO IF $CASENUM EQ 1.
PRINT EJECT /’ NAME ’ 1 ’DEPT’ 25 ’HIRED’ 30 ’ SALARY’ 35.
END IF.
PRINT / NAME DEPT *

MOHIRED(T30,F2) ’/’ YRHIRED *
SALARY (T35,DOLLAR8).

EXECUTE.

Overview

PRINT EJECT displays specified information at the top of a new page of the output. PRINT
EJECT causes a page eject each time it is executed. If PRINT EJECT is not used in a DO IF—
END IF structure, it is executed for each case in the data, and each case is displayed on a
separate page.

PRINT EJECT is designed to be used with the PRINT command to insert titles and column
headings above the values displayed by PRINT. PRINT can also generate titles and headings,
but PRINT cannot be used to control page ejects.

PRINT EJECT and PRINT can be used for writing simple reports.

Options

The options available for PRINT EJECT are identical to those available for PRINT:

• You can specify formats for the variables.

• You can specify string values within the variable specifications. With PRINT EJECT, the
strings are usually used as titles or column headings and often include a specification for
column location.

• You can display each case on more than one line using the RECORDS subcommand.

• You can direct the output to a specified file using the OUTFILE subcommand.

• You can display a table that summarizes variable formats with the TABLE subcommand.

All of these features are documented in detail for the PRINT command and work identically
for PRINT EJECT. Refer to PRINT for additional information.

PRINT EJECT 657

Basic Specification

The basic specification is a slash followed by a variable list and/or a list of string values that
will be used as column headings or titles. The values for each variable or string are displayed
on the top line of a new page in the output. PRINT EJECT is usually used within a DO IF—
END IF structure to control the page ejects.

Operations

• PRINT EJECT is a transformation and will not be executed unless it is followed by a pro-
cedure or the EXECUTE command.

• If PRINT EJECT is not used within a DO IF—END IF structure, it is executed for each case
in the data and displays the values for each case on a separate page.

• Values are displayed with a blank space between them. However, if a format is specified
for a variable, the blank space for that variable’s values is suppressed.

• Values are displayed in the output as the data are read. The PRINT output appears before
the output from the first procedure.

• If more variables are specified than can be displayed in 132 columns or within the width
specified on SET WIDTH, the program displays an error message. You must reduce the
number of variables or split the output into several records.

• User-missing values are displayed just like valid values. System-missing values are rep-
resented by a period.

Example

DO IF $CASENUM EQ 1.
PRINT EJECT /’ NAME ’ 1 ’DEPT’ 25 ’HIRED’ 30 ’ SALARY’ 35.
END IF.
PRINT / NAME DEPT *

MOHIRED(T30,F2) ’/’ YRHIRED *
SALARY (T35,DOLLAR8).

EXECUTE.

• PRINT EJECT specifies strings to be used as column headings and causes a page eject. DO
IF—END IF causes PRINT EJECT command to be executed only once, when the system
variable $CASENUM equals 1 (the value assigned to the first case in the file). Thus, col-
umn headings are displayed on the first page of the output only. The next example shows
how to display column headings at the top of every page of the output.

• If a PRINT command were used in place of PRINT EJECT, the column headings would be-
gin immediately after the command printback.

658 PRINT EJECT

Example

DO IF MOD($CASENUM,50) = 1.
PRINT EJECT
FILE=OUT /’ NAME ’ 1 ’DEPT’ 25 ’HIRED’ 30 ’ SALARY’ 35.
END IF.
PRINT FILE=OUT / NAME DEPT *

MOHIRED 30-31 ’/’ YRHIRED *
SALARY 35-42(DOLLAR).

EXECUTE.

• In this example, DO IF specifies that PRINT EJECT is executed if MOD (the remainder) of
$CASENUM divided by 50 equals 1 (see p. 35 for a description of MOD). Thus, column
headings are displayed on a new page after every 50th case.

• If PRINT were used instead of PRINT EJECT, column headings would display after every
50th case but would not appear at the top of a new page.

• Both PRINT EJECT and PRINT specify the same file for the output. If the FILE subcom-
mands on PRINT EJECT and PRINT do not specify the same file, the column headings and
the displayed values end up in different files.

659

PRINT FORMATS

PRINT FORMATS varlist(format) [varlist...]

Example:
PRINT FORMATS SALARY (DOLLAR8) / HOURLY (DOLLAR7.2)
 / RAISE BONUS (PCT2).

Overview

PRINT FORMATS changes variable print formats. Print formats are output formats and con-
trol the form in which values are displayed by a procedure or by the PRINT command.

PRINT FORMATS changes only print formats. To change write formats, use the WRITE
FORMATS command. To change both the print and write formats with a single specification,
use the FORMATS command. For information on assigning input formats during data defi-
nition, see DATA LIST. For a more detailed discussion of input and output formats, see “Vari-
able Formats” on p. 22.

Basic Specification

The basic specification is a variable list followed by the new format specification in paren-
theses. All specified variables receive the new format.

Syntax Rules

• You can specify more than one variable or variable list, followed by a format in paren-
theses. Only one format can be specified after each variable list. For clarity, each set of
specifications can be separated by a slash.

• You can use keyword TO to refer to consecutive variables in the working data file.

• The specified width of a format must include enough positions to accommodate any
punctuation characters such as decimal points, commas, dollar signs, or date and time
delimiters. (This differs from assigning an input format on DATA LIST, where the pro-
gram automatically expands the input format to accommodate punctuation characters in
output.)

• Custom currency formats (CCw, CCw.d) must first be defined on the SET command be-
fore they can be used on PRINT FORMATS.

• PRINT FORMATS cannot be used with string variables. To change the length of a string
variable, declare a new variable of the desired length with the STRING command and
then use COMPUTE to copy values from the existing string into the new string.

660 PRINT FORMATS

Operations

• Unlike most transformations, PRINT FORMATS takes effect as soon as it is encountered in
the command sequence. Special attention should be paid to its position among com-
mands.

• Variables not specified on PRINT FORMATS retain their current print formats in the work-
ing data file. To see the current formats, use the DISPLAY command.

• The new print formats are changed only in the working file and are in effect for the dura-
tion of the session or until changed again with a PRINT FORMATS or FORMATS command.
Print formats in the original data file (if one exists) are not changed, unless the file is re-
saved with the SAVE or XSAVE command.

• New numeric variables created with transformation commands are assigned default print for-
mats of F8.2 (or the format specified on the FORMAT subcommand of SET). The FORMATS
command can be used to change the new variable’s print formats.

• New string variables created with transformation commands are assigned the format
specified on the STRING command that declares the variable. PRINT FORMATS cannot be
used to change the format of a new string variable.

• If a numeric data value exceeds its width specification, the program attempts to display
some value nevertheless. First the program rounds decimal values, then removes punctu-
ation characters, then tries scientific notation, and finally, if there is still not enough
space, produces asterisks indicating that a value is present but cannot be displayed in the
assigned width.

Example

PRINT FORMATS SALARY (DOLLAR8) / HOURLY (DOLLAR7.2)
 / RAISE BONUS (PCT2).

• The print format for SALARY is changed to DOLLAR with eight positions, including the
dollar sign and comma when appropriate. The value 11550 is displayed as $11,550. An
eight-digit number would require a DOLLAR11 format specification: eight characters for
digits, two characters for commas, and one character for the dollar sign.

• The print format for HOURLY is changed to DOLLAR with seven positions, including the
dollar sign, decimal point, and two decimal places. The number 115 is displayed as
$115.00. If DOLLAR6.2 had been specified, the value 115 would be displayed as $115.0.
the program would truncate the last 0 because a width of 6 is not enough to display the
full value.

• The print format for both RAISE and BONUS is changed to PCT with two positions: one
position for the percentage and one position for the percent sign. The value 9 displays as
9%. Since the width allows for only two positions, the value 10 displays as 10, since the
percent sign is truncated.

Example

COMPUTE V3=V1 + V2.
PRINT FORMATS V3 (F3.1).

PRINT FORMATS 661

• COMPUTE creates the new numeric variable V3. By default, V3 is assigned an F8.2 format
(or the default format specified on SET).

• PRINT FORMATS changes the print format for V3 to F3.1.

Example

SET CCA=’-/-.Dfl ..-’.
PRINT FORMATS COST (CCA14.2).

• SET defines a European currency format for the custom currency format type CCA.

• PRINT FORMATS assigns the print format CCA to variable COST. With the format defined
for CCA on SET, the value 37419 is displayed as Dfl’37.419,00. See the SET command
for more information on custom currency formats.

662

PRINT SPACE

PRINT SPACE [OUTFILE=file] [numeric expression]

Example:
PRINT / NAME DEPT82 *

MOHIRED(T30,F2) ’/’ YRHIRED *
SALARY82 (T35,DOLLAR8).

PRINT SPACE.
EXECUTE.

Overview

PRINT SPACE displays blank lines in the output and is generally used with a PRINT or
WRITE command. Because PRINT SPACE displays a blank space each time it is executed, it
is often used in a DO IF—END IF structure.

Basic Specification

The basic specification is simply the command PRINT SPACE.

Syntax Rules

• To display more than one blank line, specify a numeric expression after PRINT SPACE.
The expression can be an integer or a complex expression.

• OUTFILE directs the output to a specified file. OUTFILE should be specified if an
OUTFILE subcommand is specified on the PRINT or WRITE command that is used with
PRINT SPACE. The OUTFILE subcommand on PRINT SPACE and PRINT or WRITE should
specify the same file.

Operations

• If PRINT SPACE is not used in a DO IF—END IF structure, it is executed for each case in
the data and displays a blank line for every case.

Example

PRINT / NAME DEPT82 *
MOHIRED(T30,F2) ’/’ YRHIRED *
SALARY82 (T35,DOLLAR8).

PRINT SPACE.
EXECUTE.

PRINT SPACE 663

• PRINT SPACE displays one blank line each time it is executed. Because PRINT SPACE is
not used in a DO IF—END IF structure, it is executed once for each case. In effect, the
output is double-spaced.

Example

NUMERIC #LINE.
DO IF MOD(#LINE,5) = 0.
PRINT SPACE 2.
END IF.
COMPUTE #LINE=#LINE + 1.
PRINT / NAME DEPT *

MOHIRED 30-31 ’/’ YRHIRED *
SALARY 35-42(DOLLAR).

EXECUTE.

• DO IF specifies that PRINT SPACE will be executed if MOD (the remainder) of #LINE
divided by 5 equals 1. Since #LINE is incremented by 1 for each case, PRINT SPACE is
executed once for every five cases. (See p. 35 for information on the MOD function.)

• PRINT SPACE specifies two blank lines. Cases are displayed in groups of five with two
blank lines between each group.

Example

* Printing addresses on labels.

COMPUTE #LINES=0. /*Initiate #LINES to 0
DATA LIST FILE=ADDRESS/RECORD 1-40 (A). /*Read a record
COMPUTE #LINES=#LINES+1. /*Bump counter and print
WRITE OUTFILE=LABELS /RECORD.

DO IF RECORD EQ ’ ’. /*Blank between addresses
+ PRINT SPACE OUTFILE=LABELS 8 - #LINES. /*Add extra blank #LINES
+ COMPUTE #LINES=0.
END IF.
EXECUTE.

• PRINT SPACE uses a complex expression for specifying the number of blank lines to dis-
play. The data contain a variable number of input records for each name and address,
which must be printed in a fixed number of lines for mailing labels. The goal is to know
when the last line for each address has been printed, how many lines have printed, and
therefore how many blank records must be printed in order for the next address to fit on
the next label. The example assumes that there is already one blank line between each
address on input and that you want to print eight lines per label.

• The DATA LIST command defines the data. Each line of the address is contained in col-
umns 1–40 of the data file and is assigned the variable name RECORD. For the blank line
between each address, RECORD is blank.

• Variable #LINES is the key to this example. #LINES is initialized to 0 as a scratch variable.
It is incremented for each record written. When the program encounters a blank line

664 PRINT SPACE

(RECORD EQ ’ ’), PRINT SPACE prints a number of blank lines equal to 8 minus the num-
ber already printed, and #LINES is then reset to 0.

• OUTFILE on PRINT SPACE specifies the same file specified by OUTFILE on WRITE.

665

PROCEDURE OUTPUT

PROCEDURE OUTPUT OUTFILE=file

Example:
PROCEDURE OUTPUT OUTFILE=CELLDATA.
CROSSTABS VARIABLES=FEAR SEX (1,2)

/TABLES=FEAR BY SEX
/WRITE=ALL.

Overview

PROCEDURE OUTPUT specifies the files to which CROSSTABS, FREQUENCIES can
write procedure output. PROCEDURE OUTPUT has no other applications.

Basic Specification

The only specification is OUTFILE and the file specification. PROCEDURE OUTPUT must
precede the command to which it applies.

Operations

Commands with the WRITE subcommand or keyword write to the output file specified on
the most recent PROCEDURE OUTPUT command. If only one output file has been specified,
the output from the last such procedure overwrites all previous ones.

Example

PROCEDURE OUTPUT OUTFILE=CELLDATA.
CROSSTABS VARIABLES=FEAR SEX (1,2)

/TABLES=FEAR BY SEX
/WRITE=ALL.

• PROCEDURE OUTPUT precedes CROSSTABS and specifies CELLDATA as the file to re-
ceive the cell frequencies.

• The WRITE subcommand on CROSSTABS is required for writing cell frequencies to a
procedure output file.

666 PROCEDURE OUTPUT

Example

PROCEDURE OUTPUT OUTFILE=CODEBOOK.
FREQUENCIES VARIABLES=ALL

/FORMAT=ONEPAGE WRITE.
PROCEDURE OUTPUT OUTFILE=CELLDATA.
CROSSTABS VARIABLES=FEAR SEX (1 2)
 /TABLES=FEAR BY SEX
 /WRITE=ALL.

• The first PROCEDURE OUTPUT command precedes FREQUENCIES and specifies
CODEBOOK as the file to receive frequency tables.

• The WRITE keyword on the FORMAT subcommand on FREQUENCIES is required for writ-
ing the display to a procedure output file.

The second PROCEDURE OUTPUT command is required to specify CELLDATA as the file to
receive the cell frequencies of the crosstabulation. Without this command, the cell fre

667

PROXIMITIES

PROXIMITIES varlist [/VIEW={CASE** }]
 {VARIABLE}

 [/STANDARDIZE=[{VARIABLE}] [{NONE** }]]
 {CASE } {Z }
 {SD }
 {RANGE }
 {MAX }
 {MEAN }
 {RESCALE}

 [/MEASURE=[{EUCLID** }] [ABSOLUTE] [REVERSE] [RESCALE]
 {SEUCLID }
 {COSINE }
 {CORRELATION }
 {BLOCK }
 {CHEBYCHEV }
 {POWER(p,r) }
 {MINKOWSKI(p) }
 {CHISQ }
 {PH2 }
 {RR[(p[,np])] }
 {SM[(p[,np])] }
 {JACCARD[(p[,np])] }
 {DICE[(p[,np])] }
 {SS1[(p[,np])] }
 {RT[(p[,np])] }
 {SS2[(p[,np])] }
 {K1[(p[,np])] }
 {SS3[(p[,np])] }
 {K2[(p[,np])] }
 {SS4[(p[,np])] }
 {HAMANN[(p[,np])] }
 {OCHIAI[(p[,np])] }
 {SS5[(p[,np])] }
 {PHI[(p[,np])] }
 {LAMBDA[(p[,np])] }
 {D[(p[,np])] }
 {Y[(p[,np])] }
 {Q[(p[,np])] }
 {BEUCLID[(p[,np])] }
 {SIZE[(p[,np])] }
 {PATTERN[(p[,np])] }
 {BSEUCLID[(p[,np])]}
 {BSHAPE[(p[,np])] }
 {DISPER[(p[,np])] }
 {VARIANCE[(p[,np])]}
 {BLWMN[(p[,np])] }
 {NONE }

 [/PRINT=[{PROXIMITIES**}]] [/ID=varname]
 {NONE }

 [/MISSING=[LISTWISE**] [INCLUDE]

 [/MATRIX=[IN({file})] [OUT({file})]]
 {* } {* }

**Default if subcommand or keyword is omitted.

668 PROXIMITIES

Example:
PROXIMITIES A B C.

Overview

PROXIMITIES computes a variety of measures of similarity, dissimilarity, or distance be-
tween pairs of cases or pairs of variables for moderate-sized data sets (see “Limitations”
below). PROXIMITIES matrix output can be used as input to procedures ALSCAL, CLUSTER,
and FACTOR. To learn more about proximities matrices and their uses, consult Anderberg
(1973) and Romesburg (1984).

Options

Standardizing Data. With the STANDARDIZE subcommand you can standardize the values for
each variable or for each case by any of several different methods.

Proximity Measures. You can compute a variety of similarity, dissimilarity, and distance mea-
sures using the MEASURE subcommand. (Similarity measures increase with greater similar-
ity; dissimilarity and distance measures decrease.) MEASURE can compute measures for
interval data, frequency count data, and binary data. Only one measure can be requested in
any one PROXIMITIES procedure. With the VIEW subcommand, you can control whether
proximities are computed between variables or between cases.

Output. You can display a computed matrix using the PRINT subcommand.

Matrix Input and Output. You can write a computed proximities matrix to an SPSS-format data
file using the MATRIX subcommand. This matrix can be used as input to procedures CLUS-
TER, ALSCAL, and FACTOR. You can also use MATRIX to read a similarity, dissimilarity, or
distance matrix. This option lets you rescale or transform existing proximity matrices.

Basic Specification

The basic specification is a variable list, which obtains Euclidean distances between cases
based on the values of each specified variable.

Subcommand Order

• The variable list must be first.

• Subcommands can be named in any order.

Operations

• PROXIMITIES ignores case weights when computing coefficients.

PROXIMITIES 669

Limitations

• PROXIMITIES keeps the raw data for the current split-file group in memory. Storage
requirements increase rapidly with the number of cases and the number of items (cases
or variables) for which PROXIMITIES computes coefficients.

Example

PROXIMITIES A B C.

• PROXIMITIES computes Euclidean distances between cases based on the values of vari-
ables A, B, and C.

Variable Specification

• The variable list must be specified first.

• The variable list can be omitted when an input matrix data file is specified. A slash must
then be specified before the first subcommand to indicate that the variable list is omitted.

STANDARDIZE Subcommand

Use STANDARDIZE to standardize data values for either cases or variables before computing
proximities. One of two options can be specified to control the direction of standardization:

VARIABLE Standardize the values for each variable. This is the default.

CASE Standardize the values within each case.

Several standardization methods are available. These allow you to equalize selected properties
of the values. All methods can be used with either VARIABLE or CASE. Only one standardiza-
tion method can be specified.
• If STANDARDIZE is omitted, proximities are computed using the original values (keyword

NONE).

• If STANDARDIZE is used without specifications, proximities are computed using Z scores
(keyword Z).

• STANDARDIZE cannot be used with binary measures.

NONE Do not standardize. Proximities are computed using the original values. This
is the default if STANDARDIZE is omitted.

Z Standardize values to Z scores, with a mean of 0 and a standard deviation of
1. PROXIMITIES subtracts the mean value for the variable or case from each
value being standardized and then divides by the standard deviation. If the
standard deviation is 0, PROXIMITIES sets all values for the case or variable
to 0. This is the default if STANDARDIZE is used without specifications.

670 PROXIMITIES

RANGE Standardize values to have a range of 1. PROXIMITIES divides each value be-
ing standardized by the range of values for the variable or case. If the range
is 0, PROXIMITIES leaves all values unchanged.

RESCALE Standardize values to have a range from 0 to 1. From each value being stan-
dardized, PROXIMITIES subtracts the minimum value and then divides by the
range for the variable or case. If a range is 0, PROXIMITIES sets all values for
the case or variable to 0.50.

MAX Standardize values to a maximum magnitude of 1. PROXIMITIES divides
each value being standardized by the maximum value for the variable or
case. If the maximum of the values is 0, PROXIMITIES divides each value by
the absolute magnitude of the smallest value and adds 1.

MEAN Standardize values to a mean of 1. PROXIMITIES divides each value being
standardized by the mean of the values for the variable or case. If the mean
is 0, PROXIMITIES adds 1 to all values for the case or variable to produce a
mean of 1.

SD Standardize values to unit standard deviation. PROXIMITIES divides each
value being standardized by the standard deviation of the values for the
variable or case. PROXIMITIES does not change the values if their standard
deviation is 0.

Example
PROXIMITIES A B C

/STANDARDIZE=CASE RANGE.

• Within each case, values are standardized to have ranges of 1.

VIEW Subcommand

VIEW indicates whether proximities are computed between cases or between variables.

CASE Compute proximity values between cases. This is the default.

VARIABLE Compute proximity values between variables.

MEASURE Subcommand

MEASURE specifies the similarity, dissimilarity, or distance measure that PROXIMITIES com-
putes. Three transformations are available with any of these measures:

ABSOLUTE Take the absolute values of the proximities. Use ABSOLUTE when the sign of
the values indicates the direction of the relationship (as with correlation co-
efficients) but only the magnitude of the relationship is of interest.

REVERSE Transform similarity values into dissimilarities, or vice versa. Use this spec-
ification to reverse the ordering of the proximities by negating the values.

PROXIMITIES 671

RESCALE Rescale the proximity values to a range of 0 to 1. RESCALE standardizes the
proximities by first subtracting the value of the smallest and then dividing by
the range. You would not usually use RESCALE with measures that are al-
ready standardized on meaningful scales, as are correlations, cosines, and
many binary coefficients.

PROXIMITIES can compute any one of a number of measures between items. You can choose
among measures for interval data, frequency count data, or binary data. Available keywords
for each of these types of measures are defined in the following sections.

• Only one measure can be specified. However, each measure can be specified with any of
the transformations ABSOLUTE, REVERSE, or RESCALE. To apply a transformation to an
existing matrix of proximity values without computing any measures, use keyword NONE
(see p. 679).

• If more than one transformation is specified, PROXIMITIES does them in the order listed
above: first ABSOLUTE, then REVERSE, and then RESCALE regardless of the order they
are specified.

• Each entry in the resulting proximity matrix represents a pair of items. The items can be
either cases or variables, whichever is specified on the VIEW subcommand.

• When the items are cases, the computation for each pair of cases involves pairs of values
for the specified variables.

• When the items are variables, the computation for each pair of variables involves pairs of
values for the variables across all cases.

Example
PROXIMITIES A B C

/MEASURE=EUCLID REVERSE.

• MEASURE specifies a EUCLID measure and a REVERSE transformation.

Measures for Interval Data

To obtain proximities for interval data, use any one of the following keywords on MEASURE:

EUCLID Euclidean distance. The distance between two items, x and y, is the square
root of the sum of the squared differences between the values for the items.
This is the default.

SEUCLID Squared Euclidean distance. The distance between two items is the sum of
the squared differences between the values for the items.

CORRELATION Correlation between vectors of values. This is a pattern similarity measure.

EUCLID x y,() Σi xi yi–()2=

SEUCLID x y,() Σi xi yi–()2=

672 PROXIMITIES

where Zxi is the Z-score (standardized) value of x for the ith case or variable,

and N is the number of cases or variables.

COSINE Cosine of vectors of values. This is a pattern similarity measure.

CHEBYCHEV Chebychev distance metric. The distance between two items is the maximum
absolute difference between the values for the items.

BLOCK City-block or Manhattan distance. The distance between two items is the
sum of the absolute differences between the values for the items.

MINKOWSKI(p) Distance in an absolute Minkowski power metric. The distance between two
items is the pth root of the sum of the absolute differences to the pth power
between the values for the items. Appropriate selection of the integer param-
eter p yields Euclidean and many other distance metrics.

POWER(p,r) Distance in an absolute power metric. The distance between two items is the
rth root of the sum of the absolute differences to the pth power between the
values for the items. Appropriate selection of the integer parameters p and r
yields Euclidean, squared Euclidean, Minkowski, city-block, and many oth-
er distance metrics.

Measures for Frequency Count Data

To obtain proximities for frequency count data, use either of the following keywords on
MEASURE:

CHISQ Based on the chi-square test of equality for two sets of frequencies. The mag-
nitude of this dissimilarity measure depends on the total frequencies of the
two cases or variables whose dissimilarity is computed. Expected values are
from the model of independence of cases or variables x and y.

CORRELATION x y,()
Σi ZxiZyi()

N 1–
-------------------------=

COSINE x y,()
Σi xiyi()

Σixi
2() Σiyi

2()
-----------------------------------=

CHEBYCHEV x y,() maxi xi yi–=

BLOCK x y,() Σi xi yi–=

MINKOWSKI x y,() Σi xi yi– p()1 p/=

POWER x y,() Σi xi yi– p()1 r/=

PROXIMITIES 673

PH2 Phi-square between sets of frequencies. This is the CHISQ measure normal-
ized by the square root of the combined frequency. Therefore, its value
does not depend on the total frequencies of the two cases or variables
whose dissimilarity is computed.

Measures for Binary Data

Different binary measures emphasize different aspects of the relationship between sets of
binary values. However, all the measures are specified in the same way. Each measure has
two optional integer-valued parameters, p (present) and np (not present).

• If both parameters are specified, PROXIMITIES uses the value of the first as an indicator
that a characteristic is present and the value of the second as an indicator that a character-
istic is absent. PROXIMITIES skips all other values.

• If only the first parameter is specified, PROXIMITIES uses that value to indicate presence
and all other values to indicate absence.

• If no parameters are specified, PROXIMITIES assumes that 1 indicates presence and 0
indicates absence.

Using the indicators for presence and absence within each item (case or variable), PROXIMITIES
constructs a contingency table for each pair of items in turn. It uses this table to compute a
proximity measure for the pair.

PROXIMITIES computes all binary measures from the values of a, b, c, and d. These values
are tallied across variables (when the items are cases) or cases (when the items are variables).
For example, if variables V, W, X, Y, Z have values 0, 1, 1, 0, 1 for case 1 and values 0, 1, 1,

Item 2 characteristics

Present Absent

Item 1 characteristics

Present a b

Absent c d

CHISQ x y,()
Σi xi E xi()–()2

E xi()

Σi yi E yi()–()2

E yi()
-----------------------------------+=

PH2 x y,()

Σi xi E xi()–()2

E xi()

Σi yi E yi()–()2

E yi()
-----------------------------------+

N
---=

2 2×

674 PROXIMITIES

0, 0 for case 2 (where 1 indicates presence and 0 indicates absence), the contingency table is
as follows:

The contingency table indicates that both cases are present for two variables (W and X), both
cases are absent for two variables (V and Y), and case 1 is present and case 2 is absent for one
variable (Z). There are no variables for which case 1 is absent and case 2 is present.

The available binary measures include matching coefficients, conditional probabilities,
predictability measures, and others.

Matching Coefficients. Table 1 shows a classification scheme for PROXIMITIES matching co-
efficients. In this scheme, matches are joint presences (value a in the contingency table) or
joint absences (value d). Nonmatches are equal in number to value b plus value c. Matches
and nonmatches may be weighted equally or not. The three coefficients JACCARD, DICE,
and SS2 are related monotonically, as are SM, SS1, and RT. All coefficients in Table 1 are
similarity measures, and all except two (K1 and SS3) range from 0 to 1. K1 and SS3 have a
minimum value of 0 and no upper limit.

Case 2 characteristics

Present Absent

Case 1 characteristics

Present 2 1

Absent 0 2

Table 1 Binary matching coefficients in PROXIMITIES

Joint absences
excluded from
numerator

Joint absences
included in
numerator

All matches included
in denominator

Equal weight for
matches and nonmatches RR SM

Double weight for
matches

 SS1

Double weight for
nonmatches

 RT

Joint absences excluded
from denominator

Equal weight for
matches and nonmatches JACCARD

Double weight for
matches DICE

PROXIMITIES 675

RR[(p[,np])] Russell and Rao similarity measure. This is the binary dot product.

SM[(p[,np])] Simple matching similarity measure. This is the ratio of the number of
matches to the total number of characteristics.

JACCARD[(p[,np])] Jaccard similarity measure. This is also known as the similarity ratio.

DICE[(p[,np])] Dice (or Czekanowski or Sorenson) similarity measure.

SS1[(p[,np])] Sokal and Sneath similarity measure 1.

RT[(p[,np])] Rogers and Tanimoto similarity measure.

SS2[(p[,np])] Sokal and Sneath similarity measure 2.

Double weight for
nonmatches SS2

All matches excluded
from denominator

Equal weight for
matches and nonmatches K1 SS3

Table 1 Binary matching coefficients in PROXIMITIES (Continued)

Joint absences
excluded from
numerator

Joint absences
included in
numerator

RR x y,() a
a b c d+ + +
------------------------------=

SM x y,() a d+
a b c d+ + +
------------------------------=

JACCARD x y,() a
a b c+ +
---------------------=

DICE x y,() 2a
2a b c+ +
------------------------=

SS1 x y,() 2 a d+()
2 a d+() b c+ +
---------------------------------------=

RT x y,() a d+
a d 2 b c+()+ +
---------------------------------------=

SS2 x y,() a
a 2 b c+()+
-----------------------------=

676 PROXIMITIES

K1[(p[,np])] Kulczynski similarity measure 1. This measure has a minimum value
of 0 and no upper limit. It is undefined when there are no nonmatches
(b=0 and c=0). PROXIMITIES assigns an artificial upper limit of 10,000
to K1 when it is undefined or exceeds this value.

SS3[(p[,np])] Sokal and Sneath similarity measure 3. This measure has a minimum
value of 0 and no upper limit. It is undefined when there are no non-
matches (b=0 and c=0). PROXIMITIES assigns an artificial upper limit
of 10,000 to SS3 when it is undefined or exceeds this value.

Conditional Probabilities. The following binary measures yield values that can be interpreted
in terms of conditional probability. All three are similarity measures.

K2[(p[,np])] Kulczynski similarity measure 2. This yields the average conditional
probability that a characteristic is present in one item given that the
characteristic is present in the other item. The measure is an average
over both items acting as predictors. It has a range of 0 to 1.

SS4[(p[,np])] Sokal and Sneath similarity measure 4. This yields the conditional
probability that a characteristic of one item is in the same state (pres-
ence or absence) as the characteristic of the other item. The measure is
an average over both items acting as predictors. It has a range of 0 to 1.

HAMANN[(p[,np])] Hamann similarity measure. This measure gives the probability that a
characteristic has the same state in both items (present in both or absent
from both) minus the probability that a characteristic has different states
in the two items (present in one and absent from the other). HAMANN has
a range of −1 to +1 and is monotonically related to SM, SS1, and RT.

Predictability Measures. The following four binary measures assess the association between
items as the predictability of one given the other. All four measures yield similarities.

LAMBDA[(p[,np])] Goodman and Kruskal’s lambda (similarity). This coefficient assesses
the predictability of the state of a characteristic on one item (present

K1 x y,() a
b c+
------------=

SS3 x y,() a d+
b c+
------------=

K2 x y,() a a b+()⁄ a a c+()⁄+
2

--=

SS4 x y,() a a b+()⁄ a a c+()⁄ d b d+()⁄ d c d+()⁄+ + +
4

---=

HAMANN x y,() a d+() b c+()–
a b c d+ + +

--=

PROXIMITIES 677

or absent) given the state on the other item. Specifically, LAMBDA

measures the proportional reduction in error using one item to predict
the other when the directions of prediction are of equal importance.
LAMBDA has a range of 0 to 1.

where
t1 = max(a,b) + max(c,d) + max(a,c) + max(b,d)

t2 = max(a + c, b + d) + max(a + d, c + d).

D[(p[,np])] Anderberg’s D (similarity). This coefficient assesses the predictability
of the state of a characteristic on one item (present or absent) given the
state on the other. D measures the actual reduction in the error probabil-
ity when one item is used to predict the other. The range of D is 0 to 1.

where
t1 = max(a,b) + max(c,d) + max(a,c) + max(b,d)

t2 = max(a + c, b + d) + max(a + d, c + d)

Y[(p[,np])] Yule’s Y coefficient of colligation (similarity). This is a function of the
cross ratio for a table. It has a range of −1 to +1.

Q[(p[,np])] Yule’s Q (similarity). This is the version of Goodman and

Kruskal’s ordinal measure gamma. Like Yule’s Y, Q is a function of
the cross ratio for a table and has a range of −1 to +1.

Other Binary Measures. The remaining binary measures available in PROXIMITIES are either
binary equivalents of association measures for continuous variables or measures of special
properties of the relationship between items.

OCHIAI[(p[,np])] Ochiai similarity measure. This is the binary form of the cosine. It has
a range of 0 to 1.

LAMBDA x y,()
t1 t2–

2 a b c d+ + +() t2–
---=

D x y,()
t1 t2–

2 a b c d+ + +()
---------------------------------------=

2 2×

Y x y,() ad bc–

ad bc+
---------------------------=

2 2×

2 2×

Q x y,() ad bc–
ad bc+
------------------=

678 PROXIMITIES

SS5[(p[,np])] Sokal and Sneath similarity measure 5. The range is 0 to 1.

PHI[(p[,np])] Fourfold point correlation (similarity). This is the binary form of the
Pearson product-moment correlation coefficient.

BEUCLID[(p[,np])] Binary Euclidean distance. This is a distance measure. Its minimum
value is 0, and it has no upper limit.

BSEUCLID[(p[,np])] Binary squared Euclidean distance. This is a distance measure. Its
minimum value is 0, and it has no upper limit.

SIZE[(p[,np])] Size difference. This is a dissimilarity measure with a minimum value
of 0 and no upper limit.

PATTERN[(p[,np])] Pattern difference. This is a dissimilarity measure. The range is 0 to 1.

BSHAPE[(p[,np])] Binary shape difference. This dissimilarity measure has no upper or
lower limit.

DISPER[(p[,np])] Dispersion similarity measure. The range is −1 to +1.

OCHIAI x y,() a
a b+

a
a c+
------------⋅=

SS5 x y,() ad

a b+() a c+() b d+() c d+()
---=

PHI x y,() ad bc–

a b+() a c+() b d+() c d+()
---=

BEUCLID x y,() b c+=

BSEUCLID x y,() b c+=

SIZE x y,() b c–()2

a b c d+ + +()2
--------------------------------------=

PATTERN x y,() bc
a b c d+ + +()2

--------------------------------------=

BSHAPE x y,() a b c d+ + +() b c+() b c–()2–
a b c d+ + +()2

---=

DISPER x y,() ad bc–
a b c d+ + +()2

--------------------------------------=

PROXIMITIES 679

VARIANCE[(p[,np])] Variance dissimilarity measure. This measure has a minimum value of
0 and no upper limit.

BLWMN[(p[,np])] Binary Lance-and-Williams nonmetric dissimilarity measure. This
measure is also known as the Bray-Curtis nonmetric coefficient. The
range is 0 to 1.

Example
PROXIMITIES A B C

/MEASURE=RR(1,2).

• MEASURE computes Russell and Rao coefficients from data in which 1 indicates the
presence of a characteristic and 2 indicates the absence. Other values are ignored.

Example
PROXIMITIES A B C

/MEASURE=SM(2).

• MEASURE computes simple matching coefficients from data in which 2 indicates presence
and all other values indicate absence.

Transforming Measures in Proximity Matrix

Use keyword NONE to apply the ABSOLUTE, REVERSE, and/or RESCALE transformations to
an existing matrix of proximity values without computing any proximity measures.

NONE Do not compute proximity measures. Use NONE only if you have specified an
existing proximity matrix on keyword IN on the MATRIX subcommand.

PRINT Subcommand

PROXIMITIES always prints the name of the measure it computes and the number of cases.
Use PRINT to control printing of the proximity matrix.

PROXIMITIES Print the matrix of the proximities between items. This is the default. The ma-
trix may have been either read or computed. When the number of cases or
variables is large, this specification produces a large volume of output and
uses significant CPU time.

NONE Do not print the matrix of proximities.

VARIANCE x y,() b c+
4 a b c d+ + +()
---------------------------------------=

BLWMN x y,() b c+
2a b c+ +
------------------------=

680 PROXIMITIES

ID Subcommand

By default, PROXIMITIES identifies cases by case number alone. Use ID to specify an identifying
string variable for cases.

• Any string variable in the working data file can be named as the identifier. PROXIMITIES
uses the first eight characters of this variable to identify cases in the output.

MISSING Subcommand

MISSING controls the treatment of cases with missing values.

• By default, PROXIMITIES deletes cases with missing values listwise and excludes user-
missing values from the analysis.

LISTWISE Delete cases with missing values listwise. This is the default.

INCLUDE Include cases with user-missing values. Only cases with system-missing
values are deleted.

MATRIX Subcommand

MATRIX reads and writes matrix data files.

• Either IN or OUT and the matrix file in parentheses are required. When both IN and OUT
are used on the same PROXIMITIES command, they can be specified on separate MATRIX
subcommands or on the same subcommand.

OUT (filename) Write a matrix data file. Specify either a filename or an asterisk (*), enclosed
in parentheses. If you specify a filename, the file is stored on disk and can be
retrieved at any time. If you specify an asterisk, the matrix data file replaces
the working data file but is not stored on disk unless you use SAVE or XSAVE.

IN (filename) Read a matrix data file. If the matrix data file is the working data file, specify
an asterisk in parentheses. If the matrix data file is another file, specify the
filename in parentheses. A matrix file read from an external file does not re-
place the working data file.

Matrix Output

• PROXIMITIES writes a variety of proximity matrices, each with ROWTYPE_ values of
PROX. PROXIMITIES neither reads nor writes additional statistics with its matrix materials.
See “Format of the Matrix Data File” on p. 681 for a description of the file.

• The matrices PROXIMITIES writes can be used by PROXIMITIES or other procedures. Pro-
cedures CLUSTER and ALSCAL can read a proximity matrix directly. Procedure FACTOR
can read a correlation matrix written by PROXIMITIES, but RECODE must first be used to
change the ROWTYPE_ value PROX to ROWTYPE_ value CORR. Also, the ID subcom-
mand cannot be used on PROXIMITIES if the matrix will be used in FACTOR. For more
information, see “Universals” on p. 1.

PROXIMITIES 681

• If VIEW=VARIABLE, the variables in the matrix file will have the names and labels of the
original variables.

• If VIEW=CASE (the default), the variables in the matrix file will be named VAR1, VAR2,
...VARn, where n is the sequential number of the variable in the new file. The numeric suf-
fix n is consecutive and does not necessarily match the number of the actual case. If there
are no split files, the case number appears in the variable label in the form CASE m. The
numeric suffix m is the actual case number and may not be consecutive (for example, if
cases were selected before PROXIMITIES was executed).

• The new file preserves the names and values of any split-file variables in effect. When
split-file processing is in effect, no labels are generated for variables in the new file. The
actual case number is retained by the variable ID.

• Any documents contained in the working data file are not transferred to the matrix file.

Matrix Input

• PROXIMITIES can read a matrix file written by a previous PROXIMITIES procedure.

• The order among rows and variables in the input matrix file is unimportant as long as
values for split-file variables precede values for ROWTYPE_.

• PROXIMITIES ignores unrecognized ROWTYPE_ values. In addition, it ignores variables
present in the matrix file that are not specified (or used by default) on the PROXIMITIES
variable list.

• The program reads variable names, variable and value labels, and print and write formats
from the dictionary of the matrix data file.

• MATRIX=IN cannot be used unless a working data file has already been defined. To read
an existing matrix data file at the beginning of a session, first use GET to retrieve the
matrix file and then specify IN(*) on MATRIX.

• When you read a matrix created with MATRIX DATA, you should supply a value label for
PROX of either SIMILARITY or DISSIMILARITY so the matrix is correctly identified. If
you do not supply a label, PROXIMITIES assumes DISSIMILARITY. (See “Format of the
Matrix Data File” below.)

• The variable list on PROXIMITIES can be omitted when a matrix file is used as input.
When the variable list is omitted, all variables in the matrix data file are used in the
analysis. If a variable list is specified, the specified variables can be a subset of the vari-
ables in the matrix file.

• With a large number of variables, the matrix data file will wrap when it is displayed (as
with LIST) and will be difficult to read. Nonetheless, the matrix values are accurate and
can be used as matrix input.

Format of the Matrix Data File

• The matrix data file includes two special variables created by the program: ROWTYPE_
and VARNAME_. Variable ROWTYPE_ is a short string variable with values PROX (for
proximity measure). PROX is assigned value labels containing the distance measure used

682 PROXIMITIES

to create the matrix and either SIMILARITY or DISSIMILARITY as an identifier. Variable
VARNAME_ is a short string variable whose values are the names of the new variables.

• The matrix file includes the string variable named on the ID subcommand. This variable
is used to identify cases. Up to 20 characters can be displayed for the identifier variable;
longer values are truncated. The identifier variable is present only when VIEW=CASE (the
default) and when the ID subcommand is used.

• The remaining variables in the matrix file are the variables used to form the matrix.

Split Files

• When split-file processing is in effect, the first variables in the matrix system file are the
split variables, followed by ROWTYPE_, the case-identifier variable (if VIEW=CASE and
ID are used), VARNAME_, and the variables that make up the matrix.

• A full set of matrix materials is written for each split-file group defined by the split variables.

• A split variable cannot have the same name as any other variable written to the matrix
data file.

• If split-file processing is in effect when a matrix is written, the same split file must be in
effect when that matrix is read by any procedure.

Example

PROXIMITIES V1 TO V20
/MATRIX=OUT(DISTOUT).

• PROXIMITIES produces a default Euclidean distance matrix for cases using variables V1
through V20 and saves the matrix in the SPSS-format file DISTOUT.

• The names of the variables on the matrix file will be VAR1, VAR2...VARn.

Example

GET FILE=CRIME.
PROXIMITIES MURDER TO MOTOR

/ID=CITY
/MEASURE=EUCLID
/MATRIX=OUT(PROXMTX).

• PROXIMITIES reads data from the SPSS-format data file CRIME and writes one set of
matrix materials to file PROXMTX.

• The working data file is still CRIME. Subsequent commands are executed on this file.

PROXIMITIES 683

Example

GET FILE=CRIME.
PROXIMITIES MURDER TO MOTOR

/ID=CITY
/MEASURE=EUCLID
/MATRIX=OUT(*).

LIST.

• PROXIMITIES writes the same matrix as in the example above. However, the matrix data
file replaces the working data file. The LIST command is executed on the matrix file, not
on the CRIME file.

Example

GET FILE PRSNNL.
FREQUENCIES VARIABLE=AGE.

PROXIMITIES CASE1 TO CASE8
/ID=CITY
/MATRIX=IN(PROXMTX).

• This example performs a frequencies analysis on file PRSNNL and then uses a different
file containing matrix data for PROXIMITIES.

• MATRIX=IN specifies the matrix data file PROXMTX. PROXMTX does not replace PRSNNL
as the working data file.

Example

GET FILE PROXMTX.
PROXIMITIES CASE1 TO CASE8

/ID=CITY
/MATRIX=IN(*).

• This example assumes that you are starting a new session and want to read an existing
matrix data file. GET retrieves the matrix file PROXMTX.

• MATRIX=IN specifies an asterisk because the matrix data file is the working data file. If
MATRIX=IN(PROXMTX) is specified, the program issues an error message.

• If the GET command is omitted, the program issues an error message.

Example

GET FILE=CRIME.
PROXIMITIES MURDER TO MOTOR

/ID=CITY
/MATRIX=OUT(*).

PROXIMITIES
/MATRIX=IN(*)
/STANDARDIZE.

• GET retrieves the SPSS-format data file CRIME.

• The first PROXIMITIES command specifies variables for the analysis and reads data from
file CRIME. ID specifies CITY as the case identifier. MATRIX writes the resulting matrix to
the working data file.

684 PROXIMITIES

• The second PROXIMITIES command uses the matrix file written by the first PROXIMITIES
command as input. The asterisk indicates that the matrix file is the working data file. The
variable list is omitted, indicating that all variables in the matrix are to be used.

• The slash preceding the MATRIX subcommand on the second PROXIMITIES is required.
Without the slash, PROXIMITIES would attempt to interpret MATRIX as a variable name
rather than as a subcommand.

Example

In this example, PROXIMITIES and FACTOR are used for a Q-factor analysis, in which fac-
tors account for variance shared among observations rather than among variables. Proce-
dure FACTOR does not perform Q-factor analysis without some preliminary transformation
such as that provided by PROXIMITIES. Because the number of cases exceeds the number of
variables, the model is not of full rank and FACTOR will print a warning. This is a common
occurrence when case-by-case matrices from PROXIMITIES are used as input to FACTOR.

* Recoding a PROXIMITIES matrix for procedure FACTOR.

GET FILE=CRIME.
PROXIMITIES MURDER TO MOTOR

/MEASURE=CORR
/MATRIX=OUT(TEMPFILE).

GET FILE=TEMPFILE/DROP=ID.
RECODE ROWTYPE_ (’PROX’ = ’CORR’).
FACTOR MATRIX IN(COR=*).

• The MATRIX subcommand on PROXIMITIES writes the correlation matrix to the working
data file. Because the matrix materials will be used in procedure FACTOR, the ID subcom-
mand is not specified.

• RECODE recodes ROWTYPE_ values PROX to CORR so procedure FACTOR can read the
matrix.

• When FACTOR reads matrix materials, it reads all the variables in the file. The MATRIX
subcommand on FACTOR indicates that the matrix is a correlation matrix and data are in
the working data file.

685

QUICK CLUSTER

QUICK CLUSTER {varlist}
 {ALL }

 [/MISSING=[{LISTWISE**}] [INCLUDE]]
 {PAIRWISE }
 {DEFAULT }

 [/FILE=file]

 [/INITIAL=(value list)]

 [/CRITERIA=[CLUSTER({2**})][NOINITIAL][MXITER({10**})] [CONVERGE({0**})]]
 {n } {n } {n }

 [/METHOD=[{KMEANS[(NOUPDATE)]**}]
 {KMEANS(UPDATE)} }
 {CLASSIFY }

 [/PRINT=[INITIAL**] [CLUSTER] [ID(varname)] [DISTANCE] [ANOVA] [NONE]]

 [/OUTFILE=file]

 [/SAVE=[CLUSTER[(varname)]] [DISTANCE[(varname)]]]

**Default if subcommand or keyword is omitted.

Example:
QUICK CLUSTER V1 TO V4

/CRITERIA=CLUSTER(4)
/SAVE=CLUSTER(GROUP).

Overview

When the desired number of clusters is known, QUICK CLUSTER groups cases efficiently
into clusters. It is not as flexible as CLUSTER, but it uses considerably less processing time
and memory, especially when the number of cases is large.

Options

Algorithm Specifications. You can specify the number of clusters to form with the CRITERIA
subcommand. You can also use CRITERIA to control initial cluster selection and the criteria
for iterating the clustering algorithm. With the METHOD subcommand, you can specify how
to update cluster centers, and you can request classification only when working with very
large data files (see “Operations” on p. 686).

Initial Cluster Centers. By default, QUICK CLUSTER chooses the initial cluster centers. Alter-
natively, you can provide initial centers on the INITIAL subcommand. You can also read ini-
tial cluster centers from an SPSS-format data file using the FILE subcommand.

Optional Output. With the PRINT subcommand you can display the cluster membership of
each case and the distance of each case from its cluster center. You can also display the dis-

686 QUICK CLUSTER

tances between the final cluster centers and a univariate analysis of variance between clusters
for each clustering variable.

Saving Results. You can write the final cluster centers to an SPSS-format data file using the
OUTFILE subcommand. In addition, you can save the cluster membership of each case and
the distance from each case to its classification cluster center as new variables in the working
data file using the SAVE subcommand.

Basic Specification

The basic specification is a list of variables. By default, QUICK CLUSTER produces two clus-
ters. The two cases that are farthest apart based on the values of the clustering variables are
selected as initial cluster centers and the rest of the cases are assigned to the nearer center.
The new cluster centers are calculated as the means of all cases in each cluster, and if neither
the minimum change or the maximum iteration criterion is met, all cases are assigned to the
new cluster centers again. When one of the criteria is met, iteration stops, the final cluster
centers are updated, and the distance of each case is computed.

Subcommand Order

• The variable list must be specified first.

• Subcommands can be named in any order.

Operations

The procedure generally involves four steps:

• First, initial cluster centers are selected, either by choosing one case for each cluster re-
quested or by using the specified values.

• Second, each case is assigned to the nearest cluster center and the mean of each cluster is
calculated to obtain the new cluster centers.

• Third, the maximum change between the new cluster centers and the initial cluster centers
is computed. If the maximum change is not less than the minimum change value and the
maximum iteration number is not reached, the second step is repeated and the cluster cen-
ters are updated. The process stops when either the minimum change or maximum itera-
tion criterion is met. The resulting clustering centers are used as classification centers in
the last step.

• In the last step, all cases are assigned to the nearest classification center. The final cluster
centers are updated and the distance for each case is computed.

When the number of cases is large, directly clustering all cases may be impractical. As an
alternative, you can cluster a sample of cases and then use the cluster solution for the sample
to classify the entire group. This can be done in two phases:
• The first phase obtains a cluster solution for the sample. This involves all four steps of the

QUICK CLUSTER algorithm. OUTFILE then saves the final cluster centers to an SPSS-format
data file.

QUICK CLUSTER 687

• The second phase requires only one pass through the data. First, the FILE subcommand
specifies the file containing the final cluster centers from the first analysis. These final
cluster centers are used as the initial cluster centers for the second analysis. CLASSIFY is
specified on the METHOD subcommand to skip the second and third steps of the clustering
algorithm, and cases are classified using the initial cluster centers. When all cases are as-
signed, the cluster centers are updated and the distance of each case is computed. This
phase can be repeated until final cluster centers are stable.

Example

QUICK CLUSTER V1 TO V4
/CRITERIA=CLUSTERS(4)
/SAVE=CLUSTER(GROUP).

• This example clusters cases based on their values for all variables between and including
V1 and V4 in the working data file.

• Four clusters, rather than the default two, will be formed.
• Initial cluster centers are chosen by finding four widely spaced cases. This is the default.

• The cluster membership of each case is saved in variable GROUP in the working data file.
GROUP has integer values from 1 to 4, indicating the cluster to which each case belongs.

Variable List

The variable list identifies the clustering variables.

• The variable list is required and must be the first specification on QUICK CLUSTER.

• You can use keyword ALL to refer to all user-defined variables in the working data file.

• QUICK CLUSTER uses squared Euclidean distances, which equally weight all clustering
variables. If the variables are measured in units that are not comparable, the procedure will
give more weight to variables with large variances. Therefore, you should standardize vari-
ables measured on different scales using procedure DESCRIPTIVES before performing
QUICK CLUSTER.

CRITERIA Subcommand

CRITERIA specifies the number of clusters to form and controls options for the clustering
algorithm. You can use any or all of the keywords below.

• The NOINITIAL option followed by the remaining steps of the default QUICK CLUSTER al-
gorithm makes QUICK CLUSTER equivalent to MacQueen’s n-means clustering method.

CLUSTER(n) Number of clusters. QUICK CLUSTER assigns cases to n clusters. The default
is 2.

NOINITIAL No initial cluster center selection. By default, initial cluster centers are
formed by choosing one case (with valid data for the clustering variables) for
each cluster requested. The initial selection requires a pass through the data
to ensure that the centers are well separated from one another. If NOINITIAL

688 QUICK CLUSTER

is specified, QUICK CLUSTER selects the first n cases without missing values
as initial cluster centers.

MXITER(n) Maximum number of iterations for updating cluster centers. The default is
10. Iteration stops when the maximum number of iterations has been
reached. MXITER is ignored when METHOD=CLASSIFY.

CONVERGE(n) Convergence criterion controlling minimum change in cluster centers. The
default value for n is 0. The minimum change value equals the convergence
value (n) times the minimum distance between initial centers. Iteration stops
when the largest change of any cluster center is less than or equal to the min-
imum change value. CONVERGE is ignored when METHOD=CLASSIFY.

METHOD Subcommand

By default, QUICK CLUSTER recalculates cluster centers after assigning all the cases and re-
peats the process until one of the criteria is met. You can use the METHOD subcommand to
recalculate cluster centers after each case is assigned or to suppress recalculation until after
classification is complete. When METHOD=KMEANS is specified, QUICK CLUSTER displays
the iteration history table.

KMEANS (NOUPDATE) Recalculate cluster centers after all cases are assigned for each iter-
ation. This is the default.

KMEANS(UPDATE) Recalculate a cluster center each time a case is assigned. QUICK
CLUSTER calculates the mean of cases currently in the cluster and uses
this new cluster center in subsequent case assignment.

CLASSIFY Do not recalculate cluster centers. QUICK CLUSTER uses the initial
cluster centers for classification and computes the final cluster centers as
the means of all the cases assigned to the same cluster. When CLASSIFY
is specified, the CONVERGE or MXITER specifications on CRITERIA are
ignored.

INITIAL Subcommand

INITIAL specifies the initial cluster centers. Initial cluster centers can also be read from an
SPSS-format data file (see the FILE subcommand on p. 689).

• One value for each clustering variable must be included for each cluster requested. Values
are specified in parentheses cluster by cluster.

Example
QUICK CLUSTER A B C D

/CRITERIA = CLUSTER(3)
/INITIAL = (13 24 1 8

7 12 5 9
10 18 17 16).

QUICK CLUSTER 689

• This example specifies four clustering variables and requests three clusters. Thus, twelve
values are supplied on INITIAL.

• The initial center of the first cluster has a value of 13 for variable A, 24 for variable B, 1
for C, and 8 for D.

FILE Subcommand

Use FILE to obtain initial cluster centers from an SPSS-format data file.

• The only specification is the name of the file.

Example
QUICK CLUSTER A B C D

/FILE=INIT
/CRITERIA = CLUSTER(3).

• In this example, the initial cluster centers are read from file INIT. The file must contain
cluster centers for the same four clustering variables specified (A, B, C, and D).

PRINT Subcommand

QUICK CLUSTER always displays in a Final Cluster Centers table listing the centers used to
classify cases and the mean values of the cases in each cluster and a Number of Cases in Each
Cluster table listing the number of weighted (if weighting is on) and unweighted cases in
each cluster. Use PRINT to request other types of output.

• If PRINT is not specified or is specified without keywords, the default is INITIAL.

INITIAL Initial cluster centers. When SPLIT FILES is in effect, the initial cluster center
for each split file is displayed. This is the default.

CLUSTER Cluster membership. Each case displays an identifying number or value, the
number of the cluster to which it was assigned, and its distance from the cen-
ter of that cluster. This output is extensive when the number of cases is large.

ID(varname) Case identification. The value of the specified variable is used in addition to
the case numbers to identify cases in output. Case numbers may not be se-
quential if cases have been selected.

DISTANCE Pairwise distances between all final cluster centers. This output can con-
sume a great deal of processing time when the number of clusters requested
is large.

ANOVA Descriptive univariate F tests for the clustering variables. Since cases are
systematically assigned to clusters to maximize differences on the clustering
variables, these tests are descriptive only and should not be used to test the
null hypothesis that there are no differences between clusters. Statistics after
clustering are also available through procedure DISCRIMINANT or GLM (GLM
is available in the SPSS Advanced Statistics option).

690 QUICK CLUSTER

NONE No additional output. Only the default output is displayed. NONE overrides
any other specifications on PRINT.

Example
QUICK CLUSTER A B C D E

/CRITERIA=CLUSTERS(6)
/PRINT=CLUSTER ID(CASEID) DISTANCE.

• Six clusters are formed on the basis of the five variables A, B, C, D, and E.

• For each case in the file, cluster membership and distance from cluster center are dis-
played. Cases are identified by the values of the variable CASEID.

• Distances between all cluster centers are printed.

OUTFILE Subcommand

OUTFILE saves the final cluster centers in an SPSS-format data file. You can later use these
final cluster centers as initial cluster centers for a different sample of cases that use the same
variables. You can also cluster the final cluster centers themselves to obtain clusters of clus-
ters.

• The only specification is a filename for the file.

• The program displays the name of the saved file in the procedure information notes.

Example
QUICK CLUSTER A B C D

/CRITERIA = CLUSTER(3)
/OUTFILE = QC1.

• QUICK CLUSTER writes the final cluster centers to the file QC1.

SAVE Subcommand

Use SAVE to save results of cluster analysis as new variables in the working data file.

• You can specify a variable name in parentheses following either keyword. If no variable
name is specified, QUICK CLUSTER forms unique variable names by appending an under-
score and a sequential number to the rootname QCL. The number increments with each
new variable saved.

• The program displays the new variables and a short description of each in the procedure
information notes.

CLUSTER[(varname)] The cluster number of each case. The value of the new variable is set
to an integer from 1 to the number of clusters.

DISTANCE[(varname)] The distance of each case from its classification cluster center.

Example
QUICK CLUSTER A B C D

/CRITERIA=CLUSTERS(6)
/SAVE=CLUSTER DISTANCE.

QUICK CLUSTER 691

• Six clusters of cases are formed on the basis of the variables A, B, C, and D.

• A new variable QCL_1 is created and set to an integer between 1 and 6 to indicate cluster
membership for each case.

• Another new variable QCL_2 is created and set to the Euclidean distance between a case
and the center of the cluster to which it is assigned.

MISSING Subcommand

MISSING controls the treatment of cases with missing values.

• LISTWISE, PAIRWISE, and DEFAULT are alternatives. However, each can be used with
INCLUDE.

LISTWISE Delete cases with missing values listwise. A case with a missing value for
any of the clustering variables is deleted from the analysis and will not be as-
signed to a cluster. This is the default.

PAIRWISE Assign each case to the nearest cluster on the basis of the clustering vari-
ables for which the case has nonmissing values. Only cases with missing
values for all clustering variables are deleted.

INCLUDE Treat user-missing values as valid.

DEFAULT Same as LISTWISE.

692

RANK

RANK [VARIABLES=] varlist [({A**})] [BY varlist]
 {D }

 [/TIES={MEAN** }]
 {LOW }
 {HIGH }
 {CONDENSE}

 [/FRACTION={BLOM**}]
 {TUKEY }
 {VW }
 {RANKIT}

 [/PRINT={YES**}]
 {NO }

 [/MISSING={EXCLUDE**}]
 {INCLUDE }

The following function subcommands can each be specified once:

 [/RANK**] [/NTILES(k)] [/NORMAL] [/PERCENT]

 [/RFRACTION] [/PROPORTION] [/N] [/SAVAGE]

The following keyword can be used with any function subcommand:

 [INTO varname]

**Default if the subcommand is omitted.

Example:
RANK VARIABLES=SALARY JOBTIME.

Overview

RANK produces new variables containing ranks, normal scores, and Savage and related
scores for numeric variables.

Options

Methods. You can rank variables in ascending or descending order by specifying A or D on
the VARIABLES subcommand. You can compute different rank functions and also name the
new variables using the function subcommands. You can specify the method for handling
ties on the TIES subcommand, and you can specify how the proportion estimate is computed
for the NORMAL and PROPORTIONAL functions on the FRACTION subcommand.

Format. You can suppress the display of the summary table that lists the ranked variables and
their associated new variables in the working data file using the PRINT subcommand.

RANK 693

Basic Specification

The basic specification is VARIABLES and at least one variable from the working data file. By
default, the ranking function is RANK. Direction is ascending, and ties are handled by assign-
ing the mean rank to tied values. A summary table that lists the ranked variables and the new
variables into which computed ranks have been stored is displayed.

Subcommand Order

• VARIABLES must be specified first.

• The remaining subcommands can be specified in any order.

Operations

• RANK does not change the way the working data file is sorted.

• If new variable names are not specified with the INTO keyword on the function subcom-
mand, RANK creates default names. (See the INTO keyword on p. 695.)

• RANK automatically assigns variable labels to the new variables. The labels identify the
source variables. For example, the label for a new variable with the default name RSALARY
is RANK of SALARY.

Example

RANK VARIABLES=SALARY JOBTIME.

• RANK ranks SALARY and JOBTIME and creates two new variables in the working file,
RSALARY and RJOBTIME, which contain the ranks.

VARIABLES Subcommand

VARIABLES specifies the variables to be ranked. Keyword VARIABLES can be omitted.

• VARIABLES is required and must be the first specification on RANK. The minimum spec-
ification is a single numeric variable. To rank more than one variable, specify a variable
list.

• After the variable list you can specify the direction for ranking in parentheses. Specify A
for ascending (smallest value gets smallest rank) or D for descending (largest value gets
smallest rank). A is the default.

• To rank some variables in ascending order and others in descending order, use both A and
D in the same variable list. A or D applies to all preceding variables in the list up to the
previous A or D specification.

• To organize ranks into subgroups, specify keyword BY followed by the variable whose
values determine the subgroups. The working data file does not have to be sorted by this
variable.

694 RANK

• String variables cannot be specified. Use AUTORECODE to recode string variables for
ranking.

Example
RANK VARIABLES=MURDERS ROBBERY (D).

• RANK ranks MURDERS and ROBBERY and creates two new variables in the working data
file: RMURDERS and RROBBERY.

• D specifies descending order of rank. D applies to both MURDERS and ROBBERY.

Example
RANK VARIABLES=MURDERS (D) ROBBERY (A) BY ETHNIC.

• Ranks are computed within each group defined by ETHNIC. MURDERS is ranked in de-
scending order and ROBBERY in ascending order within each group of ETHNIC. The
working data file does not have to be sorted by ETHNIC.

Function Subcommands

The optional function subcommands specify different rank functions. RANK is the default
function.

• Any combination of function subcommands can be specified for a RANK procedure, but
each function can be specified only once.

• Each function subcommand must be preceded by a slash.

• The functions assign default names to the new variables unless keyword INTO is specified
(see the INTO keyword on p. 695).

RANK Simple ranks. The values for the new variable are the ranks. Rank can either
be ascending or descending, as indicated on the VARIABLES subcommand.
Rank values can be affected by the specification on the TIES subcommand.

RFRACTION Fractional ranks. The values for the new variable equal the ranks divided by
the sum of the weights of the nonmissing cases. If HIGH is specified on TIES,
fractional rank values are an empirical cumulative distribution.

NORMAL Normal scores (Lehmann, 1975). The new variable contains the inverse of
the standard normal cumulative distribution of the proportion estimate de-
fined by the FRACTION subcommand. The default for FRACTION is BLOM.

PERCENT Fractional ranks as a percentage. The new variable contains fractional ranks
multiplied by 100.

PROPORTION Proportion estimates. The estimation method is specified by the FRACTION
subcommand. The default for FRACTION is BLOM.

N Sum of case weights. The new variable is a constant.

SAVAGE Savage scores (Lehmann, 1975). The new variable contains Savage (expo-
nential) scores.

RANK 695

NTILES(k) Percentile groups. The new variable contains values from 1 to k, where k is
the number of groups to be generated. Each case is assigned a group value,
which is the integer part of 1+rk/(w+1), where r is the rank of the case, k is
the number of groups specified on NTILES, and w is the sum of the case
weights. Group values can be affected by the specification on TIES. There is
no default for k.

INTO Keyword

INTO specifies variable names for the new variable(s) added to the working data file. INTO
can be used with any of the function subcommands.

• INTO must follow a function subcommand. You must specify the INTO subcommand to
assign names to the new variables created by the function.

• You can specify multiple variable names on INTO. The names are assigned to the new vari-
ables in the order they are created (the order the variables are specified on the VARIABLES
subcommand).

• If you specify fewer names than the new variables, default names are used for the remain-
ing new variables. If you specify more names, the program issues a message and the com-
mand is not executed.

If INTO is not specified on a function, RANK creates default names for the new variables ac-
cording to the following rules:

• The first letter of the ranking function is added to the first seven characters of the original
variable name.

• New variable names cannot duplicate variable names in the working data file or names
specified after INTO or generated by default.

• If a new default name is a duplicate, the scheme XXXnnn is used, where XXX represents
the first three characters of the function and nnn is a three-digit number starting with 001
and increased by 1 for each variable. (If the ranking function is N, XXX is simply N.) If this
naming scheme generates duplicate names, the duplicates are named RNKXXnn, where XX
is the first two characters of the function and nn is a two-digit number starting with 01 and
increased by 1 for each variable.

• If it is not possible to generate unique names, an error results.

Example
RANK VARIABLES=SALARY
/NORMAL INTO SALNORM
/SAVAGE INTO SALSAV
/NTILES(4) INTO SALQUART.

• RANK generates three new variables from variable SALARY.

• NORMAL produces the new variable SALNORM. SALNORM contains normal scores for
SALARY computed with the default formula BLOM.

• SAVAGE produces the new variable SALSAV. SALSAV contains Savage scores for SALARY.

• NTILES(4) produces the new variable SALQUART. SALQUART contains the value 1, 2, 3,
or 4 to represent one of the four percentile groups of SALARY.

696 RANK

TIES Subcommand

TIES determines the way tied values are handled. The default method is MEAN.

MEAN Mean rank of tied values is used for ties. This is the default.

LOW Lowest rank of tied values is used for ties.

HIGH Highest rank of tied values is used for ties.

CONDENSE Consecutive ranks with ties sharing the same value. Each distinct value of
the ranked variable is assigned a consecutive rank. Ties share the same rank.

Example
RANK VARIABLES=BURGLARY /RANK INTO RMEAN /TIES=MEAN.
RANK VARIABLES=BURGLARY /RANK INTO RCONDS /TIES=CONDENSE.
RANK VARIABLES=BURGLARY /RANK INTO RHIGH /TIES=HIGH.
RANK VARIABLES=BURGLARY /RANK INTO RLOW /TIES=LOW.

• The values of BURGLARY and the four new ranking variables are shown below:
BURGLARY RMEAN RCONDS RHIGH RLOW

 0 3 1 5 1
 0 3 1 5 1
 0 3 1 5 1
 0 3 1 5 1
 0 3 1 5 1
 1 6.5 2 7 6
 1 6.5 2 7 6
 3 8 3 8 8

FRACTION Subcommand

FRACTION specifies the way to compute a proportion estimate P for the NORMAL and
PROPORTION rank functions.

• FRACTION can be used only with function subcommands NORMAL or PROPORTION. If it
is used with other function subcommands, FRACTION is ignored and a warning message
is displayed.

• Only one formula can be specified for each RANK procedure. If more than one is speci-
fied, an error results.

In the following formulas, r is the rank and w is the sum of case weights.

BLOM Blom’s transformation, defined by the formula (r - 3/8) / (w + 1/4). (Blom, 1958.)
This is the default.

RANKIT The formula is (r - 1/2) / w. (Chambers et al., 1983.)

TUKEY Tukey’s transformation, defined by the formula (r - 1/3) / (w + 1/3). (Tukey, 1962.)

VW Van der Waerden’s transformation, defined by the formula r / (w +1). (Lehmann, 1975.)

RANK 697

Example
RANK VARIABLES=MORTGAGE VALUE /FRACTION=BLOM

/NORMAL INTO MORTNORM VALNORM.

• RANK generates new variables MORTNORM and VALNORM. MORTNORM contains normal
scores for MORTGAGE, and VALNORM contains normal scores for VALUE.

PRINT Subcommand

PRINT determines whether the summary tables are displayed. The summary table lists the
ranked variables and their associated new variables in the working data file.

YES Display the summary tables. This is the default.

NO Suppress the summary tables.

MISSING Subcommand

MISSING controls the treatment of user-missing values.

INCLUDE Include user-missing values. User-missing values are treated as valid values.

EXCLUDE Exclude all missing values. User-missing values are treated as missing. This
is the default.

Example
MISSING VALUE SALARY (0).
RANK VARIABLES=SALARY /RANK INTO SALRANK /MISSING=INCLUDE.

• RANK generates the new variable SALRANK.

• INCLUDE causes user-missing value 0 to be included in the ranking process.

References

Blom, G. 1958. Statistical estimates and transformed beta variables. New York: John Wiley and
Sons.

Chambers, J. M., W. S. Cleveland, B. Kleiner, and P. A. Tukey. 1983. Graphical methods for data
analysis. Belmont, California: Wadsworth International Group; Boston: Duxbury Press.

Fisher, R. A. 1973. Statistical methods for research workers. 14th ed. New York: Hafner Publish-
ing Company.

Frigge, M., D. C. Hoaglin, and B. Iglewicz. 1987. Some implementations of the boxplot. In: Com-
puter Science and Statistics Proceedings of the 19th Symposium on the Interface, R. M.
Heiberger and M. Martin, eds. Alexandria, Virginia: American Statistical Association.

Lehmann, E. L. 1975. Nonparametrics: Statistical methods based on ranks. San Francisco: Hold-
en-Day.

Tukey, J. W. 1962. The future of data analysis. Annals of Mathematical Statistics, 33:22.

698

RECODE

For numeric variables:

RECODE varlist (value list=value)...(value list=value) [INTO varlist]
 [/varlist...]

Input keywords:

LO, LOWEST, HI, HIGHEST, THRU, MISSING, SYSMIS, ELSE

Output keywords:

COPY, SYSMIS

For string variables:

RECODE varlist [(’string’,[’string’...]=’string’)][INTO varlist]
 [/varlist...]

Input keywords:

CONVERT, ELSE

Output keyword:

COPY

Examples:
RECODE V1 TO V3 (0=1) (1=0) (2,3=-1) (9=9) (ELSE=SYSMIS).

RECODE STRNGVAR (’A’,’B’,’C’=’A’)(’D’,’E’,’F’=’B’)(ELSE=’ ’).

Overview

RECODE changes, rearranges, or consolidates the values of an existing variable. RECODE can
be executed on a value-by-value basis or for a range of values. Where it can be used, RECODE
is much more efficient than the series of IF commands that produce the same transformation.

With RECODE, you must specify the new values. Use AUTORECODE to automatically
recode the values of string or numeric variables to consecutive integers.

Options

You can generate a new variable as the recoded version of an existing variable using key-
word INTO. You can also use INTO to recode a string variable into a new numeric variable
for more efficient processing, or to recode a numeric variable into a new string variable to
provide more descriptive values.

RECODE 699

Basic Specification

The basic specification is a variable name and, within parentheses, the original values fol-
lowed by a required equals sign and a new value. RECODE changes the values on the left of
the equals sign into the single value on the right of the equals sign.

Syntax Rules

• The variables to be recoded must already exist and must be specified before the value
specifications.

• Value specifications are enclosed in parentheses. The original value or values must be
specified to the left of an equals sign. A single new value is specified to the right of the
equals sign.

• Multiple values can be consolidated into a single recoded value by specifying, to the left
of the equals sign, a list of values separated by blanks or commas. Only one recoded value
per set is allowed to the right of the equals sign.

• Multiple sets of value specifications are permitted. Each set must be enclosed in paren-
theses and can result in only one new value.

• To recode multiple variables using the same set of value specifications, specify a variable
list before the value specifications. Each variable in the list is recoded identically.

• To recode variables using different value specifications, separate each variable (or vari-
able list) and its specifications from the others by a slash.

• Original values that are not mentioned remain unchanged unless keyword ELSE is used.
ELSE refers to all original values not previously mentioned, including the system-missing
value. ELSE should be the last specification for the variable.

• COPY replicates original values without recoding them.

• INTO is required to recode a string variable into a numeric variable or a numeric variable
into a string variable (see the INTO keyword on p. 701).

Numeric Variables

• Keywords that can be used in the list of original values are LO (or LOWEST), HI (or
HIGHEST), THRU, MISSING, SYSMIS, and ELSE. Keywords that can be used in place of
a new value are COPY and SYSMIS.

• THRU specifies a value range and includes the specified end values.

• LOWEST and HIGHEST (LO and HI) specify the lowest and highest values encountered in
the data. LOWEST and HIGHEST include user-missing values but not the system-missing
value.

• MISSING specifies user- and system-missing values for recoding. MISSING can be used in
the list of original values only.

• SYSMIS specifies the system-missing value and can be used as both an original value and
a new value.

• See “Syntax Rules” above for a description of ELSE and COPY.

700 RECODE

String Variables

• Keywords that can be used in the list of original values are CONVERT and ELSE. The only
keyword that can be used in place of a new value is COPY. See p. 702 for a description of
CONVERT, and “Syntax Rules” on p. 699 for a description of ELSE and COPY.

• Both short and long string variables can be recoded.

• Values must be enclosed in apostrophes or quotation marks.

• Blanks are significant characters.

Operations

• Value specifications are scanned left to right.

• A value is recoded only once per RECODE command.

• Invalid specifications on a RECODE command that result in errors stop all processing of
that RECODE command. No variables are recoded.

Numeric Variables

• Blank fields for numeric variables are handled according to the SET BLANKS specification
prior to recoding.

• When you recode a value that was previously defined as user-missing on the MISSING
VALUE command, the new value is not missing.

String Variables

• If the original or new value specified is shorter than the format width defined for the vari-
able, the string is right-padded with blanks.

• If the original or recoded value specified is longer than the format width defined for that
variable, the program issues an error message and RECODE is not executed.

Limitations

• You can recode (and count using the COUNT command) approximately 400 values.

Example

RECODE V1 TO V3 (0=1) (1=0) (2,3=-1) (9=9) (ELSE=SYSMIS)
/QVAR(1 THRU 5=1)(6 THRU 10=2)(11 THRU HI=3)(ELSE=0).

• The numeric variables between and including V1 and V3 are recoded: original values 0
and 1 are switched respectively to 1 and 0; 2 and 3 are changed to −1; 9 remains 9; and
any other value is changed to the system-missing value.

RECODE 701

• Variable QVAR is also recoded: original values 1 through 5 are changed to 1; 6 through
10 are changed to 2; 11 through the highest value in the data are changed to 3; and any
other value, including system-missing, is changed to 0.

Example

RECODE STRNGVAR (’A’,’B’,’C’=’A’)(’D’,’E’,’F’=’B’)(ELSE=’ ’).
RECODE PET (’IGUANA’, ’SNAKE ’ = ’WILD ’).

• Values A, B, and C are changed to value A. Values D, E, and F are changed to value B.
All other values are changed to a blank.

• Values IGUANA and SNAKE are changed to value WILD. The defined width of variable
PET is 6. Thus, values SNAKE and WILD include trailing blanks for a total of six char-
acters. If blanks are not specified, the values are right-padded. In this example, the results
will be the same.

• Each string value is enclosed within apostrophes.

INTO Keyword

INTO specifies a target variable to receive recoded values from the original, or source, vari-
able. Source variables remain unchanged after the recode.
• INTO must follow the value specifications for the source variables that are being recoded

into the target variables.

• The number of target variables must equal the number of source variables.

Numeric Variables

• Target variables can be existing or new variables. For existing variables, cases with val-
ues not mentioned in the value specifications are not changed. For new variables, cases
with values not mentioned are assigned the system-missing value.

• New numeric variables have default print and write formats of F8.2 (or the format speci-
fied on SET FORMAT).

Example
RECODE AGE (MISSING=9) (18 THRU HI=1) (0 THRU 18=0) INTO VOTER.

• The recoded AGE values are stored in target variable VOTER, leaving AGE unchanged.

• Value 18 and higher values are changed to value 1. Values between 0 and 18, but not in-
cluding 18, are recoded to 0. If the specification 0 THRU 18 preceded the specification 18
THRU HI, value 18 would be recoded to 0.

Example
RECODE V1 TO V3 (0=1) (1=0) (2=-1) INTO DEFENSE WELFARE HEALTH.

• Values for V1 through V3 are recoded and stored in DEFENSE, WELFARE, and HEALTH.
V1, V2, and V3 are not changed.

702 RECODE

String Variables

• Target variables must already exist. To create a new string variable, declare the variable
with the STRING command before specifying it on RECODE.

• The new string values cannot be longer than the defined width of the target variable.

• If the new values are shorter than the defined width of the target variable, the values are
right-padded with blanks.

• Multiple target variables are allowed. The target variables must all be the same defined
width; the source variables can have different widths.

• If the source and target variables have different widths, the criterion for the width of the
original values is the width defined for the source variable; the criterion for the width of
the recoded values is the width defined for the target variable.

Example
STRING STATE1 (A2).
RECODE STATE (’IO’=’IA’) (ELSE=COPY) INTO STATE1.

• STRING declares variable STATE1 so that it can be used as a target variable on RECODE.

• RECODE specifies STATE as the source variable and STATE1 as the target variable. The
original value IO is recoded to IA. Keywords ELSE and COPY copy all other state codes
over unchanged. Thus, STATE and STATE1 are identical except for cases with the original
value IO.

Example
RECODE SEX (’M’=1) (’F’=2) INTO NSEX.

• RECODE recodes string variable SEX into numeric variable NSEX. Any value other than
M or F becomes system-missing.

• The program can process a large number of cases more efficiently with the numeric vari-
able NSEX than it can with the string variable SEX.

CONVERT Keyword

CONVERT recodes the string representation of numbers to their numeric representation.

• If keyword CONVERT precedes the value specifications, cases with numbers are recoded
immediately and blanks are recoded to the system-missing value, even if you specifically
recode blanks into a value.

• To recode blanks to a value other than system-missing or to recode a string value to a non-
corresponding numeric value (for example ‘0’ to 10), you must specify a recode specifi-
cation before the keyword CONVERT.

• RECODE converts numbers as if the variable were being reread using the F format.

• If RECODE encounters a value that cannot be converted, it scans the remaining value
specifications. If there is no specific recode specification for that value, the target variable
will be system-missing for that case.

RECODE 703

Example
RECODE #JOB (CONVERT) (’-’=11) (’&’=12) INTO JOB.

• RECODE first recodes all numbers in string variable #JOB to numbers. The target variable
is JOB.

• RECODE then specifically recodes the minus sign (the “eleven” punch) to 11 and the am-
persand (or “twelve” punch in EBCDIC) to 12. Keyword CONVERT is specified first as
an efficiency measure to recode cases with numbers immediately. Blanks are recoded to
the system-missing value.

Example
RECODE #JOB (’ ’=-99) (CONVERT) (’-’=11) (’&’=12) INTO JOB.

• The result is the same as in the above example, except that blanks are changed to −99.

704

RECORD TYPE

For mixed file types:

RECORD TYPE {value list} [SKIP]
 {OTHER }

For grouped file types:

RECORD TYPE {value list} [SKIP] [CASE=col loc]
 {OTHER }

 [DUPLICATE={WARN }] [MISSING={WARN }]
 {NOWARN} {NOWARN}

For nested file types:

RECORD TYPE {value list} [SKIP] [CASE=col loc]
 {OTHER }

 [SPREAD={YES}] [MISSING={WARN }]
 {NO } {NOWARN}

Example:
FILE TYPE MIXED RECORD=RECID 1-2.
RECORD TYPE 23.
DATA LIST /SEX 5 AGE 6-7 DOSAGE 8-10 RESULT 12.
END FILE TYPE.

BEGIN DATA
21 145010 1
22 257200 2
25 235 250 2
35 167 300 3
24 125150 1
23 272075 1
21 149050 2
25 134 035 3
30 138 300 3
32 229 500 3
END DATA.

Overview

RECORD TYPE is used with DATA LIST within a FILE TYPE—END FILE TYPE structure to
define any one of the three types of complex raw data files: mixed files, which contain sev-
eral types of records that define different types of cases; hierarchical or nested files,
which contain several types of records with a defined relationship among the record types;
or grouped files, which contain several records for each case with some records missing
or duplicated (see FILE TYPE for more complete information). A fourth type of complex
file, files with repeating groups of information, can be read with the REPEATING DATA

RECORD TYPE 705

command. REPEATING DATA can also be used to read mixed files and the lowest level of
nested files.

Each type of complex file has varying types of records. One set of RECORD TYPE and
DATA LIST commands is used to define each type of record in the data. The specifications
available for RECORD TYPE vary according to whether MIXED, GROUPED, or NESTED is
specified on FILE TYPE.

Basic Specification

For each record type being defined, the basic specification is the value of the record type vari-
able defined on the RECORD subcommand on FILE TYPE.

• RECORD TYPE must be followed by a DATA LIST command defining the variables for the
specified records, unless SKIP is used.

• One pair of RECORD TYPE and DATA LIST commands must be used for each defined
record type.

Syntax Rules

• A list of values can be specified if a set of different record types has the same variable
definitions. Each value must be separated by a space or comma.

• String values must be enclosed in apostrophes or quotation marks.

• For mixed files, each DATA LIST can specify variables with the same variable name, since
each record type defines a separate case. For grouped and nested files, the variable names
on each DATA LIST must be unique, since a case is built by combining all record types to-
gether onto a single record.

• For mixed files, if the same variable is defined for more than one record type, the format
type and width of the variable should be the same on all DATA LIST commands. the pro-
gram refers to the first DATA LIST command that defines a variable for the print and write
formats to include in the dictionary of the working data file.

• For nested files, the order of the RECORD TYPE commands defines the hierarchical struc-
ture of the file. The first RECORD TYPE defines the highest-level record type, the next
RECORD TYPE defines the next highest-level record, and so forth. The last RECORD
TYPE command defines a case in the working data file.

Operations

• If a record type is specified on more than one RECORD TYPE command, the program uses
the DATA LIST command associated with the first specification and ignores all others.

• For NESTED files, the first record in the file should be the type specified on the first
RECORD TYPE command—the highest-level record of the hierarchy. If the first record in
the file is not the highest-level type, the program skips all records until it encounters a
record of the highest-level type. If the MISSING or DUPLICATE subcommands have been
specified on the FILE TYPE command, these records may produce warning messages but
will not be used to build a case in the working data file.

706 RECORD TYPE

Example

* Reading only one record type from a mixed file.

FILE TYPE MIXED RECORD=RECID 1-2.
RECORD TYPE 23.
DATA LIST /SEX 5 AGE 6-7 DOSAGE 8-10 RESULT 12.
END FILE TYPE.

BEGIN DATA
21 145010 1
22 257200 2
25 235 250 2
35 167 300 3
24 125150 1
23 272075 1
21 149050 2
25 134 035 3
30 138 300 3
32 229 500 3
END DATA.

• FILE TYPE begins the file definition and END FILE TYPE indicates the end of file defini-
tion. FILE TYPE specifies a mixed file type. Since the data are included between BEGIN
DATA—END DATA, the FILE subcommand is omitted. The record identification variable
RECID is located in columns 1 and 2.

• RECORD TYPE indicates that records with value 23 for variable RECID will be copied into
the working data file. All other records are skipped. The program does not issue a warning
when it skips records in mixed files.

• DATA LIST defines variables on records with the value 23 for variable RECID.

Example

* Reading multiple record types from a mixed file.

FILE TYPE MIXED FILE=TREATMNT RECORD=RECID 1-2.
+ RECORD TYPE 21,22,23,24.
+ DATA LIST /SEX 5 AGE 6-7 DOSAGE 8-10 RESULT 12.
+ RECORD TYPE 25.
+ DATA LIST /SEX 5 AGE 6-7 DOSAGE 10-12 RESULT 15.
END FILE TYPE.

• Variable DOSAGE is read from columns 8–10 for record types 21, 22, 23, and 24 and from
columns 10–12 for record type 25. RESULT is read from column 12 for record types 21,
22, 23, and 24 and from column 15 for record type 25.

• The working data file contains values for all variables defined on the DATA LIST com-
mands for record types 21 through 25. All other record types are skipped.

RECORD TYPE 707

Example

* A nested file of accident records.

FILE TYPE NESTED RECORD=6 CASE=ACCID 1-4.
RECORD TYPE 1.
DATA LIST /ACC_ID 9-11 WEATHER 12-13 STATE 15-16 (A) DATE 18-24 (A).
RECORD TYPE 2.
DATA LIST /STYLE 11 MAKE 13 OLD 14 LICENSE 15-16(A) INSURNCE 18-21 (A).
RECORD TYPE 3.
DATA LIST /PSNGR_NO 11 AGE 13-14 SEX 16 (A) INJURY 18 SEAT 20-21 (A)

COST 23-24.
END FILE TYPE.

BEGIN DATA
0001 1 322 1 IL 3/13/88 /* Type 1: accident record
0001 2 1 44MI 134M /* Type 2: vehicle record
0001 3 1 34 M 1 FR 3 /* Type 3: person record
0001 2 2 16IL 322F /* vehicle record
0001 3 1 22 F 1 FR 11 /* person record
0001 3 2 35 M 1 FR 5 /* person record
0001 3 3 59 M 1 BK 7 /* person record
0001 2 3 21IN 146M /* vehicle record
0001 3 1 46 M 0 FR 0 /* person record
END DATA.

• FILE TYPE specifies a nested file type. The record identifier, located in column 6, is not
assigned a variable name, so the default scratch variable name ####RECD is used. The
case identification variable ACCID is located in columns 1–4.

• Because there are three record types, there are three RECORD TYPE commands. For each
RECORD TYPE there is a DATA LIST command to define variables on that record type. The
order of the RECORD TYPE commands defines the hierarchical structure of the file.

• END FILE TYPE signals the end of file definition.

• The program builds a case for each lowest-level (type 3) record, representing each person
in the file. There can be only one type 1 record for each type 2 record, and one type 2
record for each type 3 record. Each vehicle can be in only one accident, and each person
can be in only one vehicle. The variables from the type 1 and type 2 records are spread to
their corresponding type 3 records.

OTHER Keyword

OTHER specifies all record types that have not been mentioned on previous RECORD TYPE
commands.

• OTHER can be specified only on the last RECORD TYPE command in the file definition.

• OTHER can be used with SKIP to skip all undefined record types.
• For nested files, OTHER can be used only with SKIP. Neither can be used separately.

• If WILD=WARN is in effect for the FILE TYPE command, OTHER cannot be specified on
the RECORD TYPE command.

708 RECORD TYPE

Example
* A mixed file.

FILE TYPE MIXED FILE=TREATMNT RECORD=RECID 1-2.
RECORD TYPE 21,22,23,24.
DATA LIST /SEX 5 AGE 6-7 DOSAGE 8-10 RESULT 12.
RECORD TYPE 25.
DATA LIST /SEX 5 AGE 6-7 DOSAGE 10-12 RESULT 15.
RECORD TYPE OTHER.
DATA LIST /SEX 5 AGE 6-7 DOSAGE 18-20 RESULT 25.
END FILE TYPE.

• The first two RECORD TYPE commands specify record types 21–25. All other record
types are specified by the third RECORD TYPE.

Example
* A nested file.

FILE TYPE NESTED FILE=ACCIDENT RECORD=#RECID 6 CASE=ACCID 1-4.
RECORD TYPE 1. /* Accident record
DATA LIST /WEATHER 12-13.
RECORD TYPE 2. /* Vehicle record
DATA LIST /STYLE 16.
RECORD TYPE OTHER SKIP.
END FILE TYPE.

• The third RECORD TYPE specifies OTHER SKIP. Type 2 records are therefore the lowest-
level records included in the working data file. These commands build one case for each
vehicle record. The person records are skipped.

• Because the data are in a nested file, OTHER can be specified only with SKIP.

SKIP Subcommand

SKIP specifies record types to skip.

• To skip selected record types, specify the values for the types you want to skip and then
specify SKIP. To skip all record types other than those specified on previous RECORD
TYPE commands, specify OTHER and then SKIP.

• For nested files, SKIP can be used only with OTHER. Neither can be used separately.

• For grouped files, OTHER cannot be specified on SKIP if WILD=WARN (the default) is in
effect for FILE TYPE.

• For mixed files, all record types that are not specified on a RECORD TYPE command are
skipped by default. No warning is issued (WILD=NOWARN on FILE TYPE is the default for
mixed files).

• For grouped files, a warning message is issued by default for all record types not specified
on a RECORD TYPE command (WILD=WARN on FILE TYPE is the default for grouped
files). If the record types are explicitly specified on SKIP, no warning is issued.

RECORD TYPE 709

Example
FILE TYPE GROUPED FILE=HUBDATA RECORD=#RECID 80 CASE=ID 1-5

WILD=NOWARN.
RECORD TYPE 1.
DATA LIST /MOHIRED YRHIRED 12-15 DEPT79 TO DEPT82 SEX 16-20.
RECORD TYPE OTHER SKIP.
END FILE TYPE.

• The program reads variables from type 1 records and skips all other types.

• WILD=NOWARN on the FILE TYPE command suppresses the warning messages that is
issued by default for undefined record types for grouped files. Keyword OTHER cannot
be used when the default WILD=WARN specification is in effect.

Example
FILE TYPE GROUPED FILE=HUBDATA RECORD=#RECID 80 CASE=ID 1-5.
RECORD TYPE 1.
DATA LIST /MOHIRED YRHIRED 12-15 DEPT79 TO DEPT82 SEX 16-20.
RECORD TYPE 2,3 SKIP.
END FILE TYPE.

• Record type 1 is defined for each case, and record types 2 and 3 are skipped.

• WILD=WARN (the default) on FILE TYPE GROUPED is in effect. The program therefore is-
sues a warning message for any record types it encounters other than types 1, 2, and 3. No
warning is issued for record types 2 and 3 because they are explicitly specified on a
RECORD TYPE command.

CASE Subcommand

CASE specifies the column locations of the case identification variable when that variable is
not in the location defined by the CASE subcommand on FILE TYPE.

• CASE on RECORD TYPE applies only to those records specified by that RECORD TYPE
command. The identifier for record types without CASE on RECORD TYPE must be in the
location specified by CASE on FILE TYPE.

• CASE can be used for nested and grouped files only. CASE cannot be used for mixed files.

• CASE can be used on RECORD TYPE only if a CASE subcommand is specified on FILE
TYPE.

• The format type of the case identification variable must be the same on all records, and
the same format must be assigned on the RECORD TYPE and FILE TYPE commands. For
example, if the case identification variable is defined as a string on FILE TYPE, it cannot
be defined as a numeric variable on RECORD TYPE.

710 RECORD TYPE

Example
* Specifying case on the record type command for a grouped file.

FILE TYPE GROUPED FILE=HUBDATA RECORD=#RECID 80 CASE=ID 1-5.
RECORD TYPE 1.
DATA LIST /MOHIRED YRHIRED 12-15 DEPT79 TO DEPT82 SEX 16-20.
RECORD TYPE 2.
DATA LIST /SALARY79 TO SALARY82 6-25
 HOURLY81 HOURLY82 40-53 (2)

PROMO81 72 AGE 54-55 RAISE82 66-70.
RECORD TYPE 3 CASE=75-79.
DATA LIST /JOBCAT 6 NAME 25-48 (A).
END FILE TYPE.

• CASE on FILE TYPE indicates that the case identification variable is located in columns
1–5. On the third RECORD TYPE command, the CASE subcommand overrides the iden-
tifier location for type 3 records. For type 3 records, the case identification variable is
located in columns 75–79.

MISSING Subcommand

MISSING controls whether the program issues a warning when it encounters a missing record
type for a case. Regardless of whether the program issues the warning, it builds the case in
the working data file with system-missing values for the variables defined on the missing
record.
• The only specification is a single keyword. NOWARN is the default for nested files. WARN

is the default for grouped files. MISSING cannot be used with MIXED files.

• MISSING on RECORD TYPE applies only to those records specified by that RECORD TYPE
command. The treatment of missing records for record types without the MISSING speci-
fication on RECORD TYPE is determined by the MISSING subcommand on FILE TYPE.

• For grouped files, the program checks whether there is a record for each case identifica-
tion number. For nested files, the program verifies that each defined case includes one
record of each type.

WARN Issue a warning message when a record type is missing for a case. This is
the default for grouped files.

NOWARN Suppress the warning message when a record type is missing for a case. This
is the default for nested files.

Example
FILE TYPE GROUPED FILE=HUBDATA RECORD=#RECID 80 CASE=ID 1-5.
RECORD TYPE 1.
DATA LIST /MOHIRED YRHIRED 12-15 DEPT79 TO DEPT82 SEX 16-20.
RECORD TYPE 2 MISSING=NOWARN.
DATA LIST /SALARY79 TO SALARY82 6-25
 HOURLY81 HOURLY82 40-53 (2) PROMO81 72 AGE 54-55 RAISE82 66-70.
RECORD TYPE 3.
DATA LIST /JOBCAT 6 NAME 25-48 (A).
END FILE TYPE.

RECORD TYPE 711

• MISSING is not specified on FILE TYPE. Therefore the default MISSING=WARN is in effect
for all record types.

• MISSING=NOWARN is specified on the second RECORD TYPE, overriding the default set-
ting for type 2 records. WARN is still in effect for type 1 and type 3 records.

DUPLICATE Subcommand

DUPLICATE controls whether the program issues a warning when it encounters more than one
record of each type for a single case.

• DUPLICATE on RECORD TYPE can be used for grouped files only. DUPLICATE cannot be
used for mixed or nested files.

• The only specification is a single keyword. WARN is the default.

• DUPLICATE on RECORD TYPE applies only to those records specified by that RECORD
TYPE command. The treatment of duplicate records for record types without DUPLICATE
specification is determined by the DUPLICATE subcommand on FILE TYPE.

• Regardless of the specification on DUPLICATE, only the last record from a set of dupli-
cates is included in the working data file.

WARN Issue a warning message. The program issues a message and the first 80
characters of the last record of the duplicate set of record types. This is the
default.

NOWARN Suppress the warning message.

Example
* Specifying DUPLICATE on RECORD TYPE for a grouped file.

FILE TYPE GROUPED FILE=HUBDATA RECORD=#RECID 80 CASE=ID 1-5.
RECORD TYPE 1.
DATA LIST /MOHIRED YRHIRED 12-15 DEPT79 TO DEPT82 SEX 16-20.
RECORD TYPE 2 DUPLICATE=NOWARN.
DATA LIST /SALARY79 TO SALARY82 6-25
 HOURLY81 HOURLY82 40-53 (2) PROMO81 72 AGE 54-55 RAISE82 66-70.
RECORD TYPE 3.
DATA LIST /JOBCAT 6 NAME 25-48 (A).
END FILE TYPE.

• DUPLICATE is not specified on FILE TYPE. Therefore the default DUPLICATE=WARN is in
effect for all record types.

• DUPLICATE=NOWARN is specified on the second RECORD TYPE, overriding the FILE
TYPE setting for type 2 records. WARN is still in effect for type 1 and type 3 records.

SPREAD Subcommand

SPREAD controls whether the values for variables defined for a record type are spread to all
related cases.

712 RECORD TYPE

• SPREAD can be used for nested files only. SPREAD cannot be used for mixed or
grouped files.

• The only specification is a single keyword. YES is the default.

• SPREAD=NO applies only to the record type specified on that RECORD TYPE command.
The default YES is in effect for all other defined record types.

YES Spread the values from the specified record type to all related cases. This is the
default.

NO Spread the values from the specified type only to the first related case. All other
cases built from the same record are assigned the system-missing value for the vari-
ables defined on the record type.

Example
* A nested file.

FILE TYPE NESTED RECORD=#RECID 6 CASE=ACCID 1-4.
RECORD TYPE 1.
DATA LIST /ACC_NO 9-11 WEATHER 12-13
 STATE 15-16 (A) DATE 18-24 (A).
RECORD TYPE 2 SPREAD=NO.
DATA LIST /STYLE 11 MAKE 13 OLD 14
 LICENSE 15-16 (A) INSURNCE 18-21 (A).
RECORD TYPE 3.
DATA LIST /PSNGR_NO 11 AGE 13-14 SEX 16 (A)
 INJURY 18 SEAT 20-21 (A) COST 23-24.
END FILE TYPE.

BEGIN DATA
0001 1 322 1 IL 3/13/88 /* Type 1: accident record
0001 2 1 44MI 134M /* Type 2: vehicle record
0001 3 1 34 M 1 FR 3 /* Type 3: person record
0001 2 2 16IL 322F /* vehicle record
0001 3 1 22 F 1 FR 11 /* person record
0001 3 2 35 M 1 FR 5 /* person record
0001 3 3 59 M 1 BK 7 /* person record
0001 2 3 21IN 146M /* vehicle record
0001 3 1 46 M 0 FR 0 /* person record
END DATA.

• The accident record (type 1) is spread to all related cases (in this example, all cases).

• The first vehicle record has one related person record. The values for STYLE, MAKE, OLD,
LICENSE, and INSURNCE are spread to the case built for the person record.

• The second vehicle record has three related person records. The values for STYLE, MAKE,
OLD, LICENSE, and INSURNCE are spread only to the case built from the first person record.
The other two cases have the system-missing values for STYLE, MAKE, OLD, LICENSE, and
INSURNCE.

• The third vehicle record has one related person record, and the values for type 2 records
are spread to that case.

713

REFORMAT

REFORMAT {ALPHA } = varlist [/...]
 {NUMERIC}

Example:
REFORMAT ALPHA=STATE /NUMERIC=HOUR1 TO HOUR6.

Overview

REFORMAT converts variables from BMDP files to variables for SPSS-format data files. It
also converts very old versions of SPSS-format data files to current SPSS-format data files.
REFORMAT can change the print formats, write formats, and missing-value specifications for
variables from alphanumeric to numeric, or from numeric to alphanumeric.

Basic Specification

The basic specification is ALPHA and a list of variables or NUMERIC and a list of variables.
• The ALPHA subcommand declares variables as string variables. The NUMERIC subcom-

mand declares variables as numeric variables.

• If both ALPHA and NUMERIC are specified, they must be separated by a slash.

Operations

• REFORMAT always assigns the print and write format F8.2 (or the format specified on
the SET command) to variables specified after NUMERIC and format A4 to variables
specified after ALPHA.

• Formats cannot be specified on REFORMAT. To define different formats for numeric
variables, use the PRINT FORMATS, WRITE FORMATS, or FORMATS commands. To de-
clare new format widths for string variables, use the STRING and COMPUTE commands
to perform data transformations.

• Missing-value specifications for variables named with both ALPHA and NUMERIC are
also changed to conform to the new formats.

• The SAVE or XSAVE commands can be used to save the reformatted variables in an
SPSS-format data file. This avoids having to reformat the variables each time the SPSS-
format or BMDP data set is used.

714 REFORMAT

Example

* Convert an old SPSS-format file to a new SPSS-format data file.

GET FILE R9FILE.
REFORMAT ALPHA=STATE /NUMERIC=HOUR1 TO HOUR6.
STRING XSTATE (A2) /NAME1 TO NAME6 (A15).
COMPUTE XSTATE=STATE.
FORMATS HOUR1 TO HOUR6 (F2.0).
SAVE OUTFILE=NEWFILE /DROP=STATE

/RENAME=(XSTATE=STATE).

• GET accesses the old SPSS-format data file.

• REFORMAT converts variable STATE to a string variable with an A4 format and variables
HOUR1 to HOUR6 to numeric variables with F8.2 formats.

• STRING declares XSTATE as a string variable with two positions.

• COMPUTE transfers the information from the variable STATE to the new string variable
XSTATE.

• FORMATS changes the F8.2 formats for HOUR1 to HOUR6 to F2.0 formats.

• SAVE saves a new SPSS-format data file. The DROP subcommand drops the old variable
STATE. RENAME renames the new string variable XSTATE to the original variable name
STATE.

715

REGRESSION

REGRESSION [MATRIX=[IN({file})] [OUT({file})]]
 {* } {* }

 [/VARIABLES={varlist }]
 {(COLLECT)**}
 {ALL }

 [/DESCRIPTIVES=[DEFAULTS] [MEAN] [STDDEV] [CORR] [COV]
 [VARIANCE] [XPROD] [SIG] [N] [BADCORR]
 [ALL] [NONE**]]

 [/SELECT={varname relation value}

 [/MISSING=[{LISTWISE** }] [INCLUDE]]
 {PAIRWISE }
 {MEANSUBSTITUTION}

 [/REGWGT=varname]

 [/STATISTICS=[DEFAULTS**] [R**] [COEFF**] [ANOVA**] [OUTS**]
 [ZPP] [LABEL] [CHA] [CI] [F] [BCOV] [SES]

[XTX] [COLLIN] [TOL] [SELECTION] [ALL]]

 [/CRITERIA=[DEFAULTS**] [TOLERANCE({0.0001**})] [MAXSTEPS(n)]
 {value }

 [PIN[({0.05**})]] [POUT[({0.10**})]]
 {value } {value }

 [FIN[({3.84 })]] [FOUT[({2.71 })]]
 {value} {value}

 [CIN[({ 95**})]]]
 {value}

 [/{NOORIGIN**}]
 {ORIGIN }

 /DEPENDENT=varlist

 [/METHOD=]{STEPWISE [varlist] } [...] [/...]
 {FORWARD [varlist] }
 {BACKWARD [varlist] }
 {ENTER [varlist] }
 {REMOVE varlist }
 {TEST(varlist)(varlist)...}

 [/OUTFILE={COVB (filename)}]
 {CORB (filename)}

**Default if the subcommand is omitted.

Example:
REGRESSION VARIABLES=POP15,POP75,INCOME,GROWTH,SAVINGS
/DEPENDENT=SAVINGS
/METHOD=ENTER POP15,POP75,INCOME
/METHOD=ENTER GROWTH.

716 REGRESSION

Overview

REGRESSION calculates multiple regression equations and associated statistics and plots.
REGRESSION also calculates collinearity diagnostics, predicted values, residuals, measures
of fit and influence, and several statistics based on these measures (see the section on resid-
uals beginning on p. 731).

Options

Input and Output Control Subcommands. DESCRIPTIVES requests descriptive statistics on the
variables in the analysis. SELECT estimates the model based on a subset of cases. REGWGT
specifies a weight variable for estimating weighted least-squares models. MISSING specifies
the treatment of cases with missing values. MATRIX reads and writes matrix data files.

Equation-Control Subcommands. These optional subcommands control the calculation and
display of statistics for each equation. STATISTICS controls the statistics displayed for the
equation(s) and the independent variable(s), CRITERIA specifies the criteria used by the
variable selection method, and ORIGIN specifies whether regression is through the origin.

Analysis of Residuals, Fit, and Influence. The optional subcommands that analyze and plot
residuals and add new variables to the working data file containing predicted values, residu-
als, measures of fit and influence, or related information, are described starting on p. 731.
These subcommands apply to the final equation.

Basic Specification

The basic specification is DEPENDENT, which initiates the equation(s) and defines at least
one dependent variable, followed by METHOD, which specifies the method for selecting
independent variables.

• By default, all variables named on DEPENDENT and METHOD are used in the analysis.

• The default display for each equation includes a Model Summary table showing R2, an
ANOVA table, a Coefficients table displaying related statistics for variables in the equa-
tion, and an Excluded Variables table displaying related statistics for variables not yet in
the equation.

• By default, all cases in the working data file with valid values for all selected variables
are used to compute the correlation matrix on which the regression equations are based.
The default equations include a constant (intercept).

REGRESSION 717

Subcommand Order

The standard subcommand order for REGRESSION is

REGRESSION MATRIX=...
 /VARIABLES=...
 /DESCRIPTIVES=...
 /SELECT=...
 /MISSING=...
 /REGWGT=...

• Only one equation block is allowed per REGRESSION command.

• Subcommands listed outside the equation block must be specified before any subcom-
mands within the block.

• When used, MATRIX must be specified first.

• An equation block can contain multiple METHOD subcommands. These methods are
applied, one after the other, to the estimation of the equation for that block.

• The STATISTICS, CRITERIA, and ORIGIN/NOORIGIN subcommands must precede the
DEPENDENT subcommand.

• The RESIDUALS, CASEWISE, SCATTERPLOT, SAVE, PARTIALPLOT and OUTFILE sub-
commands must follow the last METHOD subcommand in an equation block and apply
only to the final equation after all METHOD subcommands have been processed. These
subcommands are discussed in the section on residuals beginning on p. 731.

Syntax Rules

• VARIABLES can be specified only once. If omitted, VARIABLES defaults to COLLECT.

 Equation Block

 /STATISTICS=...
 /CRITERIA=...
 /ORIGIN
 /DEPENDENT=...

 Method Block(s)

 /METHOD=...
 [/METHOD...]...

 /RESIDUALS=...
 /SAVE=...
 /CASEWISE=...
 /SCATTERPLOT=...
 /PARTIALPLOT=...
 /OUTFILE = ...

718 REGRESSION

• The DEPENDENT subcommand can be specified only once and must be followed imme-
diately by one or more METHOD subcommands.

• CRITERIA, STATISTICS, and ORIGIN must be specified before DEPENDENT and METHOD.
If any of these subcommands are specified more than once, only the last specified is in
effect for all subsequent equations.

• More than one variable can be specified on the DEPENDENT subcommand. An equation
is estimated for each.

• If no variables are specified on METHOD, all variables named on VARIABLES but not on
DEPENDENT are considered for selection.

Operations

• REGRESSION calculates a correlation matrix that includes all variables named on
VARIABLES. All equations requested on the REGRESSION command are calculated
from the same correlation matrix.

• The MISSING, DESCRIPTIVES, and SELECT subcommands control the calculation of the
correlation matrix and associated displays.

• If multiple METHOD subcommands are specified, they operate in sequence on the equa-
tions defined by the preceding DEPENDENT subcommand.

• Only independent variables that pass the tolerance criterion are candidates for entry into
the equation (see the CRITERIA subcommand on p. 723).

Example

REGRESSION VARIABLES=POP15,POP75,INCOME,GROWTH,SAVINGS
/DEPENDENT=SAVINGS
/METHOD=ENTER POP15,POP75,INCOME
/METHOD=ENTER GROWTH.

• VARIABLES calculates a correlation matrix of five variables for use by REGRESSION.

• DEPENDENT defines a single equation, with SAVINGS as the dependent variable.
• The first METHOD subcommand enters POP15, POP75, and INCOME into the equation.

• The second METHOD subcommand adds GROWTH to the equation containing POP15 to
INCOME.

VARIABLES Subcommand

VARIABLES names all the variables to be used in the analysis.

• The minimum specification is a list of two variables or the keyword ALL or COLLECT.
COLLECT, which must be specified in parentheses, is the default.

• Only one VARIABLES subcommand is allowed and it must precede any DEPENDENT or
METHOD subcommands.

• You can use keyword TO to refer to consecutive variables in the working data file.

REGRESSION 719

• The order of variables in the correlation matrix constructed by REGRESSION is the same
as their order on VARIABLES. If (COLLECT) is used, the order of variables in the correla-
tion matrix is the order in which they are first listed on the DEPENDENT and METHOD sub-
commands.

ALL Include all user-defined variables in the working data file.

(COLLECT) Include all variables named on the DEPENDENT and METHOD subcom-
mands. COLLECT is the default if the VARIABLES subcommand is omitted.
COLLECT must be specified in parentheses. If COLLECT is used, the METHOD
subcommands must specify variable lists.

Example
REGRESSION VARIABLES=(COLLECT)
/DEPENDENT=SAVINGS
/METHOD=STEP POP15 POP75 INCOME
/METHOD=ENTER GROWTH.

• COLLECT requests that the correlation matrix include SAVINGS, POP15, POP75, INCOME,
and GROWTH. Since COLLECT is the default, the VARIABLES subcommand could have
been omitted.

• The DEPENDENT subcommand defines a single equation in which SAVINGS is the depen-
dent variable.

• The first METHOD subcommand requests that the block of variables POP15, POP75, and
INCOME be considered for inclusion using a stepwise procedure.

• The second METHOD subcommand adds variable GROWTH to the equation.

DEPENDENT Subcommand

DEPENDENT specifies a list of variables and requests that an equation be built for each.
DEPENDENT is required.

• The minimum specification is a single variable. There is no default variable list.

• Only one DEPENDENT subcommand can be specified. It must be followed by at least one
METHOD subcommand.

• Keyword TO on a DEPENDENT subcommand refers to the order in which variables are
specified on the VARIABLES subcommand. If VARIABLES=(COLLECT), TO refers to the
order of variables in the working data file.

• If DEPENDENT names more than one variable, an equation is built for each using the same
independent variables and methods.

METHOD Subcommand

METHOD specifies a variable selection method and names a block of variables to be evaluated
using that method. METHOD is required.

• The minimum specification is a method keyword and, for some methods, a list of vari-
ables. The actual keyword METHOD can be omitted.

720 REGRESSION

• When more than one METHOD subcommand is specified, each METHOD subcommand is
applied to the equation that resulted from the previous METHOD subcommands.

• The default variable list for methods FORWARD, BACKWARD, STEPWISE, and ENTER
consists of all variables named on VARIABLES that are not named on the DEPENDENT
subcommand. If VARIABLES=(COLLECT), the variables must be specified for these
methods.

• There is no default variable list for the REMOVE and TEST methods.

• Keyword TO in a variable list on METHOD refers to the order in which variables are spec-
ified on the VARIABLES subcommand. If VARIABLES=(COLLECT), TO refers to the order
of variables in the working data file.

The available stepwise methods are as follows:

BACKWARD [varlist] Backward elimination. Variables in the block are considered for
removal. At each step, the variable with the largest probability-of-F
value is removed, provided that the value is larger than POUT (see the
CRITERIA subcommand on p. 723). If no variables are in the equation
when BACKWARD is specified, all independent variables in the block
are first entered.

FORWARD [varlist] Forward entry. Variables in the block are added to the equation one
at a time. At each step, the variable not in the equation with the small-
est probability of F is entered if the value is smaller than PIN (see the
CRITERIA subcommand on p. 723).

STEPWISE [varlist] Stepwise selection. If there are independent variables already in the
equation, the variable with the largest probability of F is removed if
the value is larger than POUT. The equation is recomputed without
the variable and the process is repeated until no more independent
variables can be removed. Then, the independent variable not in the
equation with the smallest probability of F is entered if the value is
smaller than PIN. All variables in the equation are again examined
for removal. This process continues until no variables in the equa-
tion can be removed and no variables not in the equation are eligible
for entry, or until the maximum number of steps has been reached
(see the CRITERIA subcommand on p. 723).

The methods that enter or remove the entire variable block in a single step are as follows:

ENTER [varlist] Forced entry. All variables specified are entered in a single step in
order of decreasing tolerance. You can control the order in which vari-
ables are entered by specifying the variables on multiple METH-
OD=ENTER subcommands.

REMOVE varlist Forced removal. All variables specified are removed in a single step.
REMOVE requires a variable list.

TEST (varlist) (varlist) R2 change and its significance for sets of independent variables. This
method first adds all variables specified on TEST to the current
equation. It then removes in turn each subset from the equation and
displays requested statistics. Specify test subsets in parentheses. A
variable can be used in more than one subset, and each subset can

REGRESSION 721

include any number of variables. Variables named on TEST remain in
the equation when the method is completed.

Example
REGRESSION VARIABLES=POP15 TO GROWTH, SAVINGS
/DEPENDENT=SAVINGS
/METHOD=STEPWISE
/METHOD=ENTER.

• STEPWISE applies the stepwise procedure to variables POP15 to GROWTH.

• All variables not in the equation when the STEPWISE method is completed will be forced
into the equation with ENTER.

Example
REGRESSION VARIABLES=(COLLECT)
/DEPENDENT=SAVINGS
/METHOD=TEST(MEASURE3 TO MEASURE9)(MEASURE3,INCOME)
/METHOD=ENTER GROWTH.

• The VARIABLES=(COLLECT) specification assembles a correlation matrix that includes all
variables named on the DEPENDENT and METHOD subcommands.

• REGRESSION first builds the full equation of all the variables named on the first METHOD
subcommand: SAVINGS regressed on MEASURE3 to MEASURE9 and INCOME. For each
set of test variables (MEASURE3 to MEASURE9, and MEASURE3 and INCOME), the R2

change, F, probability, sums of squares, and degrees of freedom are displayed.

• GROWTH is added to the equation by the second METHOD subcommand. Variables
MEASURE3 to MEASURE9 and INCOME are still in the equation when this subcom-
mand is executed.

STATISTICS Subcommand

STATISTICS controls the display of statistics for the equation and for the independent variables.

• If STATISTICS is omitted or if it is specified without keywords, R, ANOVA, COEFF, and
OUTS are displayed (see below).

• If any statistics are specified on STATISTICS, only those statistics specifically requested
are displayed.

• STATISTICS must be specified before DEPENDENT and METHOD subcommands. The last
specified STATISTICS affects all equations.

Global Statistics

DEFAULTS R, ANOVA, COEFF, and OUTS. These are displayed if STATISTICS is omit-
ted or if it is specified without keywords.

ALL All statistics except F.

722 REGRESSION

Equation Statistics

R Multiple R. R includes R2, adjusted R2, and standard error of the estimate dis-
played in the Model Summary table.

ANOVA Analysis of variance table. This option includes regression and residual sums
of squares, mean square, F, and probability of F displayed in the ANOVA
table.

CHA Change in R2. This option includes the change in R2 between steps, along
with the corresponding F and its probability, in the Model Summary table.
For each equation, F and its probability are also displayed.

BCOV Variance-covariance matrix for unstandardized regression coefficients. The
statistics are displayed in the Coefficient Correlations table.

XTX Swept correlation matrix.

COLLIN Collinearity diagnostics (Belsley et al., 1980). COLLIN includes the variance-
inflation factors (VIF) displayed in the Coefficients table, and the eigenvalues
of the scaled and uncentered cross-products matrix, condition indexes, and
variance-decomposition proportions displayed in the Collinearity Diagnostics
table.

SELECTION Selection statistics. This option includes Akaike information criterion
(AIK), Ameniya’s prediction criterion (PC), Mallows conditional mean
squared error of prediction criterion (Cp), and Schwarz Bayesian criterion
(SBC) (Judge et al., 1980). The statistics are displayed in the Model Summa-
ry table.

Statistics for the Independent Variables

COEFF Regression coefficients. This option includes regression coefficients (B), standard
errors of the coefficients, standardized regression coefficients (beta), t, and two-
tailed probability of t. The statistics are displayed in the Coefficients table.

OUTS Statistics for variables not yet in the equation that have been named on METHOD
subcommands for the equation. OUTS displays the Excluded Variables table show-
ing beta, t, two-tailed probability of t, and minimum tolerance of the variable if it
were the only variable entered next.

ZPP Zero-order, part, and partial correlation. The statistics are displayed in the Coeffi-
cients table.

CI 95% confidence interval for the unstandardized regression coefficients. The statis-
tics are displayed in the Coefficients table.

SES Approximate standard error of the standardized regression coefficients. (Meyer &
Younger, 1976.) The statistics are displayed in the Coefficients table.

TOL Tolerance. This option displays tolerance for variables in the equation in the Coef-
ficients table. For variables not yet entered into the equation, TOL displays in the

REGRESSION 723

Excluded Variables table the tolerance each variable would have if it were the only
variable entered next.

F F value for B and its probability. This is displayed instead of the t value in the
Coefficients or Excluded Variables table.

CRITERIA Subcommand

CRITERIA controls the statistical criteria used to build the regression equations. The way in
which these criteria are used depends on the method specified on METHOD. The default cri-
teria are noted in the description of each CRITERIA keyword below.
• The minimum specification is a criterion keyword and its arguments, if any.

• If CRITERIA is omitted or included without specifications, the default criteria are in effect.

• The CRITERIA subcommand must be specified before DEPENDENT and METHOD sub-
commands. The last specified CRITERIA affects all equations.

Tolerance and Minimum Tolerance Tests

Variables must pass both tolerance and minimum tolerance tests in order to enter and remain
in a regression equation. Tolerance is the proportion of the variance of a variable in the equa-
tion that is not accounted for by other independent variables in the equation. The minimum
tolerance of a variable not in the equation is the smallest tolerance any variable already in the
equation would have if the variable being considered were included in the analysis.

If a variable passes the tolerance criteria, it is eligible for inclusion based on the method
in effect.

Criteria for Variable Selection

• The ENTER, REMOVE, and TEST methods use only the TOLERANCE criterion.

• BACKWARD removes variables according to the probability of F-to-remove (keyword
POUT). Specify FOUT to use F-to-remove instead.

• FORWARD enters variables according to the probability of F-to-enter (keyword PIN).
Specify FIN to use F-to-enter instead.

• STEPWISE uses both PIN and POUT (or FIN and FOUT) as criteria. If the criterion for entry
(PIN or FIN) is less stringent than the criterion for removal (POUT or FOUT), the same vari-
able can cycle in and out until the maximum number of steps is reached. Therefore, if PIN
is larger than POUT or FIN is smaller than FOUT, REGRESSION adjusts POUT or FOUT and
issues a warning.

• The values for these criteria are specified in parentheses. If a value is not specified, the
default values are used.

DEFAULTS PIN(0.05), POUT(0.10), and TOLERANCE(0.0001). These are the de-
faults if CRITERIA is omitted. If criteria have been changed, DEFAULTS
restores these defaults.

724 REGRESSION

PIN[(value)] Probability of F-to-enter. The default value is 0.05. Either PIN or FIN
can be specified. If more than one is used, the last one specified is in
effect.

FIN[(value)] F-to-enter. The default value is 3.84. Either PIN or FIN can be speci-
fied. If more than one is used, the last one specified is in effect.

POUT[(value)] Probability of F-to-remove. The default value is 0.10. Either POUT or
FOUT can be specified. If more than one is used, the last one specified
is in effect.

FOUT[(value)] F-to-remove. The default value is 2.71. Either POUT or FOUT can be
specified. If more than one is used, the last one specified is in effect.

TOLERANCE[(value)] Tolerance. The default value is 0.0001. If the specified tolerance is
very low, REGRESSION issues a warning.

MAXSTEPS[(n)] Maximum number of steps. The value of MAXSTEPS is the sum of the
maximum number of steps for each method for the equation. The
default values are, for the BACKWARD or FORWARD methods, the
number of variables meeting PIN/POUT or FIN/FOUT criteria, and for
the STEPWISE method, twice the number of independent variables.

Confidence Intervals

CIN[(value)] Reset the value of the percent for confidence intervals. The default is
95%. The specified value sets the percentage interval used in the com-
putation of temporary variable types MCIN and ICIN. (See the list of
temporary variable types on p. 732.)

Example
REGRESSION VARIABLES=POP15 TO GROWTH, SAVINGS
/CRITERIA=PIN(.1) POUT(.15)
/DEPENDENT=SAVINGS
/METHOD=FORWARD.

• The CRITERIA subcommand relaxes the default criteria for entry and removal for the
FORWARD method. Note that the specified PIN is less than POUT.

ORIGIN and NOORIGIN Subcommands

ORIGIN and NOORIGIN control whether or not the constant is suppressed. By default, the
constant is included in the model (NOORIGIN).

• The specification is either the ORIGIN or NOORIGIN subcommand.
• ORIGIN and NOORIGIN must be specified before the DEPENDENT and METHOD subcom-

mands. The last specified remains in effect for all equations.

• ORIGIN requests regression through the origin. The constant term is suppressed.

• If you specify ORIGIN, statistics requested on the DESCRIPTIVES subcommand are com-
puted as if the mean were 0.

REGRESSION 725

• ORIGIN and NOORIGIN affect the way the correlation matrix is built. If matrix materials
are used as input to REGRESSION, the keyword that was in effect when the matrix was
written should be in effect when that matrix is read.

Example
REGRESSION VAR=(COL)
/ORIGIN
/DEP=HOMICIDE
/METHOD=ENTER POVPCT.

• The subcommand VAR=(COL) builds a correlation matrix that includes HOMICIDE,
POVPCT, and SOUTHPCT.

• The REGRESSION command requests an equation that regresses HOMICIDE on POVPCT
and suppresses the constant (ORIGIN).

REGWGT Subcommand

The only specification on REGWGT is the name of the variable containing the weights to be
used in estimating a weighted least-squares model. With REGWGT the default display is the
usual REGRESSION display.

• REGWGT is a global subcommand.

• If more than one REGWGT subcommand is specified on a REGRESSION procedure, only
the last one is in effect.

• REGWGT can be used with MATRIX OUT but not with MATRIX IN.

• Residuals saved from equations using the REGWGT command are not weighted. To obtain
weighted residuals, multiply the residuals created with SAVE by the square root of the
weighting variable in a COMPUTE statement.

• REGWGT is in effect for all equations and affects the way the correlation matrix is built.
Thus, if REGWGT is specified on a REGRESSION procedure that writes matrix materials
to a matrix data file, subsequent REGRESSION procedures using that file will be automat-
ically weighted.

Example
REGRESSION VARIABLES=GRADE GPA STARTLEV TREATMNT
/DEPENDENT=GRADE
/METHOD=ENTER
/SAVE PRED(P).
COMPUTE WEIGHT=1/(P*(1-P)).
REGRESSION VAR=GRADE GPA STARTLEV TREATMNT
/REGWGT=WEIGHT
/DEP=GRADE
/METHOD=ENTER.

• VARIABLES builds a correlation matrix that includes GRADE, GPA, STARTLEV, and
TREATMNT.

• DEPENDENT identifies GRADE as the dependent variable.

• METHOD regresses GRADE on GPA, STARTLEV, and TREATMNT.

726 REGRESSION

• SAVE saves the predicted values from the regression equation as variable P in the working
data file (see the SAVE subcommand on p. 738).

• COMPUTE creates the variable WEIGHT as a transformation of P.

• The second REGRESSION procedure performs a weighted regression analysis on the
same set of variables using WEIGHT as the weighting variable.

Example
REGRESSION VAR=GRADE GPA STARTLEV TREATMNT
/REGWGT=WEIGHT
/DEP=GRADE
/METHOD=ENTER
/SAVE RESID(RGRADE).
COMPUTE WRGRADE=RGRADE * SQRT(WEIGHT).

• This example illustrates the use of COMPUTE with SAVE to weight residuals.

• REGRESSION performs a weighted regression analysis of GRADE on GPA, STARTLEV,
and TREATMNT, using WEIGHT as the weighting variable.

• SAVE saves the residuals as RGRADE (see the SAVE subcommand on p. 738). These resid-
uals are not weighted.

• COMPUTE creates variable WRGRADE, which contains the weighted residuals.

DESCRIPTIVES Subcommand

DESCRIPTIVES requests the display of correlations and descriptive statistics. By default, de-
scriptive statistics are not displayed.

• The minimum specification is simply the subcommand keyword DESCRIPTIVES, which
obtains MEAN, STDDEV, and CORR.

• If DESCRIPTIVES is specified with keywords, only those statistics specifically requested
are displayed.

• Descriptive statistics are displayed only once for all variables named or implied on
VARIABLES.

• Descriptive statistics are based on all valid cases for each variable if PAIRWISE or
MEANSUBSTITUTION has been specified on MISSING. Otherwise, only cases with valid
values for all variables named or implied on the VARIABLES subcommand are included
in the calculation of descriptive statistics.

• If regression through the origin has been requested (subcommand ORIGIN), statistics are
computed as if the mean were 0.

NONE No descriptive statistics. This is the default if the subcommand is omitted.

DEFAULTS MEAN, STDDEV, and CORR. This is the same as specifying DESCRIPTIVES
without specifications.

MEAN Display variable means in the Descriptive Statistics table.

STDDEV Display variable standard deviations in the Descriptive Statistics table.

VARIANCE Display variable variances in the Descriptive Statistics table.

REGRESSION 727

CORR Display Pearson correlation coefficients in the Correlations table.

SIG Display one-tailed probabilities of the correlation coefficients in the Corre-
lations table.

BADCORR Display the correlation coefficients only if some coefficients cannot be
computed.

COV Display covariance in the Correlations table.

XPROD Display sum of squares and cross-product deviations from the mean in the
Correlations table.

N Display numbers of cases used to compute correlation coefficients in the
Correlations table.

ALL All descriptive statistics.

Example
REGRESSION DESCRIPTIVES=DEFAULTS SIG COV
/VARIABLES=AGE,FEMALE,YRS_JOB,STARTPAY,SALARY
/DEPENDENT=SALARY
/METHOD=ENTER STARTPAY
/METHOD=ENTER YRS_JOB.

• The variable means, standard deviations, and number of cases are displayed in the
Descriptive Statistics table and the correlation coefficients, one-tailed probabilities of the
correlation coefficients, and covariance are displayed in the Correlations table.

• Statistics are displayed for all variables named on VARIABLES, even though only variables
SALARY, STARTPAY, and YRS_JOB are used to build the equations.

• STARTPAY is entered into the equation by the first METHOD subcommand. YRS_JOB is
entered by the second METHOD subcommand.

SELECT Subcommand

By default, all cases in the working data file are considered for inclusion on REGRESSION.
Use SELECT to include a subset of cases in the correlation matrix and resulting regression
statistics.

• The required specification on SELECT is a logical expression.
• The syntax for the SELECT subcommand is as follows:

/SELECT=varname relation value

• The variable named on SELECT should not be specified on the VARIABLES subcommand.

• The relation can be EQ, NE, LT, LE, GT, or GE.

• Only cases for which the logical expression on SELECT is true are included in the calcu-
lation of the correlation matrix and regression statistics.

• All other cases, including those with missing values for the variable named on SELECT,
are not included in the computations.

728 REGRESSION

• If SELECT is specified, residuals and predicted values are calculated and reported sepa-
rately for both selected and unselected cases by default (see the RESIDUALS subcommand
on p. 734).

• Cases deleted from the working data file with SELECT IF, a temporary SELECT IF, or
SAMPLE are not passed to REGRESSION and are not included among either the selected
or unselected cases.

• You should not use a variable from a temporary transformation as a selection variable,
since REGRESSION reads the data file more than once if any residuals subcommands are
specified. A variable created from a temporary transformation (with IF and COMPUTE
statements) will disappear when the data are read a second time, and a variable that is the
result of a temporary RECODE will change.

Example
REGRESSION SELECT SEX EQ ’M’
/VARIABLES=AGE,STARTPAY,YRS_JOB,SALARY
/DEPENDENT=SALARY
/METHOD=STEP
/RESIDUALS=NORMPROB.

• Only cases with the value M for SEX are included in the correlation matrix calculated by
REGRESSION.

• Separate normal P_P plots are displayed for cases with SEX equal to M and for other
cases (see the RESIDUALS subcommand on p. 734).

MATRIX Subcommand

MATRIX reads and writes matrix data files. It can read files written by previous REGRESSION
procedures or files written by other procedures such as CORRELATIONS. The matrix materi-
als REGRESSION writes also include the mean, standard deviation, and number of cases used
to compute each coefficient. This information immediately precedes the correlation matrix
in the matrix file (see “Format of the Matrix Data File” on p. 729).

• Either IN or OUT and a matrix file in parentheses are required on MATRIX.
• When used, MATRIX must be the first subcommand specified in a REGRESSION procedure.

• ORIGIN and NOORIGIN affect the way the correlation matrix is built. If matrix materials
are used as input to REGRESSION, the keyword that was in effect when the matrix was
written should be in effect when that matrix is read.

OUT (filename) Write a matrix data file. Specify either a filename or an asterisk, enclosed in
parentheses. If you specify a filename, the file is stored on disk and can be
retrieved at any time. If you specify an asterisk (*), the matrix data file re-
places the working file but is not stored on disk unless you use SAVE or
XSAVE.

IN (filename) Read a matrix data file. If the matrix data file is the working data file, specify
an asterisk (*) in parentheses. If the matrix data file is another file, specify
the filename in parentheses. A matrix file read from an external file does not
replace the working data file.

REGRESSION 729

Format of the Matrix Data File

• The file has two special variables created by the program: ROWTYPE_ and VARNAME_.

• ROWTYPE_ is a short string variable with values MEAN, STDDEV, N, and CORR (for
Pearson correlation coefficient).

• VARNAME_ is a short string variable whose values are the names of the variables used to
form the correlation matrix. When ROWTYPE_ is CORR, VARNAME_ gives the variable
associated with that row of the correlation matrix.

• The remaining variables in the file are the variables used to form the correlation matrix.

• To suppress the constant term when ORIGIN is used in the analysis, value OCORR (rather
than value CORR) is written to the matrix system file. OCORR indicates that the regres-
sion passes through the origin.

Split Files

• When split-file processing is in effect, the first variables in the matrix data file are the split
variables, followed by ROWTYPE_, the independent variable, VARNAME_, and the depen-
dent variables.

• A full set of matrix materials is written for each subgroup defined by the split variable(s).
• A split variable cannot have the same variable name as any other variable written to the

matrix data file.

• If a split file is in effect when a matrix is written, the same split file must be in effect when
that matrix is read.

Missing Values

• With PAIRWISE treatment of missing values, the matrix of N’s used to compute each co-
efficient is included with the matrix materials.

• With LISTWISE treatment (the default) or MEANSUBSTITUTION, a single N used to calcu-
late all coefficients is included.

Example

REGRESSION MATRIX IN(PAY_DATA) OUT(*)
/VARIABLES=AGE,STARTPAY,YRS_JOB,SALARY
/DEPENDENT=SALARY
/METHOD=STEP.

• MATRIX IN reads the matrix data file PAY_DATA.

• A stepwise regression analysis of SALARY is performed using AGE, STARTPAY, and
YRS_JOB.

• MATRIX OUT replaces the working data file with the matrix data file that was previously
stored in the PAY_DATA file.

730 REGRESSION

MISSING Subcommand

MISSING controls the treatment of cases with missing values. By default, a case that has a
user- or system-missing value for any variable named or implied on VARIABLES is omitted
from the computation of the correlation matrix on which all analyses are based.

• The minimum specification is a keyword specifying a missing-value treatment.

LISTWISE Delete cases with missing values listwise. Only cases with valid values
for all variables named on the current VARIABLES subcommand are
used. If INCLUDE is also specified, only cases with system-missing
values are deleted listwise. LISTWISE is the default if the MISSING
subcommand is omitted.

PAIRWISE Delete cases with missing values pairwise. Each correlation coeffi-
cient is computed using cases with complete data for the pair of vari-
ables correlated. If INCLUDE is also specified, only cases with system-
missing values are deleted pairwise.

MEANSUBSTITUTION Replace missing values with the variable mean. All cases are included
and the substitutions are treated as valid observations. If INCLUDE is
also specified, user-missing values are treated as valid and are includ-
ed in the computation of the means.

INCLUDE Includes cases with user-missing values. All user-missing values are
treated as valid values. This keyword can be specified along with the
methods LISTWISE, PAIRWISE, or MEANSUBSTITUTION.

Example
REGRESSION VARIABLES=POP15,POP75,INCOME,GROWTH,SAVINGS
/DEPENDENT=SAVINGS
/METHOD=STEP
/MISSING=MEANSUBSTITUTION.

• System- and user-missing values are replaced with the means of the variables when the
correlation matrix is calculated.

References

Belsley, D. A., E. Kuh, and R. E. Welsch. 1980. Regression diagnostics: Identifying influential
data and sources of collinearity. New York: John Wiley and Sons.

Berk, K. N. 1977. Tolerance and condition in regression computation. Journal of the American
Statistical Association, 72: 863–66.

Judge, G. G., W. E. Griffiths, R. C. Hill, H. Lutkepohl, and T. C. Lee. 1980. The theory and prac-
tice of econometrics. 2nd ed. New York: John Wiley and Sons.

Meyer, L. S., and M. S. Younger. 1976. Estimation of standardized coefficients. Journal of the
American Statistical Association, 71: 154–57.

731

REGRESSION: Residuals

REGRESSION VARIABLES=varlist /DEPENDENT=varname /METHOD=method

 [/RESIDUALS=[DEFAULTS] [DURBIN] [OUTLIERS({ZRESID })] [ID (varname)]
 {tempvars}

 [NORMPROB({ZRESID })] [HISTOGRAM({ZRESID })]
 {tempvars} {tempvars}

 [SIZE({SEPARATE}]
 {POOLED }

 [/CASEWISE=[DEFAULTS] [{OUTLIERS({3 })}] [PLOT({ZRESID })]
 { {value} } {tempvar}
 {ALL }

 [{DEPENDENT PRED RESID}]]
 {tempvars }

 [/SCATTERPLOT [varname,varname]...[

 [/PARTIALPLOT=[{ALL }]
 {varlist}

 [/OUTFILE={COVB (filename)}]
 {CORB (filename)}

 [/SAVE=tempvar[(newname)] [tempvar[(newname)]...] [FITS]]

Temporary residual variables are:

PRED, ADJPRED, SRESID, MAHAL, RESID, ZPRED, SDRESID, COOK, DRESID, ZRESID,
SEPRED, LEVER, DFBETA, SDBETA, DFFIT, SDFFIT, COVRATIO, MCIN, ICIN

SAVE FITS saves:

DFFIT, SDFIT, DFBETA, SDBETA, COVRATIO

Example:
REGRESSION VARIABLES=SAVINGS INCOME POP15 POP75

/WIDTH=132
/DEPENDENT=SAVINGS
/METHOD=ENTER
/RESIDUALS
/CASEWISE
/SCATTERPLOT (*ZRESID *ZPRED)
/PARTIALPLOT
/SAVE ZRESID(STDRES) ZPRED(STDPRED).

Overview

REGRESSION creates temporary variables containing predicted values, residuals, measures of
fit and influence, and several statistics based on these measures. These temporary variables
can be analyzed within REGRESSION in Casewise Diagnostics tables (CASEWISE subcom-
mand), scatterplots (SCATTERPLOT subcommand), histograms and normal probability plots

732 REGRESSION: Residuals

(RESIDUALS subcommand), and partial regression plots (PARTIALPLOT subcommand). Any of
the residuals subcommands can be specified to obtain descriptive statistics for the predicted
values, residuals, and their standardized versions. Any of the temporary variables can be added
to the working data file with the SAVE subcommand.

Basic Specification

All residuals analysis subcommands are optional. Most have defaults that can be requested
by including the subcommand without any further specifications. These defaults are
described in the discussion of each subcommand below.

Subcommand Order

• The residuals subcommands RESIDUALS, CASEWISE, SCATTERPLOT, and PARTIALPLOT
follow the last METHOD subcommand of any equation for which residuals analysis is re-
quested. Statistics are based on this final equation.

• Residuals subcommands can be specified in any order. All residuals subcommands must
follow the DEPENDENT and METHOD subcommands.

Operations

• Residuals subcommands affect all equations.
• The temporary variables PRED (unstandardized predicted value), ZPRED (standardized

predicted value), RESID (unstandardized residual), and ZRESID (standardized residual)
are calculated and descriptive statistics are displayed whenever any residuals subcom-
mand is specified. If any of the other temporary variables are referred to on the command,
they are also calculated.

• Predicted values and statistics based on predicted values are calculated for every obser-
vation that has valid values for all variables in the equation. Residuals and statistics
based on residuals are calculated for all observations that have a valid predicted value
and a valid value for the dependent variable. The missing-values option therefore affects
the calculation of residuals and predicted values.

• No residuals or predictors are generated for cases deleted from the working data file with
SELECT IF, a temporary SELECT IF, or SAMPLE.

• All variables are standardized before plotting. If the unstandardized version of a variable
is requested, the standardized version is plotted.

• Residuals processing is not available when the working data file is a matrix file or is re-
placed by a matrix file with MATRIX OUT(*) on REGRESSION. If RESIDUALS, CASEWISE,
SCATTERPLOT, PARTIALPLOT, or SAVE are used when MATRIX IN(*) or MATRIX OUT(*) is
specified, the REGRESSION command is not executed.

For each analysis, REGRESSION can calculate the following types of temporary variables:

PRED Unstandardized predicted values.

RESID Unstandardized residuals.

REGRESSION: Residuals 733

DRESID Deleted residuals.

ADJPRED Adjusted predicted values.

ZPRED Standardized predicted values.

ZRESID Standardized residuals.

SRESID Studentized residuals.

SDRESID Studentized deleted residuals. (See Hoaglin & Welsch, 1978.)

SEPRED Standard errors of the predicted values.

MAHAL Mahalanobis distances.

COOK Cook’s distances. (See Cook, 1977.)

LEVER Centered leverage values. (See Velleman & Welsch, 1981.)

DFBETA Change in the regression coefficient that results from the deletion of the ith
case. A DFBETA value is computed for each case for each regression coeffi-
cient generated by a model. (See Belsley et al., 1980.)

SDBETA Standardized DFBETA. An SDBETA value is computed for each case for
each regression coefficient generated by a model. (See Belsley et al., 1980.)

DFFIT Change in the predicted value when the ith case is deleted. (See Belsley et
al., 1980.)

SDFIT Standardized DFFIT. (See Belsley et al., 1980.)

COVRATIO Ratio of the determinant of the covariance matrix with the ith case deleted to
the determinant of the covariance matrix with all cases included. (See Bels-
ley et al., 1980.)

MCIN Lower and upper bounds for the prediction interval of the mean predicted re-
sponse. A lowerbound LMCIN and an upperbound UMCIN are generated. The
default confidence interval is 95%. The confidence interval can be reset with
the CIN subcommand. (See Dillon & Goldstein, 1984.)

ICIN Lower and upper bounds for the prediction interval for a single observation.
A lowerbound LICIN and an upperbound UICIN are generated. The default
confidence interval is 95%. The confidence interval can be reset with the CIN
subcommand. (See Dillon & Goldstein, 1984.)

Example

REGRESSION VARIABLES=SAVINGS INCOME POP15 POP75
/DEPENDENT=SAVINGS
/METHOD=ENTER
/RESIDUALS
/CASEWISE
/SCATTERPLOT (*ZRESID *ZPRED)
/PARTIALPLOT
/SAVE ZRESID(STDRES) ZPRED(STDPRED).

734 REGRESSION: Residuals

• REGRESSION requests a single equation in which SAVINGS is the dependent variable and
INCOME, POP15, and POP75 are independent variables.

• RESIDUALS requests the default residuals output.

• Because residuals processing has been requested, statistics for predicted values, residuals,
and standardized versions of predicted values and residuals are displayed in a Residuals
Statistics table.

• CASEWISE requests a Casewise Diagnostics table for cases whose absolute value of
ZRESID is greater than 3. Values of the dependent variable, predicted value, and residual
are listed for each case.

• SCATTERPLOT requests a plot of the standardized predicted value and the standardized
residual.

• PARTIALPLOT requests partial regression plots for all independent variables.

• SAVE adds the standardized residual and the standardized predicted value to the working
data file as new variables named STDRES and STDPRED.

RESIDUALS Subcommand

RESIDUALS controls the display and labeling of summary information on outliers as well as
the display of the Durbin-Watson statistic and histograms and normal probability plots for
the temporary variables.
• If RESIDUALS is specified without keywords, it displays a histogram of residuals, a normal

probability plot of residuals, the values of $CASENUM and ZRESID for the 10 cases with
the largest absolute value of ZRESID, and the Durbin-Watson test statistic. The histogram
and the normal plot are standardized.

• If any keywords are specified on RESIDUALS, only the requested information and plots
are displayed.

DEFAULTS DURBIN, NORMPROB(ZRESID), HISTOGRAM(ZRESID), OUTLI-
ERS(ZRESID). These are the defaults if RESIDUALS is used without
specifications.

HISTOGRAM(tempvars) Histogram of the temporary variable or variables. The default is
ZRESID. You can request histograms for PRED, RESID, ZPRED,
DRESID, ADJPRED, SRESID, SDRESID, SEPRED, MAHAL, COOK, and
LEVER. The specification of any other temporary variable will result
in an error.

NORMPROB(tempvars) Normal probability (P-P) plot. The default is ZRESID. The other tem-
porary variables for which normal probability plots are available are
PRED, RESID, ZPRED, DRESID, SRESID, and SDRESID. The specifi-
cation of any other temporary variable will result in an error. Normal
probability plots are always displayed in standardized form; therefore,
when PRED, RESID, or DRESID is requested, the standardized equiva-
lent ZPRED, ZRESID or SDRESID is displayed.

OUTLIERS(tempvars) The 10 cases with the largest absolute values of the specified tempo-
rary variables. The default is ZRESID. The output includes the values

REGRESSION: Residuals 735

of $CASENUM and of the temporary variables for the 10 cases. The
other temporary variables available for OUTLIERS are RESID, SRESID,
SDRESID, DRESID, MAHAL, and COOK. The specification of any tem-
porary variable other than these will result in an error.

DURBIN Display Durbin-Watson test statistic in the Model Summary table.

ID(varname) ID variable providing case labels for use with point selection mode in
the Chart Editor. Applicable to scatterplots produced by SCATTERPLOT,
PARTIALPLOT, and RESIDUALS. Any variable in the working data file can
be named.

SEPARATE Separate reporting of residuals statistics and plots for selected and
unselected cases. This is the default.

POOLED Pooled plots and statistics using all cases in the working file when
the SELECT subcommand is in effect. (See the SELECT subcom-
mand on p. 727.) This is an alternative to SEPARATE.

Example
 /RESID=DEFAULT ID(SVAR)

• DEFAULT produces the default residuals statistics: Durbin-Watson statistic, a normal
probability plot and histogram of ZRESID, and an outlier listing for ZRESID.

• Descriptive statistics for ZRESID, RESID, PRED, and ZPRED are automatically displayed.

• SVAR is specified as the case identifier on the outlier output.

CASEWISE Subcommand

CASEWISE requests a Casewise Diagnostics table of residuals. You can specify a temporary
residual variable for casewise listing (via the PLOT keyword). You can also specify variables
to be listed in the table for each case.
• If CASEWISE is used without any additional specifications, it displays a Casewise Diag-

nostics table of ZRESID for cases whose absolute value of ZRESID is at least 3. By default,
the values of the case sequence number, DEPENDENT, PRED, and RESID are listed for
each case.

• Defaults remain in effect unless specifically altered.

DEFAULTS OUTLIERS(3), PLOT(ZRESID), DEPENDENT, PRED, and RESID. These
are the defaults if the subcommand is used without specifications.

OUTLIERS(value) List only cases for which the absolute standardized value of the listed vari-
able is at least as large as the specified value. The default value is 3. Key-
word OUTLIERS is ignored if keyword ALL is also present.

ALL Include all cases in the Casewise Diagnostic table. ALL is the alternative to
keyword OUTLIERS.

PLOT(tempvar) List the values of the temporary variable in the Casewise Diagnostics table.
The default temporary variable is ZRESID. Other variables that can be listed

736 REGRESSION: Residuals

are RESID, DRESID, SRESID, and SDRESID. The specification of any tempo-
rary variable other than these will result in an error. When requested, RESID
is standardized and DRESID is Studentized in the output.

tempvars Display the values of these variables next to the casewise list entry for each
case. The default variables are DEPENDENT (the dependent variable), PRED,
and RESID. Any of the other temporary variables can be specified. If an ID
variable is specified on RESIDUALS, the ID variable is also listed.

Example
 /CASEWISE=DEFAULT ALL SRE MAH COOK SDR

• This example requests a Casewise Diagnostics table of the standardized residuals for all
cases.

• ZRESID, the dependent variable, and the temporary variables PRED, RESID, SRESID,
MAHAL, COOK, and SDRESID are for all cases.

SCATTERPLOT Subcommand

SCATTERPLOT names pairs of variables for scatterplots.

• The minimum specification for SCATTERPLOT is a pair of variables in parentheses. There
are no default specifications.

• You can specify as many pairs of variables in parentheses as you want.

• The first variable named in each set of parentheses is plotted along the vertical axis, and
the second variable is plotted along the horizontal axis.

• Plotting symbols are used to represent multiple points occurring at the same position.

• You can specify any variable named on the VARIABLES subcommand.
• You can specify PRED, RESID, ZPRED, ZRESID, DRESID, ADJPRED, SRESID, SDRESID,

SEPRED, MAHAL, COOK, and LEVER. The specification of any other temporary variables
will result in an error.

• Specify an asterisk before temporary variable names to distinguish them from user-
defined variables. For example, use *PRED to specify PRED.

Example
/SCATTERPLOT (*RES,*PRE)(*RES,SAVINGS)

• This example specifies two scatterplots: residuals against predicted values and residuals
against the values of the variable SAVINGS.

PARTIALPLOT Subcommand

PARTIALPLOT requests partial regression plots. Partial regression plots are scatterplots of the
residuals of the dependent variable and an independent variable when both of these variables
are regressed on the rest of the independent variables.

REGRESSION: Residuals 737

• If PARTIALPLOT is included without any additional specifications, it produces a partial
regression plot for every independent variable in the equation. The plots appear in the
order the variables are specified or implied on the VARIABLES subcommand.

• If variables are specified on PARTIALPLOT, only the requested plots are displayed. The
plots appear in the order the variables are listed on the PARTIALPLOT subcommand.

• At least two independent variables must be in the equation for partial regression plots to
be produced.

ALL Plot all independent variables in the equation. This is the default.

varlist Plot the specified variables. Any variable entered into the equation can be
specified.

Example
REGRESSION VARS=PLOT15 TO SAVINGS

/DEP=SAVINGS
/METH=ENTER
/RESID=DEFAULTS
/PARTIAL.

• A partial regression plot is produced for every independent variable in the equation.

OUTFILE Subcommand

OUTFILE saves in an SPSS-format data file the parameter covariance or correlation matrix
with parameter estimates, standard errors, significance values, and residual degrees of free-
dom for each term in the final equation.

• The OUTFILE subcommand must follow the last METHOD subcommand.

• Only one OUTFILE subcommand is allowed. If you specify more than one, only the last
one is executed.

• You must specify one keyword and a valid filename in parentheses. There is no default.

• You cannot save the parameter statistics as the working data file.

COVB (filename) Write the parameter covariance matrix with other statistics. Specify the
filename in full. REGRESSION does not supply an extension.

CORB (filename) Write the parameter correlation matrix with other statistics. Specify the
filename in full. REGRESSION does not supply an extension.

Example
REGRESSION DEPENDENT=Y
/METHOD=ENTER X1 X2
/OUTFILE CORB (covx1x2y.sav).

• The OUTFILE subcommand saves the parameter correlation matrix, and the parameter
estimates, standard errors, significance values and residual degrees of freedom for the
constant term, X1 and X2.

738 REGRESSION: Residuals

SAVE Subcommand

Use SAVE to add one or more residual or fit variables to the working data file.

• The specification on SAVE is one or more of the temporary variable types listed on pp.
732–733, each followed by an optional name in parentheses for the new variable.

• New variable names must be unique.

• If new names are not specified, REGRESSION generates a rootname using a shortened
form of the temporary variable name with a suffix to identify its creation sequence.

• If you specify DFBETA or SDBETA on the SAVE subcommand, the number of new vari-
ables saved is the total number of variables in the equation.

FITS Save all influence statistics. FITS saves DFFIT, SDFIT, DFBETA, SDBETA, and
COVRATIO. You cannot specify new variable names when using this keyword.
Default names are generated.

Example
 /SAVE=PRED(PREDVAL) RESID(RESIDUAL) COOK(CDISTANC)

• This subcommand adds three variables to the end of the working data file: PREDVAL,
containing the unstandardized predicted value for each case; RESIDUAL, containing the
unstandardized residual; and CDISTANC, containing Cook’s distance.

Example
 /SAVE=PRED RESID

• This subcommand adds two variables named PRE_1 and RES_1 to the end of the working
data file.

Example
REGRESSION DEPENDENT=Y
/METHOD=ENTER X1 X2
/SAVE DFBETA(DFBVAR).

• The SAVE subcommand creates and saves three new variables with the names DFBVAR0,
DFBVAR1, and DFBVAR2.

Example
REGRESSION VARIABLES=SAVINGS INCOME POP15 POP75 GROWTH
/DEPENDENT=SAVINGS
/METHOD=ENTER INCOME POP15 POP75
/SAVE=PRED(PREDV) SDBETA(BETA) ICIN.

• The SAVE subcommand adds seven variables to the end of the file: PREDV, containing the
unstandardized predicted value for the case; BETA0, the standardized DFBETA for the
intercept; BETA1, BETA2, and BETA3, the standardized DFBETA’s for the three indepen-
dent variables in the model; LICI_1, the lower bound for the prediction interval for an
individual case; and UICI_1, the upper bound for the prediction interval for an individual
case.

REGRESSION: Residuals 739

References

Belsley, D. A., E. Kuh, and R. E. Welsch. 1980. Regression diagnostics: Identifying influential
data and sources of collinearity. New York: John Wiley and Sons.

Cook, R. D. 1977. Detection of influential observations in linear regression. Technometrics, 19:
15–18.

Dillon, W. R., and M. Goldstein. 1984. Multivariate analysis: Methods and applications. New
York: John Wiley and Sons.

Hoaglin, D. C., and R. E. Welsch. 1978. The hat matrix in regression and ANOVA. American
Statistician, 32: 17–22.

Velleman, P. F., and R. E. Welsch. 1981. Efficient computing of regression diagnostics. American
Statistician, 35: 234–42.

740

RENAME VARIABLES

RENAME VARIABLES {(varname=varname) [(varname ...)]}
 {(varnames=varnames) }

Example:
RENAME VARIABLES (JOBCAT=TITLE).

Overview

RENAME VARIABLES changes the names of variables in the working data file while pre-
serving their original order, values, variable labels, value labels, missing values, and print
and write formats.

Basic Specification

• The basic specification is an old variable name, an equals sign, and the new variable
name. The equals sign is required.

Syntax Rules

• Multiple sets of variable specifications are allowed. Each set can be enclosed in parentheses.

• You can specify a list of old variable names followed by an equals sign and a list of new
variable names. The same number of variables must be specified on both lists. A single
set of parentheses enclosing the entire specification is required for this method.

• Keyword TO can be used on the left side of the equals sign to refer to variables in the
working data file, and on the right side of the equals sign to generate new variable names
(see the TO keyword on p. 20).

• Old variable names do not need to be specified according to their order in the working
data file.

• Name changes take place in one operation. Therefore, variable names can be exchanged
between two variables (see the example on p. 740).

• Multiple RENAME VARIABLES commands are allowed.

• RENAME VARIABLES cannot follow either a TEMPORARY or a MODEL PROGRAM
command.

Example

RENAME VARIABLES (MOHIRED=MOSTART) (YRHIRED=YRSTART).

RENAME VARIABLES 741

• MOHIRED is renamed to MOSTART and YRHIRED to YRSTART. The parentheses are optional.

Example

RENAME VARIABLES (MOHIRED YRHIRED=MOSTART YRSTART).

• The same name changes are specified as in the previous example. The parentheses are
required, since variable lists are used.

Example

RENAME VARIABLES (A=B) (B=A).

• Variable names are exchanged between two variables: A is renamed to B, and B is
renamed to A.

742

REPEATING DATA

REPEATING DATA [FILE=file]

 /STARTS=beg col[-end col] /OCCURS={value }
 {varname}

 [/LENGTH={value }] [/CONTINUED[=beg col[-end col]]]
 {varname}

 [/ID={col loc}=varname] [/{TABLE }]
 {format } {NOTABLE}

 /DATA=variable specifications

Example:
INPUT PROGRAM.
DATA LIST / SEQNUM 2-4 NUMPERS 6-7 NUMVEH 9-10.
REPEATING DATA STARTS=12 /OCCURS=NUMVEH
/DATA=MAKE 1-8 (A) MODEL 9 (A) NUMCYL 10.

END INPUT PROGRAM.

BEGIN DATA
1001 02 02 FORD T8PONTIAC C6
1002 04 01 CHEVY C4
1003 02 03 CADILAC C8FORD T6VW C4
END DATA.
LIST.

Overview

REPEATING DATA reads input cases whose records contain repeating groups of data. For
each repeating group, REPEATING DATA builds one output case in the working data file. All
the repeating groups in the data must contain the same type of information, although the
number of groups for each input case may vary. Information common to the repeating
groups for each input case can be recorded once for that case and then spread to each result-
ing output case. In this respect, a file with a repeating data structure is like a hierarchical file
with both levels of information recorded on a single record rather than on separate record
types. For information on reading hierarchical files, see FILE TYPE—END FILE TYPE.

 REPEATING DATA must be used within an INPUT PROGRAM structure or within a FILE
TYPE structure with mixed or nested data. In an INPUT PROGRAM structure, REPEATING
DATA must be preceded by a DATA LIST command. In a FILE TYPE structure, DATA LIST is
needed only if there are variables to be spread to each resulting output case.

Options

Length of Repeating Groups. If the length of the repeating groups varies across input cases,
you can specify a variable that indicates the length on the LENGTH subcommand. You can
also use LENGTH if you do not want to read all the data in each repeating group.

REPEATING DATA 743

Continuation Records. You can use the CONTINUED subcommand to indicate that the repeat-
ing groups for each input case are contained on more than one record. You can check the val-
ue of an identification variable across records for the same input case using the ID
subcommand.

Summary Tables. You can suppress the display of the table that summarizes the names, loca-
tions, and formats of the variables specified on the DATA subcommand using the NOTABLE
subcommand.

Basic Specification

The basic specification requires three subcommands: STARTS, OCCURS, and DATA.

• STARTS specifies the beginning column of the repeating data segments. When there are
continuation records, STARTS can specify the ending column of the last repeating group
on the first record of each input case.

• OCCURS specifies the number of repeating groups on each input case. OCCURS can spec-
ify a number if the number of repeating groups is the same for all input cases. Otherwise,
OCCURS should specify the name of a variable whose value for each input case indicates
the number of repeating groups for that case.

• DATA specifies names, location within the repeating segment, and format for each variable
to be read from the repeated groups.

Subcommand Order

• DATA must be the last subcommand specified on REPEATING DATA.

• The remaining subcommands can be named in any order.

Syntax Rules

• REPEATING DATA can be specified only within an INPUT PROGRAM structure, or within
a FILE TYPE structure with mixed or nested data. DATA LIST, REPEATING DATA, and any
transformation commands used to build the output cases must be placed within the INPUT
PROGRAM or FILE TYPE structure. Transformations that apply to the output cases should
be specified after the END INPUT PROGRAM or END FILE TYPE command.

• LENGTH must be used if the last variable specified on the DATA subcommand is not read
from the last position of each repeating group or if the length of the repeating groups var-
ies across input cases.

• CONTINUED must be used if repeating groups for each input case are continued on suc-
cessive records.

• The DATA LIST command used with REPEATING DATA must define all fixed-format data
for the records.

744 REPEATING DATA

• Repeating groups are usually recorded at the end of the fixed-format records, but fixed-
format data may follow the repeating data in data structures such as IBM SMF and RMF
records. Use the following sequence in such cases.

DATA LIST .../* Read the fixed-format data before repeating data
REREAD COLUMNS= .../* Skip repeating data
DATA LIST .../* Read the fixed-format data after repeating data
REPEATING DATA ... /*Read repeating data

Operations

• Fixed-location data specified on the DATA LIST are spread to each output case.

• If LENGTH is not specified, the program uses the default length for repeating data groups,
which is determined from specifications on the DATA subcommand. For more information
on the default length, see the LENGTH subcommand on p. 751.

Cases Generated

• The number of output cases generated is the number specified on the OCCURS subcom-
mand. Physical record length or whether fields are non-blank does not affect the number
of cases generated.

• If the number specified for OCCURS is nonpositive or missing, no cases are generated.

Records Read

• If CONTINUED is not specified, all repeating groups are read from the first record of each
input case.

• If CONTINUED is specified, the first continuation record is read when the first record for
the input case is exhausted, that is, when the next repeating group would extend past the
end of the record. The ending column for the first record is defined on STARTS. If the end-
ing column is not specified on STARTS, the logical record length is used (see below).

• Subsequent continuation records are read when the current continuation record is ex-
hausted. Exhaustion of the current continuation record is detected when the next repeat-
ing group would extend past the end of the record. The ending column for continuation
records is defined on CONTINUED. If the ending column is not specified on CONTINUED,
the logical record length is used (see below).

• For inline data, the record length is always 80. For data stored in a file, the record length
is generally whatever was specified on the FILE HANDLE command or the default of 1024.
Shorter records are extended with blanks when they are read. For IBM implementations,
the physical record length is available and is used.

REPEATING DATA 745

Reading Past End of Record

If one or more fields extend past the end of the actual record, or if CONTINUED is specified
and the ending column specified on either STARTS or CONTINUED is beyond the end of the
actual record, the program takes the following action:

• For string data with format A, the data record is considered to be extended logically with
blanks. If the entire field lies past the end of the record, the resulting value will be all
blanks.

• For numeric data, a warning is issued and the resulting value is system-missing.

Example

* Build a file with each case representing one vehicle and
 spread information about the household to each case.

INPUT PROGRAM.
DATA LIST / SEQNUM 2-4 NUMPERS 6-7 NUMVEH 9-10.
REPEATING DATA STARTS=12 /OCCURS=NUMVEH
/DATA=MAKE 1-8 (A) MODEL 9 (A) NUMCYL 10.
END INPUT PROGRAM.

BEGIN DATA
1001 02 02 FORD T8PONTIAC C6
1002 04 01 CHEVY C4
1003 02 03 CADILAC C8FORD T6VW C4
END DATA.
LIST.

• Data are extracted from a file representing household records. Each input case is recorded
on a single record; there are no continuation records.

• The total number of persons living in the house and number of vehicles owned by the
household is recorded on each record. The first field of numbers (columns 1–4) for each
record is an identification number unique to each record. The next two fields of numbers
are number of persons in household and number of vehicles. The remainder of the record
contains repeating groups of information about each vehicle: the make of vehicle, model,
and number of cylinders.

• INPUT PROGRAM indicates the beginning of the input program and END INPUT PROGRAM
indicates the end of the input program.

• DATA LIST reads the variables from the household portion of the record. All fixed-format
variables are defined on DATA LIST.

• REPEATING DATA reads the information from the repeating groups and builds the output
cases. Repeating groups start in column 12. The number of repeating groups for each in-
put case is given by the value of variable NUMVEH. Three variables are defined for each
repeating group: MAKE, MODEL, and NUMCYL.

• The first input record contains two repeating groups, producing two output cases in the
working data file. One output case is built from the second input record which contains in-
formation on one vehicle, and three output cases are built from the third record. The values
of the fixed-format variables defined on DATA LIST are spread to every new case built in
the working data file. Six cases result, as shown in Figure 1.

746 REPEATING DATA

Example

* Use REPEATING DATA with FILE TYPE MIXED: read only type 3 records.

FILE TYPE MIXED RECORD=#SEQNUM 2-4.
RECORD TYPE 003.
REPEATING DATA STARTS=12 /OCCURS=3
/DATA=MAKE 1-8(A) MODEL 9(A) NUMCYL 10.
END FILE.
END FILE TYPE.

BEGIN DATA
1001 02 02 FORD T8PONTIAC C6
1002 04 01 CHEVY C4
1003 02 03 CADILAC C8FORD T6VW C4
END DATA.
LIST.

• The task in this example is to read only the repeating data for records with value 003 for
variable #SEQNUM.

• REPEATING DATA is used within a FILE TYPE structure, which specifies a mixed file type.
The record identification variable #SEQNUM is located in columns 2–4.

• RECORD TYPE specifies that only records with value 003 for #SEQNUM are copied into
the working data file. All other records are skipped.

• REPEATING DATA indicates that the repeating groups start in column 12. The OCCURS
subcommand indicates there are three repeating groups on each input case, and the DATA
subcommand specifies names, locations, and formats for the variables in the repeating
groups.

• The DATA LIST command is not required in this example, since none of the information
on the input case is being spread to the output cases. However, if there were multiple
input cases with value 003 for #SEQNUM and they did not all have three repeating
groups, DATA LIST would be required to define a variable whose value for each input
case indicated the number of repeating groups for that case. This variable would then
be specified on the OCCURS subcommand.

Figure 1 Output cases built with REPEATING DATA
SEQNUM NUMPERS NUMVEH MAKE MODEL NUMCYL

 1 2 2 FORD T 8
 1 2 2 PONTIAC C 6
 2 4 1 CHEVY C 4
 3 2 3 CADILAC C 8
 3 2 3 FORD T 6
 3 2 3 VW C 4

NUMBER OF CASES READ = 6 NUMBER OF CASES LISTED = 6

REPEATING DATA 747

Example

* Create a data set of child records.

INPUT PROGRAM.
DATA LIST / PARENTID 1 DATE 3-6 NCHILD 8.
REPEATING DATA STARTS=9 /OCCURS=NCHILD
/DATA=BIRTHDAY 2-5 VACDATE 7-10.
END INPUT PROGRAM.

COMPUTE AGE=DATE - BIRTHDAY.
COMPUTE VACAGE=VACDATE - BIRTHDAY.

DO IF PARENTID NE LAG(PARENTID,1) OR $CASENUM EQ 1.
COMPUTE CHILD=1.
ELSE.
COMPUTE CHILD=LAG(CHILD,1)+1.
END IF.
FORMAT AGE VACAGE CHILD (F2).

BEGIN DATA
1 1987 2 1981 1983 1982 1984
2 1988 1 1979 1984
3 1988 3 1978 1981 1981 1986 1983 1986
4 1988 1 1984 1987
END DATA.
LIST.

• Data are from a file that contains information on parents within a school district. Each in-
put case is recorded on a single record; there are no continuation records.

• Each record identifies the parents by a number and indicates how many children they
have. The repeating groups give the year of birth and year of vaccination for each child.

• REPEATING DATA indicates that the repeating groups begin in column 9. The value of
NCHILD indicates how many repeating groups there are for each record.

• The first two COMPUTE commands compute the age for each child and age at vaccination.
These transformation commands are specified outside the input program.

• Because the repeating groups do not have descriptive values, the DO IF structure computes
variable CHILD to distinguish between the first-born child, second-born child, etc. The
value for CHILD will be 1 for the first-born, 2 for the second-born, and so forth. The LIST
output is shown in Figure 2.

Figure 2 Output cases built with REPEATING DATA
PARENTID DATE NCHILD BIRTHDAY VACDATE AGE VACAGE CHILD

 1 1987 2 1981 1983 6 2 1
 1 1987 2 1982 1984 5 2 2
 2 1988 1 1979 1984 9 5 1
 3 1988 3 1978 1981 10 3 1
 3 1988 3 1981 1986 7 5 2
 3 1988 3 1983 1986 5 3 3
 4 1988 1 1984 1987 4 3 1

NUMBER OF CASES READ = 7 NUMBER OF CASES LISTED = 7

748 REPEATING DATA

STARTS Subcommand

STARTS indicates the beginning location of the repeating data segment on the first record of
each input case. STARTS is required and can specify either a number or a variable name.

• If the repeating groups on the first record of each input case begin in the same column,
STARTS specifies a column number.

• If the repeating groups on the first record of each input case do not begin in the same col-
umn, STARTS specifies the name of a variable whose value for each input case indicates the
beginning location of the repeating groups on the first record. The variable can be defined
on DATA LIST or created by transformation commands that precede REPEATING DATA.

• When repeating groups are continued on multiple records for each input case, STARTS
must also specify an ending location if there is room on the logical record length for more
repeating groups than are contained on the first record of each input case. The ending col-
umn applies only to the first record of each input case. See the CONTINUED subcommand
on p. 752 for an example.

• The ending column can be specified as a number or a variable name. Specifications for
the beginning column and the ending column are separated by a hyphen. The values of
the variable used to define the ending column must be valid values and must be larger
than the starting value.

• If the variable specified for the ending column is undefined or missing for an input case,
the program displays a warning message and builds no output cases from that input case.
If the variable specified for the ending column on STARTS has a value that is less than the
value specified for the starting column, the program issues a warning and builds output
cases only from the continuation records of that input case; it does not build cases from
the first record of the case.

• If the ending location is required but not supplied, the program generates output cases
with system-missing values for the variables specified on the DATA subcommand and may
misread all data after the first or second record in the data file (see the CONTINUED sub-
command on p. 752).

Example
* Repeating groups in the same location.

INPUT PROGRAM.
DATA LIST FILE=VEHICLE / SEQNUM 2-4 NUMPERS 6-7 NUMVEH 9-10.
REPEATING DATA STARTS=12 /OCCURS=NUMVEH
/DATA=MAKE 1-8 (A) MODEL 9 (A) NUMCYL 10.
END INPUT PROGRAM.

• STARTS specifies column number 12. The repeating groups must therefore start in col-
umn 12 of the first record of each input case.

REPEATING DATA 749

Example
* Repeating groups in varying locations.

INPUT PROGRAM.
DATA LIST FILE=VEHICLE / SEQNUM 2-4 NUMPERS 6-7 NUMVEH 9-10.
+ DO IF (SEQNUM LE 100).
+ COMPUTE FIRST=12.
+ ELSE.
+ COMPUTE FIRST=15.
+ END IF.
REPEATING DATA STARTS=FIRST /OCCURS=NUMVEH
/DATA=MAKE 1-8 (A) MODEL 9 (A) NUMCYL 10.
END INPUT PROGRAM.

• This example assumes that each input case is recorded on a single record and that there
are no continuation records. Repeating groups begin in column 12 for all records with se-
quence numbers 1 through 100 and in column 15 for all records with sequence numbers
greater than 100.

• The sequence number for each record is defined as variable SEQNUM on the DATA LIST
command. The DO IF—END IF structure creates the variable FIRST with value 12 for
records with sequence numbers through 100 and value 15 for records with sequence num-
bers greater than 100.

• Variable FIRST is specified on the STARTS subcommand.

OCCURS Subcommand

OCCURS specifies the number of repeating groups for each input case. OCCURS is required
and specifies a number if the number of groups is the same for all input cases or a variable if
the number of groups varies across input cases. The variable must be defined on a DATA LIST
command or created with transformation commands.

Example
INPUT PROGRAM.
DATA LIST / SEQNUM 2-4 NUMPERS 6-7 NUMVEH 9-10.
REPEATING DATA STARTS=12 /OCCURS=NUMVEH
/DATA=MAKE 1-8 (A) MODEL 9 (A) NUMCYL 10.
END INPUT PROGRAM.

BEGIN DATA
1001 02 02 FORD T8PONTIAC C6
1002 04 01 CHEVY C4
1003 02 03 CADILAC C8FORD T6VW C4
END DATA.
LIST.

• Data for each input case are recorded on a single record; there are no continuation records.
• The value for variable NUMVEH in columns 9 and 10 indicates the number of repeating

groups on each record. One output case is built in the working data file for each occur-
rence of a repeating group.

750 REPEATING DATA

• In the data, NUMVEH has the value 2 for the first case, 1 for the second, and 3 for the third.
Thus, six cases are built from these records. If the value of NUMVEH is 0, no cases are built
from that record.

Example
* Read only the first repeating group from each record.

INPUT PROGRAM.
DATA LIST FILE=VEHICLE / SEQNUM 2-4 NUMPERS 6-7 NUMVEH 9-10.
REPEATING DATA STARTS=12 /OCCURS=1
/DATA=MAKE 1-8 (A) MODEL 9 (A) NUMCYL 10.

END INPUT PROGRAM.
LIST.

• Since OCCURS specifies that there is only one repeating group for each input case, only
one output case is built from each input case regardless of the actual number of repeating
groups.

DATA Subcommand

DATA specifies a name, location within each repeating segment, and format for each variable
to be read from the repeating groups. DATA is required and must be the last subcommand on
REPEATING DATA.

• The specifications for DATA are the same as for the DATA LIST command.

• The specified location of the variables on DATA is their location within each repeating
group—not their location within the record.

• Any input format available on the DATA LIST command can be specified on the DATA sub-
command. Both FORTRAN-like and the column-style specifications can be used.

Example
INPUT PROGRAM.
DATA LIST FILE=VEHICLE / SEQNUM 2-4 NUMPERS 6-7 NUMVEH 9-10.
REPEATING DATA STARTS=12 /OCCURS=NUMVEH
/DATA=MAKE 1-8 (A) MODEL 9 (A) NUMCYL 10.

END INPUT PROGRAM.
LIST.

• Variable MAKE is a string variable read from positions 1 through 8 of each repeating
group; MODEL is a single-character string variable read from position 9; and NUMCYL is
a one-digit numeric variable read from position 10.

• The DATA LIST command defines variables SEQNUM, NUMPERS, and NUMVEH. These
variables are spread to each output case built from the repeating groups.

FILE Subcommand

REPEATING DATA always reads the file specified on its associated DATA LIST or FILE TYPE
command. The FILE subcommand on REPEATING DATA explicitly specifies the name of the
file.

• FILE must specify the same file as its associated DATA LIST or FILE TYPE command.

REPEATING DATA 751

Example
INPUT PROGRAM.
DATA LIST FILE=VEHICLE / SEQNUM 2-4 NUMPERS 6-7 NUMVEH 9-10.
REPEATING DATA FILE=VEHICLE /STARTS=12 /OCCURS=NUMVEH
/DATA=MAKE 1-8 (A) MODEL 9 (A) NUMCYL 10.
END INPUT PROGRAM.
LIST.

• FILE on REPEATING DATA specifically identifies the VEHICLE file, which is also specified
on the DATA LIST command.

LENGTH Subcommand

LENGTH specifies the length of each repeating data group. The default length is the number
of columns between the beginning column of the repeating data groups and the ending posi-
tion of the last variable specified on DATA. (For the first record of each input case, STARTS
specifies the beginning column of the repeating groups. For continuation records, repeating
groups are read from column 1 by default or from the column specified on CONTINUED.)

• The specification on LENGTH can be a number or the name of a variable.

• LENGTH must be used if the last variable specified on the DATA subcommand is not read
from the last position of each repeating group, or if the length of the repeating groups var-
ies across input cases.

• If the length of the repeating groups varies across input cases, the specification must be a
variable whose value for each input case is the length of the repeating groups for that case.
The variable can be defined on DATA LIST or created with transformation commands.

• If the value of the variable specified on LENGTH is undefined or missing for an input case,
the pgoram displays a warning message and builds only one output case for that input
case.

Example
* Read only the variable MAKE for each vehicle.

* The data contain two values that are not specified on the
DATA subcommand. The first is in position 9 of the repeating

 groups, and the second is in position 10.

INPUT PROGRAM.
DATA LIST FILE=VEHICLE / SEQNUM 2-4 NUMPERS 6-7 NUMVEH 9-10.
REPEATING DATA STARTS=12 /OCCURS=NUMVEH /LENGTH=10
/DATA=MAKE 1-8 (A).
END INPUT PROGRAM.

• LENGTH indicates that each repeating group is 10 columns long. LENGTH is required be-
cause MAKE is not read from the last position of each repeating group. As illustrated in
previous examples, each repeating group also includes variable MODEL (position 9) and
NUMCYL (position 10).

• DATA specifies that MAKE is in positions 1 through 8 of each repeating group. Positions 9
and 10 of each repeating group are skipped.

752 REPEATING DATA

CONTINUED Subcommand

CONTINUED indicates that the repeating groups are contained on more than one record for
each input case.

• Each repeating group must be fully recorded on a single record: a repeating group cannot
be split across records.

• The repeating groups must begin in the same column on all continuation records.
• If CONTINUED is specified without beginning and ending columns, the program assumes

that the repeating groups begin in column 1 of continuation records and searches for re-
peating groups by scanning to the end of the record or to the value specified by OCCURS.
See “Operations” on p. 744 for additional information on how records are read.

• If the repeating groups on continuation records do not begin in column 1, CONTINUED
must specify the column in which the repeating groups begin.

• If there is room on the logical record length for more repeating groups than are contained
on the first record of each input case, the STARTS subcommand must indicate an ending
column for the records. The ending column on STARTS applies only to the first record of
each input case.

• If there is room on the logical record length for more repeating groups than are contained
on the continuation records of each input case, the CONTINUED subcommand must indi-
cate an ending column. The ending column on CONTINUED applies to all continuation
records.

Example
* This example assumes the logical record length is 80.

INPUT PROGRAM.
DATA LIST / ORDERID 1-5 NITEMS 7-8.
REPEATING DATA STARTS=10 /OCCURS=NITEMS /CONTINUED=7
/DATA=ITEM 1-9 (A) QUANTITY 11-13 PRICE (DOLLAR7.2,1X).
END INPUT PROGRAM.

BEGIN DATA
10020 07 01-923-89 001 25.99 02-899-56 100 101.99 03-574-54 064 61.29
10020 04-780-32 025 13.95 05-756-90 005 56.75 06-323-47 003 23.74
10020 07-350-95 014 11.46
20030 04 01-781-43 010 10.97 02-236-54 075 105.95 03-655-83 054 22.99
20030 04-569-38 015 75.00
END DATA.
LIST.

• Data are extracted from a mail-order file. Each input case represents one complete order.
The data show two complete orders recorded on a total of five records.

• The order number is recorded in columns 1 through 5 of each record. The first three
records contain information for order 10020; the next two records contain information for
order 20030. The second field of numbers on the first record of each order indicates the
total number of items ordered. The repeating groups begin in column 10 on the first
record and in column 7 on continuation records. Each repeating data group represents one
item ordered and contains three variables—the item inventory number, the quantity or-
dered, and the price.

REPEATING DATA 753

• DATA LIST defines variables ORDERID and NITEMS on the first record of each input case.

• STARTS on REPEATING DATA indicates that the repeating groups on the first record of
each input case begin in column 10.

• OCCURS indicates that the total number of repeating groups for each input case is the val-
ue of NITEMS.

• CONTINUED must be used because the repeating groups are continued on more than one
record for each input case. CONTINUED specifies a beginning column because the repeat-
ing groups begin in column 7 rather than in column 1 on the continuation records.

• DATA defines variables ITEM, QUANTITY, and PRICE for each repeating data group. ITEM
is in positions 1–9, QUANTITY is in positions 11–13, and PRICE is in positions 14–20 and
is followed by one blank column. The length of the repeating groups is therefore 21 col-
umns. The LIST output is shown in Figure 3.

Example
* Specifying an ending column on the STARTS subcommand.
* This example assumes the logical record length is 80.

INPUT PROGRAM.
DATA LIST / ORDERID 1-5 NITEMS 7-8.
REPEATING DATA STARTS=10-55 /OCCURS=NITEMS /CONTINUED=7
/DATA=ITEM 1-9 (A) QUANTITY 11-13 PRICE (DOLLAR7.2,1X).
END INPUT PROGRAM.

BEGIN DATA
10020 07 01-923-89 001 25.99 02-899-56 100 101.99
10020 03-574-54 064 61.29 04-780-32 025 13.95 05-756-90 005 56.75
10020 06-323-47 003 23.74 07-350-95 014 11.46
20030 04 01-781-43 010 10.97 02-236-54 075 105.95
20030 03-655-83 054 22.99 04-569-38 015 75.00
END DATA.
LIST.

• Data are the same as in the previous example; however, records are entered differently.
The first record for each input case contains only two repeating groups.

• DATA LIST defines variables ORDERID and NITEMS in columns 1–8 on the first record of
each input case. Column 9 is blank. DATA defines variables ITEM, QUANTITY, and PRICE

Figure 3 Cases generated by REPEATING DATA
ORDERID NITEMS ITEM QUANTITY PRICE

 10020 7 01-923-89 1 $25.99
 10020 7 02-899-56 100 $101.99
 10020 7 03-574-54 64 $61.29
 10020 7 04-780-32 25 $13.95
 10020 7 05-756-90 5 $56.75
 10020 7 06-323-47 3 $23.74
 10020 7 07-350-95 14 $11.46
 20030 4 01-781-43 10 $10.97
 20030 4 02-236-54 75 $105.95
 20030 4 03-655-83 54 $22.99
 20030 4 04-569-38 15 $75.00

NUMBER OF CASES READ = 11 NUMBER OF CASES LISTED = 11

754 REPEATING DATA

in positions 1–20 of each repeating group, followed by a blank. Thus, each repeating
group is 21 columns wide. The length of the first record of each input case is therefore 51
columns: 21 columns for each of two repeating groups, plus the eight columns defined on
DATA LIST, plus column 9, which is blank. The operating system’s logical record length
is 80, which allows room for one more repeating group on the first record of each input
case. STARTS must therefore specify an ending column that does not provide enough col-
umns for another repeating group; otherwise, the program creates an output case with
missing values for the variables specified on DATA.

• STARTS specifies that the program is to scan only columns 10–55 of the first record of
each input case looking for repeating data groups. It will scan continuation records begin-
ning in column 7 until the value specified on the OCCURS subcommand is reached.

Example
* Specifying an ending column on the CONTINUED subcommand.
* This example assumes the logical record length is 80.

INPUT PROGRAM.
DATA LIST / ORDERID 1-5 NITEMS 7-8.
REPEATING DATA STARTS=10-55 /OCCURS=NITEMS /CONTINUED=7-55
/DATA=ITEM 1-9 (A) QUANTITY 11-13 PRICE (DOLLAR7.2,1X).
END INPUT PROGRAM.

BEGIN DATA
10020 07 01-923-89 001 25.99 02-899-56 100 101.99
10020 03-574-54 064 61.29 04-780-32 025 13.95
10020 05-756-90 005 56.75 06-323-47 003 23.74
10020 07-350-95 014 11.46
20030 04 01-781-43 010 10.97 89-236-54 075 105.95
20030 03-655-83 054 22.99 04-569-38 015 75.00
END DATA.
LIST.

• The data are the same as in the previous two examples, but records are entered differently.
The first record and the continuation records for each input case store only two repeating
groups each.

• The operating system’s logical record length is 80, which allows room for more repeating
groups on all records.

• STARTS specifies that the program is to scan only columns 10-55 of the first record of
each input case looking for repeating data groups.

• CONTINUED specifies that the program is to scan only columns 7–55 of all continuation
records.

ID Subcommand

ID compares the value of an identification variable across records of the same input case. ID
can be used only when CONTINUED is specified. The identification variable must be defined
on a DATA LIST command and must be recorded on all records in the file.

REPEATING DATA 755

• The ID subcommand has two specifications: the location of the variable on the continua-
tion records and the name of the variable (as specified on the DATA LIST command). The
specifications must be separated from each other by an equals sign.

• The format specified on the ID subcommand must be the same as the format specified for
the variable on DATA LIST. However, the location can be different on the continuation
records.

• If the values of the identification variable are not the same on all records for a single input
case, the program displays an error message and stops reading data.

Example
INPUT PROGRAM.
DATA LIST / ORDERID 1-5 NITEMS 7-8.
REPEATING DATA STARTS=10-50 /OCCURS=NITEMS
/CONTINUED=7 /ID=1-5=ORDERID
/DATA=ITEM 1-9 (A) QUANTITY 11-13 PRICE 15-20 (2).
END INPUT PROGRAM.

BEGIN DATA
10020 04 45-923-89 001 25.9923-899-56 100 101.99
10020 63-780-32 025 13.9554-756-90 005 56.75
20030 03 45-781-43 010 10.9789-236-54 075 105.95
20030 32-569-38 015 75.00
END DATA.
LIST.

• The order number in the data is recorded in columns 1–5 of each record.

• ORDERID is defined on the DATA LIST command as a five-column integer variable. The
first specification on the ID subcommand must therefore specify a five-column integer
variable. The location of the variable can be different on continuation records.

TABLE and NOTABLE Subcommands

TABLE displays a table summarizing all variables defined on the DATA subcommand. The
summary table lists the names, locations, and formats of the variables and is identical in for-
mat to the summary table displayed by the DATA LIST command. NOTABLE suppresses the
table. TABLE is the default.

Example
INPUT PROGRAM.
DATA LIST FILE=VEHICLE / SEQNUM 2-4 NUMPERS 6-7 NUMVEH 9-10.
REPEATING DATA STARTS=12 /OCCURS=NUMVEH /NOTABLE
/DATA=MAKE 1-8 (A) MODEL 9 (A) NUMCYL 10.
END INPUT PROGRAM.

• NOTABLE suppresses the display of the summary table.

756

REPORT

REPORT [/FORMAT=[{MANUAL }] [{NOLIST }] [ALIGN({LEFT })] [TSPACE({1})]
 {AUTOMATIC} {LIST[(n)]} {CENTER} {n}
 {RIGHT }
 [CHDSPACE({1})] [FTSPACE({1})] [SUMSPACE({1})] [COLSPACE({4})]
 {n} {n} {n} {n}
 [BRKSPACE({ 1 })][LENGTH({1,length})] [MARGINS({1,width})]
 { n } {t,b } {l,r }
 {-1†} {*,* } {*,* }
 [CHALIGN({ TOP })] [UNDERSCORE({ OFF})] [PAGE1({ 1})] [MISSING { ’.’}]]
 {BOTTOM†} {ON†} {n} {'s'}
 [ONEBREAKCOLUMN { OFF**}] [INDENT { 2**}] [CHWRAP { OFF**}] [PREVIEW { OFF**}]
 {ON } {n } {ON } {ON }
 [/OUTFILE=file]
 [/STRING=stringname (varname[(width)] [(BLANK)] ['literal'])
 /VARIABLES=varname ({ VALUE}) [+ varname({ VALUE})] ['col head'] [option list]
 {LABEL} {LABEL}
 {DUMMY} {DUMMY}

where option list can contain any of the following:

 (width) (OFFSET({ 0 })) ({LEFT })
 {n } {CENTER†}
 {CENTER†} {RIGHT }

 [/MISSING={ VAR }]
 {NONE }
 {LIST[([varlist][{ 1}])]}
 {n}

 [/TITLE=[{LEFT }] 'line1' 'line2'...] [/FOOTNOTE=[{LEFT }] 'line1' 'line2'...]
 {CENTER} {CENTER}
 {RIGHT } {RIGHT }
 [)PAGE] [)DATE] [)var]

 [/BREAK=varlist ['col head'] [option list]]

where option list can contain any of the following:

 (width) ({ VALUE }) ({ NOTOTAL}) ({SKIP({ 1} }))
 {LABEL†} {TOTAL } {n}
 {PAGE[(RESET)]}
 (OFFSET({ 0 })) (UNDERSCORE[(varlist)]) ({LEFT }) ({ NONAME})
 {n } {CENTER†} {NAME }
 {CENTER†} {RIGHT }

 [/SUMMARY=function...['summary title'][(break col #)] [SKIP({ 0})]
 {n}
 or
 [/SUMMARY=PREVIOUS[({ 1})]]
 {n}

where function is

 aggregate [(varname[({PLAIN })][(d)][varname...])]
 {format††}
 or
 composite(argument)[(report col[({PLAIN })][(d)])]
 {format††}

**Default if the keyword is omitted.
†Default if FORMAT=AUTOMATIC.
††Any printable output format is valid. See FORMATS.

REPORT 757

Aggregate functions:

Composite functions:

where arg is either one of the aggregate functions or a constant

Example:
REPORT FORMAT=LIST

/VARIABLES=PRODUCT (LABEL) ’ ’ ’Retail’ ’Products’
SALES ’Annual’ ’Sales’ ’1981’

/BREAK=DEPT ’Department’ (LABEL)
/SUMMARY=VALIDN (PRODUCT) MEAN (SALES).

Overview

REPORT produces case listings and summary statistics and gives you considerable control
over the appearance of the output. REPORT calculates all the univariate statistics available in
DESCRIPTIVES and the statistics and subpopulation means available in MEANS. In addition,
REPORT calculates statistics not directly available in any other procedure, such as computa-
tions involving aggregated statistics.

REPORT provides complete report format defaults but also lets you customize a variety
of table elements, including column widths, titles, footnotes, and spacing. Because REPORT
is so flexible and the output has so many components, it is often efficient to preview report
output using a small number of cases until you find the format that best suits your needs.

Defaults

Column Heads. REPORT uses variable labels as default column heads; if no variable labels
have been specified, variable names are used. If ONEBREAKCOLUMN is ON, the default head
for the first BREAK subcommand is used.

VALIDN VARIANCE PLT(n)
SUM KURTOSIS PIN(min,max)
MIN SKEWNESS FREQUENCY(min,max)
MAX MEDIAN(min,max) PERCENT(min,max)
MEAN MODE(min,max)
STDDEV PGT(n)

DIVIDE(arg1 arg2 [factor])
MULTIPLY(arg1...argn)
PCT(arg1 arg2)
SUBTRACT(arg1 arg2)
ADD(arg1...argn)
GREAT(arg1...argn)
LEAST(arg1...argn)
AVERAGE(arg1...argn)

758 REPORT

Column Widths. Default column widths are determined by REPORT, using the maximum of
the following for each column:

• The widest print format in the column, whether it is a variable print format or a summary
print format.

• The width of any temporary variable defined with the STRING subcommand on REPORT.

• If a column heading is assigned, the length of the longest title line in the heading when
CHWRAP is off, and the longest word in the title when CHWRAP is on. Underscores,
which are removed on printing, can be used to create longer words in the title.

• When no column heading is specified, the length of the longest word in the variable label,
or the length of the variable name.

• If you specify LABEL on VARIABLES or BREAK, the length of the variable’s longest value
label. If FORMAT=MANUAL is in effect, 20 is the maximum value used for this criterion.

• The minimum column width is 8 when FORMAT=MANUAL; it can be less when
FORMAT=AUTOMATIC.

Automatic Fit. When the above criteria for column width result in a report that is too wide for
the report margins, FORMAT=AUTOMATIC shrinks the report. AUTOMATIC performs the fol-
lowing two steps sequentially, stopping as soon as the report fits within the margins:

1. AUTOMATIC reduces intercolumn spacing incrementally until it reaches a minimum inter-
column space of 1. It will never reduce it to 0.

2. AUTOMATIC shortens widths for strings specified on the STRING subcommand or for val-
ue label strings when the LABEL option is specified. It begins with the longest string if that
string is at least 15 characters wide and shortens the column width as much as needed (up
to 40% of its length), wrapping the string within the new width. If necessary, it repeats
the step, using different defined strings. It will not shorten the column width of the same
string twice.

REPORT does not implement the automatic fit unless AUTOMATIC is specified on the
FORMAT subcommand.

AUTOMATIC versus MANUAL Defaults. Many default settings depend on whether you specify AU-
TOMATIC or MANUAL on FORMAT. Table 1 shows the defaults according to either of the spec-
ifications.

Table 1 Keyword default settings

Subcommand

Keyword

Default for
AUTOMATIC

Default for
MANUAL

FORMAT ALIGN left left
 BRKSPACE
 summary report 1 1
 listing report -1 1
 CHALIGN bottom top
 CHDSPACE 1 1
 COLSPACE 4 4
 FTSPACE 1 1

REPORT 759

Options

Format. REPORT provides full format defaults and offers you optional control over page
length, vertical spacing, margin and column widths, page titles, footnotes, and labels for

 LENGTH 1,system length 1,system length
 LIST|NOLIST NOLIST NOLIST
 MARGINS 1,system width 1,system width
 MISSING . .
 PAGE1 1 1
 SUMSPACE 1 1
 TSPACE 1 1
 UNDERSCORE on off

ONEBREAKCOLUMN off off
INDENT1 2 2
CHWRAP off off
PREVIEW off off

VARIABLES LABEL|VALUE|DUMMY VALUE VALUE
 LEFT|CENTER|RIGHT CENTER2 RIGHT for numbers
 LEFT for strings
 OFFSET CENTER 0

BREAK LABEL|VALUE LABEL VALUE
 LEFT|CENTER|RIGHT CENTER2 RIGHT for numbers
 LEFT for strings
 NAME|NONAME NONAME NONAME
 OFFSET CENTER3 0
 PAGE off off
 SKIP 1 1
 TOTAL|NOTOTAL NOTOTAL NOTOTAL
 UNDERSCORE off off

SUMMARY PREVIOUS 1 1
 SKIP 0 0

1 No effect when ONEBREAKCOLUMN is on.
2 LEFT when ONEBREAKCOLUMN is on.
3 0 when ONEBREAKCOLUMN is on.

Table 1 Keyword default settings (Continued)

Subcommand

Keyword

Default for
AUTOMATIC

Default for
MANUAL

760 REPORT

statistics. The maximum width and length of the report are controlled by specifications on
the SET command. The FORMAT subcommand on REPORT controls how the report is laid
out on a page and whether case listings are displayed. The VARIABLES subcommand spec-
ifies the variables that are listed or summarized in the report (report variables) and con-
trols the titles, width, and contents of report columns. The BREAK subcommand specifies
the variables that define groups (break variables) and controls the titles, width, and con-
tents of break columns. SUMMARY specifies statistics and controls the titles and spacing of
summary lines. The TITLE and FOOTNOTE subcommands control the specification and
placement of multiple-line titles and footnotes. STRING concatenates variables to create
temporary variables that can be specified on VARIABLES or BREAK.

Output File. You can direct reports to a file separate from the file used for the rest of the output
from your session using the OUTFILE subcommand.

Statistical Display. The statistical display is controlled by the SUMMARY subcommand. Statis-
tics can be calculated for each category of a break variable and for the group as a whole.
Available statistics include mean, variance, standard deviation, skewness, kurtosis, sum,
minimum, maximum, mode, median, and percentages. Composite functions perform arith-
metic operations using two or more summary statistics calculated on single variables.

Missing Values. You can override the default to include user-missing values in report statistics
and listings with the MISSING subcommand. You can also use FORMAT to define a missing-
value symbol to represent missing data.

Basic Specification

The basic specification depends on whether you want a listing report or a summary report.
A listing report without subgroup classification requires FORMAT and VARIABLES. A listing
report with subgroup classification requires FORMAT, VARIABLES, and BREAK. A summary
report requires VARIABLES, BREAK, and SUMMARY.

Listing Reports. FORMAT=LIST and VARIABLES with a variable list are required. Case listings
are displayed for each variable named on VARIABLES. There are no break groups or summary
statistics unless BREAK or SUMMARY is specified.

Summary Reports. VARIABLES, BREAK, and SUMMARY are required. The report is organized
according to the values of the variable named on BREAK. The variable named on BREAK
must be named on a preceding SORT CASES command. Specified statistics are computed for
the variables specified on VARIABLES for each subgroup defined by the break variables.

Subcommand Order

The following order must be observed among subcommands when they are used:

• FORMAT must precede all other subcommands.

• VARIABLES must precede BREAK.

• OUTFILE must precede BREAK.

• Each SUMMARY subcommand must immediately follow its associated BREAK. Multiple
SUMMARY subcommands associated with the same BREAK must be specified consecutively.

REPORT 761

• TITLE and FOOTNOTE can appear anywhere after FORMAT except between BREAK and
SUMMARY.

• MISSING must follow VARIABLES and precede the first BREAK.

• STRING must precede VARIABLES.

Syntax Rules

• Only one each of the FORMAT, STRING, VARIABLES, and MISSING subcommands is
allowed.

• To obtain multiple break groups, use multiple BREAK subcommands.
• To obtain multiple summaries for a break level, specify multiple SUMMARY subcom-

mands for the associated BREAK.

• Keywords on REPORT subcommands have default specifications that are in effect if the
keyword is not specified. Specify keywords only when you wish to change a default.

• Keywords are enclosed in parentheses if the subcommand takes variable names as arguments.

Operations

• REPORT processes cases sequentially. When the value of a break variable changes, REPORT
displays a statistical summary for cases processed since the last set of summary statistics was
displayed. Thus, the file must be sorted in order on the break variable or variables.

• The maximum width and page length of the report are determined by the SET command.

• If a column is not wide enough to display numeric values, REPORT first rounds decimal
digits, then converts to scientific notation if possible, and then displays asterisks. String
variables that are wider than the column are truncated.

• The format used to display values in case listings is controlled by the dictionary format
of the variable. Each statistical function in REPORT has a default format.

Limitations

• Maximum 500 variables per VARIABLES subcommand. You can specify more than 500
variables if you stack them (see the VARIABLES subcommand on p. 676).

• Maximum 10 dummy variables per VARIABLES subcommand.

• Maximum 20 MODE and MEDIAN requests per SUMMARY subcommand.

• Maximum 20 PGT, PLT, and PIN requests per SUMMARY subcommand.

• Maximum 50 strings per STRING subcommand.

• The length of titles and footnotes cannot exceed the report width.
• The length of string variables created on STRING cannot exceed the page width.

• There is no fixed limit on the number of BREAK and SUMMARY subcommands. However,
the page width limits the number of variables that can be displayed and thereby limits the
number of break variables.

762 REPORT

• The maximum width of a report is 255 characters.

• The number of report variables that can be specified depends upon the width of the report,
the width of the variable columns, and the number of BREAK subcommands.

• Maximum 50 variables for the FREQUENCY or PERCENT functions.
• Memory requirements significantly increase if FREQUENCY, PERCENT, MEDIAN, or

MODE is requested for variables with a wide range of values. The amount of workspace
required is 20 + 8*(max−min +1) bytes per variable per function per break. If the same
range is used for different statistics for the same variable, only one set of cells is collected.
For example, FREQUENCY(1,100)(VARA) PERCENT(1,100)(VARA) requires only 820
bytes.

• If TOTAL is in effect, workspace requirements are almost doubled.

• Memory requirements also increase if value labels are displayed for variables with many
value labels. The amount of workspace required is 4 + 24*n bytes per variable, where n
is the number of value labels specified for the variable.

Example

SORT CASES BY DEPT.
REPORT FORMAT=LIST

/VARIABLES=PRODUCT (LABEL) ’ ’ ’Retail’ ’Products’
SALES ’Annual’ ’Sales’ ’1981’

/BREAK=DEPT ’Department’ (LABEL)
/SUMMARY=VALIDN (PRODUCT) MEAN (SALES) ’No.Sold,Mean Sales’.

• This report is a listing of products and sales by department. A summary of the total num-
ber of products sold and the average sales by department is also produced.

• Cases are first sorted by DEPT so that cases are grouped by department for the case listing
and for the calculation of statistics.

• FORMAT requests a report that lists individual cases within each break group.

• VARIABLES specifies PRODUCT and SALES as the report variables. Keyword LABEL re-
quests that the case listings for PRODUCT display value labels instead of values. Three-
line column headings are provided for each report column. The first line of the column
heading is blank for the variable PRODUCT.

• BREAK identifies DEPT as the break variable and provides a one-line column title for the
break column. LABEL displays the value label instead of the value itself.

• SUMMARY calculates the valid number of cases for PRODUCT and the mean of SALES for
each value of DEPT. A title is provided for the summary line to override the default title,
VALIDN.

FORMAT Subcommand

FORMAT controls the overall width and length of the report and vertical spacing. Keywords
and their arguments can be specified in any order.
• MANUAL and AUTOMATIC are alternatives. The default is MANUAL.

• LIST and NOLIST are alternatives. The default is NOLIST.

REPORT 763

MANUAL Default settings for manual format. MANUAL displays values for break
variables, right-justifies numeric values and their column headings,
left-justifies value labels and string values and their column headings,
top-aligns and does not underscore column headings, extends column
widths to accommodate the variable’s longest value label (but not the
longest word in the variable label) up to a width of 20, and generates
an error message when a report is too wide for its margins. MANUAL is
the default.

AUTOMATIC Default settings for automatic format. AUTOMATIC displays labels for
break variables, centers all data, centers column headings but left-jus-
tifies column headings if value labels or string values exceed the width
of the longest word in the heading, bottom-aligns and underscores col-
umn headings, extends column widths to accommodate the longest
word in a variable label or the variable’s longest value label, and
shrinks a report that is too wide for its margins.

LIST(n) Individual case listing. The values of all variables named on VARIABLES
are displayed for each case. The optional n inserts a blank line after each
n cases. By default, no blank lines are inserted. Values for cases are listed
using the default formats for the variables.

NOLIST No case listing. This is the default.

PAGE(n) Page number for the first page of the report. The default is 1.

LENGTH(t,b) Top and bottom line numbers of the report. You can specify any num-
bers to define the report page length. By default, the top of the report
begins at line 1, and the bottom of the report is the last line of the sys-
tem page. You can use an asterisk for t or b to indicate a default value.
If the specified length does not allow even one complete line of infor-
mation to be displayed, REPORT extends the length specification and
displays a warning.

MARGINS(l,r) Columns for the left and right margins. The right column cannot ex-
ceed 255. By default, the left margin is display column 1 and the right
margin is the rightmost display column of the system page. You can
use an asterisk for l or r to indicate a default value.

ALIGN Placement of the report relative to its margins. LEFT, CENTER, or
RIGHT can be specified in the parentheses following the keyword.
LEFT left-justifies the report. CENTER centers the report between its
margins. RIGHT right-justifies the report. The default is LEFT.

COLSPACE(n) Number of spaces between each column. The default is 4 or the aver-
age number of spaces that will fit within report margins, whichever is
less. When AUTOMATIC is in effect, REPORT overrides the specified
column spacing if necessary to fit the report between its margins.

CHALIGN Alignment of column headings. Either TOP or BOTTOM can be speci-
fied in the parentheses following the keyword. TOP aligns all column
headings with the first, or top, line of multiple-line headings. BOTTOM

764 REPORT

aligns headings with the last, or bottom, line of multiple-line headings.
When AUTOMATIC is in effect, the default is BOTTOM; when MANUAL
is in effect, the default is TOP.

UNDERSCORE Underscores for column headings. Either ON or OFF can be specified
in the parentheses following the keyword. ON underscores the bottom
line of each column heading for the full width of the column. OFF does
not underscore column headings. The default is ON when AUTOMATIC
is in effect and OFF when MANUAL is in effect.

TSPACE(n) Number of blank lines between the report title and the column heads.
The default is 1.

CHDSPACE(n) Number of blank lines beneath the longest column head. The default
is 1.

BRKSPACE(n) Number of blank lines between the break head and the next line. The
next line is a case if LIST is in effect or the first summary line if NOLIST
is in effect. BRKSPACE(-1) places the first summary statistic or the first
case listing on the same line as the break value. When a summary line
is placed on the same line as the break value, the summary title is sup-
pressed. When AUTOMATIC is in effect, the default is −1; when MANUAL
is in effect, it is 1.

SUMSPACE(n) Number of blank lines between the last summary line at the lower
break level and the first summary line at the higher break level when
they break simultaneously. SUMSPACE also controls spacing between
the last listed case and the first summary line if LIST is in effect. The
default is 1.

FTSPACE(n) Minimum number of blank lines between the last listing on the page
and the footnote. The default is 1.

MISSING ‘s’ Missing-value symbol. The symbol can be only one character and rep-
resents both system- and user-missing values. The default is a period.

ONEBREAKCOLUMN Display subgroups defined on multiple BREAK subcommands in a
single column. You can specify OFF or ON in parentheses after the
keyword. The default is OFF. When ONEBREAKCOLUMN is ON, it ap-
plies to all BREAK subcommands. For its effect on break column head,
width, and alignment, see the BREAK subcommand on p. 771. For its
effect on the basic format of the report, see Figure 2.

INDENT(n) Indention of break values and summary titles of each successive sub-
group defined by one BREAK subcommand in a single break column.
INDENT is effective only when ONEBREAKCOLUMN is on. Multiple
variables specified on one BREAK subcommand are indented as a
block. The default specification is 2. When ONEBREAKCOLUMN is
OFF, specification on INDENT is ignored.

CHWRAP Automatically wrap user-specified column heads. You can specify
OFF or ON in parentheses after the keyword. The default is OFF. When
CHWRAP is ON, user-specified heads for either break or variable col-

REPORT 765

umns are wrapped. If multiple lines are specified for a head, each line
is wrapped, if necessary, independent of other lines. To prevent wrap-
ping at blanks, use the underscore character (_) to signify a hard blank
in your head specification. The underscore serves as a hard blank only
in user-specified heads and only when CHWRAP is ON. The under-
score does not appear in the printed heading.

PREVIEW Display the first page of output only. You can specify OFF or ON either
in parentheses or with one blank space separating the specification
from the keyword. The default is OFF. When PREVIEW is ON, the pro-
gram stops processing after the first page for you to quickly check the
format of your report.

Page Layout

Figure 1 shows the complete page layout and subcommand specifications used to control the
basic format of the report when ONEBREAKCOLUMN is off (the default). Figure 2 shows the
same page when ONEBREAKCOLUMN is on. In both figures, FORMAT=AUTOMATIC, and
BRKSPACE is defaulted to –1.

Example
SORT DIVISION DEPT.

REPORT FORMAT=AUTOMATIC LIST ONEBREAKCOLUMN(ON) CHWRAP(ON)
/VARIABLES=LNAME TENURE SALARY
/BREAK=DIVISION (20)(NOTOTAL)
/SUMMARY=VALIDN (LNAME TENURE) MEAN (SALARY)

 ’Mean Salary for Tenured Members within the Division’
 /BREAK=DEPT
 /SUMMARY=VALIDN (LNAME TENURE) MEAN (SALARY)
 ’Mean Salary for Tenured Members within the Department’.

• This example creates a report with two break variables: DEPARTMENT breaks within
DIVISION.

• The two break variables are placed in a single break column. The column head is the vari-
able label of DIVISION.

OUTFILE Subcommand

OUTFILE directs the report to a file separate from the file used for the rest of the output from
your session. This allows you to print the report without having to delete the extraneous ma-
terial that would be present in the output.

• OUTFILE must follow FORMAT and must precede BREAK.

• You can append multiple reports to the same file by naming the same file on the OUTFILE
subcommand for each REPORT command.

766 REPORT

Figure 1 Page layout for REPORT when ONEBREAKBOLUMN is off
--- top of page --

*************** TITLE ****************

BREAK HEAD BREAK HEAD
COLUMN
HEAD
(VAR)

COLUMN
HEAD
(VAR)

COLUMN
HEAD
(VAR)

COLUMN
HEAD
(VAR)

BREAK A VALUE 1 BREAK B VALUE 1 VALUE VALUE VALUE VALUE
VALUE VALUE VALUE VALUE

VALUE VALUE VALUE VALUE
VALUE VALUE VALUE VALUE

SUMMARY TITLE AGG AGG AGG AGG

SUMMARY TITLE AGG AGG AGG AGG

BREAK B VALUE 2

VALUE VALUE VALUE VALUE
VALUE VALUE VALUE VALUE

VALUE VALUE VALUE VALUE
VALUE VALUE VALUE VALUE

SUMMARY TITLE AGG AGG AGG AGG

SUMMARY TITLE AGG AGG AGG AGG

SUMMARY TITLE AGG AGG AGG AGG

SUMMARY TITLE AGG AGG AGG AGG

BREAK A VALUE 2 BREAK B VALUE 1 VALUE VALUE VALUE VALUE
VALUE VALUE VALUE VALUE

VALUE VALUE VALUE VALUE
VALUE VALUE VALUE VALUE

SUMMARY TITLE AGG AGG AGG AGG

SUMMARY TITLE AGG AGG AGG AGG

BREAK B VALUE 2 VALUE VALUE VALUE VALUE

VALUE VALUE VALUE VALUE

VALUE VALUE VALUE VALUE
VALUE VALUE VALUE VALUE

SUMMARY TITLE AGG AGG AGG AGG

SUMMARY TITLE AGG AGG AGG AGG

SUMMARY TITLE AGG AGG AGG AGG

SUMMARY TITLE AGG AGG AGG AGG

*************** FOOTNOTE ****************
--- bottom of page ---

| |
Left margin Right margin

LENGTH
TSPACE

CHDSPACE

BRKSPACE

LIST

SUMSPACE

SKIP w/ SUMMARY

SKIP w/ BREAK
BRKSPACE

LIST

SUMSPACE
stats for B=2, A=1

SUMSPACE
stats for A=1

SKIP w/ BREAK

BRKSPACE

LIST

SUMSPACE

SKIP w/ SUMMARY

SKIP w/ BREAK

BRKSPACE

LIST

SUMSPACE

FTSPACE
LENGTH

REPORT 767

Figure 2 Page layout for REPORT when ONEBREAKBOLUMN is on
--- top of page --

*************** TITLE ****************

BREAK HEAD
COLUMN
HEAD (VAR)

COLUMN
HEAD (VAR)

COLUMN
HEAD (VAR)

COLUMN
HEAD (VAR)

BREAK A VALUE 1

 BREAK B VALUE 1 VALUE

VALUE

VALUE
VALUE

VALUE
VALUE

VALUE
VALUE

VALUE
VALUE

VALUE
VALUE

VALUE
VALUE

VALUE
VALUE

 SUMMARY TITLE

 SUMMARY TITLE

AGG

AGG

AGG

AGG

AGG

AGG

AGG

AGG

 BREAK B VALUE 2 VALUE
VALUE

VALUE
VALUE

VALUE
VALUE

VALUE
VALUE

VALUE
VALUE

VALUE
VALUE

VALUE
VALUE

VALUE
VALUE

 SUMMARY TITLE

 SUMMARY TITLE

AGG

AGG

AGG

AGG

AGG

AGG

AGG

AGG

SUMMARY TITLE

SUMMARY TITLE

AGG

AGG

AGG

AGG

AGG

AGG

AGG

AGG

BREAK A VALUE 2

 BREAK B VALUE 1 VALUE
VALUE

VALUE
VALUE

VALUE
VALUE

VALUE
VALUE

VALUE
VALUE

VALUE
VALUE

VALUE
VALUE

VALUE
VALUE

 SUMMARY TITLE

 SUMMARY TITLE

AGG

AGG

AGG

AGG

AGG

AGG

AGG

AGG

 BREAK B VALUE 2 VALUE

VALUE

VALUE
VALUE

VALUE
VALUE

VALUE
VALUE

VALUE
VALUE

VALUE
VALUE

VALUE
VALUE

VALUE
VALUE

 SUMMARY TITLE

 SUMMARY TITLE

AGG

AGG

AGG

AGG

AGG

AGG

AGG

AGG

SUMMARY TITLE

SUMMARY TITLE

AGG

AGG

AGG

AGG

AGG

AGG

AGG

AGG

*************** FOOTNOTE ****************
--- bottom of page ---
| |
Left margin Right margin

LENGTH
TSPACE

CHDSPACE

BRKSPACE

LIST

SUMSPACE

SKIP w/ SUMMARY

SKIP w/ BREAK

BRKSPACE

SUMSPACE
stats for B=2, A=1

SUMSPACE
stats for A=1

SKIP w/ BREAK

BRKSPACE

LIST

SUMSPACE

SKIP w/ BREAK

BRKSPACE

LIST

FTSPACE

LENGTH

stats for B=1, A=2

stats for B=2, A=2

stats for A=2

stats for B=1, A=1

INDENT

768 REPORT

Example
REPORT FORMAT=AUTOMATIC LIST

/OUTFILE=PRSNLRPT
/VARIABLES=LNAME AGE TENURE JTENURE SALARY
/BREAK=DIVISION
/SUMMARY=MEAN.

REPORT FORMAT=AUTOMATIC
/OUTFILE=PRSNLRPT
/VARIABLES=LNAME AGE TENURE JTENURE SALARY
/BREAK=DIVISION
/SUMMARY=MEAN
/SUMMARY=MIN
/SUMMARY=MAX.

• Both a listing report and a summary report are written to file PRSNLRPT.

VARIABLES Subcommand

The required VARIABLES subcommand names the variables to be listed and summarized in
the report. You can also use VARIABLES to control column titles, column widths, and the con-
tents of report columns.

• The minimum specification on VARIABLES is a list of report variables. The number of
variables that can be specified is limited by the system page width.

• Each report variable defines a report column. The value of the variable or an aggregate
statistic calculated for the variable is displayed in that variable’s report column.

• Variables are assigned to columns in the order in which they are named on VARIABLES.

• Variables named on BREAK can also be named on VARIABLES.

• When FORMAT=LIST, variables can be stacked in a single column by linking them
with plus signs (+) on the VARIABLES subcommand. If no column heading is speci-
fied, REPORT uses the default heading from the first variable on the list. Only values
from the first variable in the column are used to calculate summaries.

• Optional specifications apply only to the immediately preceding variable or list of vari-
ables implied by the TO keyword. Options can be specified in any order.

• All optional specifications except column headings must be enclosed in parentheses; col-
umn headings must be enclosed in apostrophes or quotes.

Column Contents

The following options can be used to specify the contents of the report column for each variable:

(VALUE) Display the values of the variable. This is the default.

(LABEL) Display value labels. If value labels are not defined, values are displayed.

(DUMMY) Display blank spaces. DUMMY defines a report column for a variable that
does not exist in the working data file. Dummy variables are used to control
spacing or to reserve space for statistics computed for other variables. Do not
name an existing variable as a dummy variable.

REPORT 769

• VALUE and LABEL have no effect unless LIST has been specified on the FORMAT
subcommand.

• When AUTOMATIC is in effect, value labels or string values are centered in the column
based on the length of the longest string or label; numeric values are centered based on
the width of the widest value or summary format. When MANUAL is in effect, value labels
or string values are left-justified in the column and numeric values are right-justified. (See
the OFFSET keyword on p. 770.)

Column Heading

The following option can be used to specify a heading for the report column:

‘column heading’ Column heading for the preceding variable. The heading must be en-
closed in apostrophes or quotes. If no column heading is specified, the
default is the variable label or, if no variable label has been specified,
the variable name.

• To specify multiple-line headings, enclose each line in a set of apostrophes or quotes, us-
ing the conventions for strings (see “Command Specification” on p. 2). The specifications
for title lines should be separated by at least one blank.

• Default column headings wrap for as many lines as are required to display the entire label.
If AUTOMATIC is in effect, user-specified column headings appear exactly as specified,
even if the column width must be extended. If MANUAL is in effect, user-specified titles
wrap to fit within the column width.

Column Heading Alignment

The following options can be used to specify how column headings are aligned:

(LEFT) Left-aligned column heading.

(CENTER) Centered column heading.

(RIGHT) Right-aligned column heading.

• If AUTOMATIC is in effect, column headings are centered within their columns by default.
If value labels or string values exceed the width of the longest word in the heading, the
heading is left-justified.

• If MANUAL is in effect, column headings are left-justified for value labels or string values
and right-justified for numeric values by default.

Column Format

The following options can be used to specify column width and adjust the position of the col-
umn contents:

(width) Width for the report column. If no width is specified for a variable, REPORT
determines a default width using the criteria described under “Defaults” on

770 REPORT

p. 757. If you specify a width that is not wide enough to display numeric
values, REPORT first rounds decimal digits, then converts to scientific no-
tation if possible, and then displays asterisks. Value labels or string values
that exceed the width are wrapped.

(OFFSET) Position of the report column contents. The specification is either n or
CENTER specified in parentheses. OFFSET(n) indicates the number of
spaces to offset the contents from the left for value labels or string values,
and from the right for numeric values. OFFSET(CENTER) centers contents
within the center of the column. If AUTOMATIC is in effect, the default is
CENTER. If MANUAL is in effect, the default is 0. Value labels and string
values are left-justified and numeric values are right-justified.

Example
 /VARIABLES=V1 TO V3(LABEL) (15)

V4 V5 (LABEL)(OFFSET (2))(10)
SEP1 (DUMMY) (2) ’’
V6 ’Results using’ "Lieben’s Method" ’of Calculation’

• The width of the columns for variables V1 through V3 is 15 each. Value labels are dis-
played for these variables in the case listing.

• The column for variable V4 uses the default width. Values are listed in the case listing.

• Value labels are displayed for variable V5. The column width is 10. Column contents are
offset two spaces from the left.

• SEP1 is a dummy variable. The column width is 2, and there is at least one space on each
side of SEP1. Thus, there are at least four blanks between the columns for V5 and V6.
SEP1 is given a null title to override the default column title SEP1.

• V6 has a three-line title. Its column uses the default width, and values are listed in the case
listing.

STRING Subcommand

STRING creates a temporary string variable by concatenating variables and user-specified
strings. These variables exist only within the REPORT procedure.

• The minimum specification is a name for the string variable followed by a variable name
or a user-specified string enclosed in parentheses.

• The name assigned to the string variable must be unique.

• Any combination of string variables, numeric variables, and user-specified strings can be
used in the parentheses to define the string.

• Keyword TO cannot be used within the parentheses to imply a variable list.

• More than one string variable can be defined on STRING.

• If a case has a missing value for a variable within the parentheses, the variable passes the
missing value to the temporary variable without affecting other elements specified.

• A string variable defined in REPORT cannot exceed the system page width.

• String variables defined on STRING can be used on VARIABLES or BREAK.

REPORT 771

The following options can be used to specify how components are to be concatenated:

(width) Width of the preceding variable within the string. The default is the dictio-
nary width of the variable. The maximum width for numeric variables within
the string definition is 16. The maximum width for a string variable is the
system page width. If the width specified is less than that required by the val-
ue, numeric values are displayed as asterisks and string values are truncated.
If the width exceeds the width of a value, numeric values are padded with ze-
ros on the left and string values are padded with blanks on the right.

(BLANK) Left-pad values of the preceding numeric variable with blanks. The default
is to left-pad values of numeric variables with zeros. If a numeric variable
has a dollar or comma format, it is automatically left-padded with blanks.

‘literal’ User-specified string. Any combination of characters can be specified within
apostrophes or quotes.

Example
 /STRING=JOB1(AVAR NVAR)

 JOB2(AVAR(2) NVAR(3))
 JOB3(AVAR(2) NVAR(BLANK) (4))

• STRING defines three string variables to be used within the report.

• Assume that AVAR is a string variable read from a four-column field using keyword FIXED
on DATA LIST and that NVAR is a computed numeric variable with the default format of
eight columns with two implied decimal places.

• If a case has value KJ for AVAR and value 241 for NVAR, JOB1 displays the value
‘KJ 00241.00’, JOB2 the value ‘KJ241’, and JOB3 the value ‘KJ 241’. If NVAR has the
system-missing value for a case, JOB1 displays the value ‘KJ.’

Example
 /STRING=SOCSEC(S1 ’-’ S2 ’-’ S3)

• STRING concatenates the three variables S1, S2, and S3, each of which contains a segment
of the social security number.

• Hyphens are inserted between the segments when the values of SOCSEC are displayed.

• This example assumes that the variables S1, S2, and S3 were read from three-column,
two-column, and four-column fields respectively, using the keyword FIXED on DATA LIST.
These variables would then have default format widths of 3, 2, and 4 columns and would
not be left-padded with zeros.

BREAK Subcommand

BREAK specifies the variables that define the subgroups for the report, or it specifies summa-
ry totals for reports with no subgroups. BREAK also allows you to control the titles, width,
and contents of break columns and to begin a new page for each level of the break variable.

• A break occurs when any one of the variables named on BREAK changes value. Cases
must be sorted by the values of all BREAK variables on all BREAK subcommands.

772 REPORT

• The BREAK subcommand must precede the SUMMARY subcommand that defines the sum-
mary line for the break.

• A break column is reserved for each BREAK subcommand if ONEBREAKCOLUMN is OFF
(the default).

• To obtain multiple break levels, specify multiple break variables on a BREAK subcommand.

• If more than one variable is specified on a BREAK subcommand, a single break column is
used. The value or value label for each variable is displayed on a separate line in the order
in which the variables are specified on BREAK. The first variable specified changes most
slowly. The default column width is the longest of the default widths for any of the break
variables.

• To obtain summary totals without any break levels, use keyword TOTAL in parentheses
on BREAK without listing any variables. TOTAL must be specified on the first BREAK sub-
command.

• When MISSING=VAR is specified, user-missing values are displayed in case listings but
are not included in summary statistics. When NONE is specified, user-missing values are
ignored. System-missing values are displayed as missing in case and break listings.

• Optional specifications apply to all variables in the break column and to the break column
as a whole. Options can be specified in any order following the last variable named.

• All optional specifications except column headings must be enclosed in parentheses; col-
umn headings must be enclosed in apostrophes.

Column Contents

The following can be used to specify the contents of the break column:

(VALUE) Display values of the break variables.

(LABEL) Display value labels. If no value labels have been defined, values are displayed.

• The value or label is displayed only once for each break change but it is repeated at the
top of the page in a multiple-page break group.

• When AUTOMATIC is in effect, the default is LABEL; when MANUAL is in effect, the default
is VALUE.

• When AUTOMATIC is in effect, the value or label is centered in the column. When MANUAL is
in effect, value labels and string values are left-justified and numeric values are right-justified.
Keywords OFFSET, ONEBREAKCOLUMN, and INDENT can also affect positioning.

Column Heading

The following option specifies headings used for the break column.

‘column heading’ Column heading for the break column. The heading must be included in
apostrophes or quotes. The default heading is the variable label of the break
variable or, if no label has been defined, the variable name. If the break col-
umn is defined by more than one variable, the label or name of the first vari-

REPORT 773

able is used. If ONEBREAKCOLUMN is ON, the specified or implied column
heading for the first BREAK subcommand is used.

• To specify multiple-line headings, enclose each line in a set of apostrophes or quotes,
following the conventions for strings (see “Command Specification” on p. 2). Sepa-
rate the specifications for heading lines with at least one blank.

• Default column headings wrap for as many lines as are required to display the entire label.
• User-specified column headings appear exactly as specified if CHWRAP is OFF (the de-

fault). If CHWRAP is ON, any user-defined line longer than the specified or default column
width is automatically wrapped.

Column Heading Alignment

The following options can be used to specify how column headings are aligned:

(LEFT) Left-aligned column heading.

(CENTER) Centered column heading.

(RIGHT) Right-aligned column heading.

• When AUTOMATIC is in effect, column headings are centered within their columns by de-
fault. If value labels or string values exceed the width of the longest word in the heading,
the heading is left-justified.

• When MANUAL is in effect, column headings are left-justified for value labels or string
values and right-justified for numeric values.

• When ONEBREAKCOLUMN is ON, all column contents are left aligned. Specifications of
CENTER and RIGHT on BREAK are ignored.

Column Format

The following options can be used to format break columns:

(width) Column width for the break column. If no width is specified for a variable,
REPORT determines a default width using the criteria described under “De-
faults” on p. 757. If ONEBREAKCOLUMN is ON, the column width specified
or implied by the first BREAK subcommand is used. If you specify a width
that is not wide enough to display numeric values, REPORT first rounds dec-
imal digits, then converts them to scientific notation if possible, and then dis-
plays asterisks. Value labels or string values that exceed the width are
wrapped.

(OFFSET) Position of the break column contents. The specification is either n or CENTER
specified in parentheses. OFFSET(n) indicates the number of spaces to offset
the contents from the left for value labels or string values, and from the right
for numeric values. OFFSET(CENTER) centers contents within the column. If
AUTOMATIC is in effect, the default is CENTER. If MANUAL is in effect, the de-
fault is 0: value labels and string values are left-justified and numeric values
are right-justified. If OPNEBREAKCOLUMN is ON, the offset is applied along

774 REPORT

with the indention specified on INDENT, always from the left. The specifica-
tion of CENTER on OFFSET is ignored.

(UNDERSCORE) Use underscores below case listings. Case listing columns produced by
FORMAT LIST are underscored before summary statistics are displayed.
You can optionally specify the names of one or more report variables after
UNDERSCORE; only the specified columns are underscored.

(TOTAL) Display the summary statistics requested on the next SUMMARY subcom-
mand for all the cases in the report. TOTAL must be specified on the first
BREAK subcommand and applies only to the next SUMMARY subcommand
specified.

(NOTOTAL) Display summary statistics only for each break. This is the default.

(SKIP(n)) Skip n lines after the last summary line for a break before beginning the next
break. The default for n is 1.

(PAGE) Begin each break on a new page. If RESET is specified on PAGE, the page
counter resets to the PAGE1 setting on the FORMAT subcommand every time
the break value changes for the specified variable. PAGE cannot be specified
for listing reports with no break levels.

(NAME) Display the name of the break variable next to each value or value label of
the break variable. NAME requires 10 spaces (the maximum eight-character
width of variable names plus a colon and a blank space) in addition to the
space needed to display break values or value labels. NAME is ignored if the
break-column width is insufficient.

(NONAME) Suppress the display of break variable names. This is the default.

Example
SORT DIVISION BRANCH DEPT.
REPORT FORMAT=AUTOMATIC MARGINS (1,70) BRKSPACE(-1)

/VARIABLES=SPACE(DUMMY) ’ ’ (4)
SALES ’Annual’ ’Sales’ ’1981’ (15) (OFFSET(2))
EXPENSES ’Annual’ ’Expenses’ ’1981’ (15) (OFFSET(2))

/BREAK=DIVISION
BRANCH (10) (TOTAL) (OFFSET(1))

/SUMMARY=MEAN

/BREAK=DEPT ’Department’ (10)
/SUMMARY=MEAN.

• This example creates a report with three break variables. BRANCH breaks within values
of DIVISION, and DEPT breaks within values of BRANCH.

• FORMAT sets margins to a maximum of 70 columns and requests that summary lines be
displayed on the same line as break values. Because LIST is not specified on FORMAT,
only summary statistics are displayed.

• VARIABLES defines three report columns, each occupied by a report variable: SPACE,
SALES, and EXPENSES.

REPORT 775

• The variable SPACE is a dummy variable that exists only within REPORT. It has a null
heading and a width of 4. It is used as a space holder to separate the break columns from
the report columns.

• SALES has a three-line heading and a width of 15. The values of SALES are offset two
spaces from the right.

• EXPENSES is the third report variable and has the same width and offset specifications as
SALES.

• The leftmost column in the report is reserved for the first two break variables, DIVISION and
BRANCH. Value labels are displayed, since this is the default for AUTOMATIC. The break
column has a width of 10 and the value labels are offset one space from the left. Value labels
more than nine characters long are wrapped. The default column heading is used. TOTAL re-
quests a summary line at the end of the report showing the mean of all cases in the report.

• The first SUMMARY subcommand displays the mean of each report variable in its report
column. This line is displayed each time the value of DIVISION or BRANCH changes.

• The third break variable, DEPT, occupies the second column from the left in the report.
The break column has a width of 10 and has a one-line heading. Value labels are displayed
in the break column, and those exceeding 10 characters are wrapped.

• The second SUMMARY subcommand displays the mean for each report variable when the
value of DEPT changes.

SUMMARY Subcommand

SUMMARY calculates a wide range of aggregate and composite statistics.

• SUMMARY must be specified if LIST is not specified on FORMAT.

• The minimum specification is an aggregate or a composite function and its arguments.
This must be the first specification on SUMMARY.

• Each SUMMARY subcommand following a BREAK subcommand specifies a new summary
line.

• The default location of the summary title is the column of the break variable to which the
summary applies. When more than one function is named on SUMMARY, the default sum-
mary title is that of the function named first. Both the title and its default column location
can be altered (see “Summary Titles” on p. 779).

• The default format can be altered for any function (see “Summary Print Formats” on p. 780).

• SUMMARY subcommands apply only to the preceding BREAK subcommand. If there is no
SUMMARY subcommand after a BREAK subcommand, no statistics are displayed for that
break level.

• To use the summary specifications from a previous BREAK subcommand for the current
BREAK subcommand, specify keyword PREVIOUS on SUMMARY. (See “Other Summary
Keywords” on p. 782.)

• Summary statistics are displayed in report columns. With aggregate functions you can
compute summary statistics for all report variables or for a subset (see “Aggregate Func-
tions” below). With composite functions you can compute summaries for all or a subset
of report variables and you have additional control over the placement of summary statis-
tics in particular report columns (see “Composite Functions” on p. 778).

776 REPORT

• Multiple summary statistics requested on one SUMMARY subcommand are all displayed
on the same line. More than one function can be specified on SUMMARY as long as you
do not attempt to place two results in the same report column (REPORT will not be exe-
cuted if you do). To place results of more than one function in the same report column,
use multiple SUMMARY subcommands.

• Any composite and aggregate functions except FREQUENCY and PERCENT can be spec-
ified on the same summary line.

• To insert blank lines between summaries when more than one summary line is requested
for a break, use keyword SKIP followed by the number of lines to skip in parentheses. The
default is 0. (See “Other Summary Keywords” on p. 782.)

Aggregate Functions

Use the aggregate functions to request descriptive statistics for report variables.

• If no variable names are specified as arguments to an aggregate function, the statistic is
calculated for all variables named on VARIABLES (all report variables).

• To request an aggregate function for a subset of report variables, specify the variables in
parentheses after the function keyword.

• All variables specified for an aggregate function must have been named on VARIABLES.

• Keyword TO cannot be used to specify a list of variables for an aggregate function.

• The result of an aggregate function is always displayed in the report column reserved for
the variable for which the function was calculated.

• To use several aggregate functions for the same report variable, specify multiple SUMMARY
subcommands. The results are displayed on different summary lines.

• The aggregate functions FREQUENCY and PERCENT have special display formats and
cannot be placed on the same summary line with other aggregate or composite functions.
They can be specified only once per SUMMARY subcommand.

• Aggregate functions use only cases with valid values.

VALIDN Valid number of cases. This is the only function available for string
variables.

SUM Sum of values.

MIN Minimum value.

MAX Maximum value.

MEAN Mean.

STDDEV Standard deviation. Aliases are SD and STDEV.

VARIANCE Variance.

KURTOSIS Kurtosis.

SKEWNESS Skewness.

REPORT 777

MEDIAN(min,max) Median value for values within the range. MEDIAN sets up integer-val-
ued bins for counting all values in the specified range. Noninteger
values are truncated when the median is calculated.

MODE(min,max) Modal value for values within the range. MODE sets up integer-valued
bins for counting all values in the specified range. Noninteger values
are truncated when the mode is calculated.

PGT(n) Percentage of cases with values greater than n. Alias PCGT.

PLT(n) Percentage of cases with values less than n. Alias PCLT.

PIN(min,max) Percentage of cases within the inclusive value range specified. Alias
PCIN.

FREQUENCY(min,max) Frequency counts for values within the inclusive range. FREQUENCY
sets up integer-valued bins for counting all values in the specified range. Nonin-
teger values are truncated when the frequency is computed. FREQUENCY can-
not be mixed with other aggregate statistics on a summary line.

PERCENT(min,max) Percentages for values within the inclusive range. PERCENT sets up
integer-valued bins for counting all values in the specified range.
Noninteger values are truncated when the percentages are computed.
PERCENT cannot be mixed with other aggregate statistics on a sum-
mary line.

Example
SORT CASES BY BVAR AVAR.
REPORT FORMAT=AUTOMATIC LIST /VARIABLES=XVAR YVAR ZVAR

/BREAK=BVAR
/SUMMARY=SUM
/SUMMARY=MEAN (XVAR YVAR ZVAR)
/SUMMARY=VALIDN(XVAR)

/BREAK=AVAR
/SUMMARY=PREVIOUS.

• FORMAT requests a case listing, and VARIABLES establishes a report column for variables
XVAR, YVAR, and ZVAR. The report columns have default widths and titles.

• Both break variables, BVAR and AVAR, have default widths and headings.

• Every time the value of BVAR changes, three summary lines are displayed. The first line
contains the sums for variables XVAR, YVAR, and ZVAR. The second line contains the
means of all three variables. The third line displays the number of valid cases for XVAR
in the report column for XVAR.

• Every time the value of AVAR changes within each value of BVAR, the three summary
lines requested for BVAR are displayed. These summary lines are based on cases with the
current values of BVAR and AVAR.

778 REPORT

Example
SORT CASES BY DEPT.
REPORT FORMAT=AUTOMATIC

/VARIABLES=WAGE BONUS TENURE
/BREAK=DEPT (23)
/SUMMARY=SUM(WAGE BONUS) MEAN(TENURE) ’Sum Income: Mean Tenure’.

• SUMMARY defines a summary line consisting of the sums of WAGE and BONUS and the
mean of TENURE. The result of each aggregate function is displayed in the report column
of the variable for which the function is calculated.

• A title is assigned to the summary line. A width of 23 is defined for the break column to
accommodate the title for the summary line.

Composite Functions

Use composite functions to obtain statistics based on aggregated statistics, to place a sum-
mary statistic in a column other than that of the report variable for which it was calculated,
or to manipulate variables not named on VARIABLES.

• Composite functions can be computed for the following aggregate functions: VALIDN,
SUM, MIN, MAX, MEAN, STDEV, VARIANCE, KURTOSIS, SKEWNESS, PGT, PLT, and PIN.
Constants can also be arguments to composite functions.

• When used within composite functions, aggregate functions can have only one variable
as an argument.

• A composite function and its arguments cannot be separated by other SUMMARY
specifications.

• The result of a composite function can be placed in any report column, including columns
of dummy or string variables, by specifying a target column. To specify a target column,
enclose the variable name of the column in parentheses after the composite function and its
arguments. By default, the results of a composite function are placed in the report column
of the first variable specified on the composite function that is also specified on VARIABLES.

• The format for the result of a composite function can be specified in parentheses after the
name of the column location, within the parentheses that enclose the column-location
specification.

DIVIDE(arg1 arg2 [factor]) Divide the first argument by the second and then multiply the result
by the factor if it is specified.

MULTIPLY(arg1 ... argn) Multiply the arguments.

PCT(arg1 arg2) The percentage of the first argument over the second.

SUBTRACT(arg1 arg2) Subtract the second argument from the first.

ADD(arg1 ... argn) Add the arguments.

GREAT(arg1 ... argn) The maximum of the arguments.

LEAST(arg1 ... argn) The minimum of the arguments.

AVERAGE(arg1 ... argn) The average of the arguments.

REPORT 779

Example
SORT CASES BY DEPT.
REPORT FORMAT=AUTOMATIC BRKSPACE(-1)

/VARIABLES=WAGE BONUS SPACE1 (DUMMY) ’’ BNFT1 BNFT2 SPACE2 (DUMMY)
’’

/BREAK=DEPT

/SUMMARY=MEAN(WAGE BONUS BNFT1 BNFT2)
ADD(VALIDN(WAGE)) (SPACE2)

/SUMMARY=ADD(SUM(WAGE) SUM(BONUS))
ADD(SUM(BNFT1) SUM(BNFT2)) ’Totals’ SKIP(1)

/SUMMARY=DIVIDE(MEAN(WAGE) MEAN(BONUS)) (SPACE1 (COMMA)(2))
DIVIDE(MEAN(BNFT1) MEAN(BNFT2)) (SPACE2 (COMMA)(2)) ’Ratios’
SKIP(1).

• VARIABLES defines six report columns. The columns for WAGE, BONUS, BNFT1, and
BNFT2 contain aggregate statistics based on those variables. The variables SPACE1 and
SPACE2 are dummy variables that are created for use as space holders; each is given a
blank heading to suppress the default column heading.

• The first SUMMARY computes the means of the variables WAGE, BONUS, BNFT1, and
BNFT2. Because BRKSPACE=-1, this summary line will be placed on the same line as the
break value and will have no summary title. The means are displayed in the report column
for each variable. SUMMARY also computes the valid number of cases for WAGE and places
the result in the SPACE2 column.

• The second SUMMARY adds the sum of WAGE to the sum of BONUS. Since no location is
specified, the result is displayed in the WAGE column. In addition, the sum of BNFT1 is
added to the sum of BNFT2 and the result is placed in the BNFT1 column. The title for the
summary line is Totals. One line is skipped before the summary line requested by this
SUMMARY subcommand is displayed.

• The third summary line divides the mean of WAGE by the mean of BONUS and places the
result in SPACE1. The ratio of the mean of BNFT1 to the mean of BNFT2 is displayed in
the SPACE2 column. The results are displayed with commas and two decimal places. The
title for the summary line is Ratios. One line is skipped before the summary line requested
by this SUMMARY subcommand is displayed.

Summary Titles

• You can specify a summary title enclosed in apostrophes or quotes, following the conven-
tions for strings (see “Command Specification” on p. 2). Table 2 shows the default titles.

• The summary title must be specified after the first function and its arguments. It cannot
separate any function from its arguments.

• A summary title can be only one line long.

• A summary title wider than the break column extends into the next break column to the
right. If the title is wider than all of the available break columns, it is truncated.

• Only one summary title can be specified per summary line. If more than one is specified,
the last is used.

780 REPORT

• The summary title is left- or right-justified depending upon whether the break title is left-
or right-justified.

• The default location for the summary title is the column of the BREAK variable to which
the summary applies. With multiple breaks, you can override the default placement of the
title by specifying, in parentheses following the title, the number of the break column in
which you want the summary title to be displayed.

• In a report with no break levels, REPORT displays the summary title above the summary
line at the left margin.

Summary Print Formats

All functions have default formats that are used to display results (see Table 3). You can over-
ride these defaults by specifying a format keyword and/or the number of decimal places.

• Any printable formats or the PLAIN keyword can be specified. Format specifications must
be enclosed in parentheses.

• For aggregate functions, the format and/or number of decimal places is specified after the
variable name, within the parentheses that enclose the variable name. The variable must
be explicitly named as an argument.

• For composite functions, the format and/or number of decimal places is specified after the
variable name of the column location, within the parentheses that enclose the variable
name. The column location must be explicitly specified.

Table 2 Default title for summary lines

Function Title

VALIDN N
VARIANCE Variance
SUM Sum
MEAN Mean
STDDEV StdDev
MIN Minimum
MAX Maximum
SKEWNESS Skewness
KURTOSIS Kurtosis
PGT(n) >n
PLT(n) <n
PIN(min,max) In n1 to n2
FREQUENCY(min,max) Total
PERCENT(min,max) Total
MEDIAN(min,max) Median
MODE(min,max) Mode

REPORT 781

• If the report column is wide enough, SUM, MEAN, STDDEV, MIN, MAX, MEDIAN, MODE,
and VARIANCE use DOLLAR or COMMA format, if a DOLLAR or COMMA format has been
declared for the variable on either the FORMATS or PRINT FORMATS command.

• If the column is not wide enough to display the decimal digits for a given function,
REPORT displays fewer decimal places. If the column is not wide enough to display
the integer portion of the number, REPORT uses scientific notation if possible, or, if
not, displays asterisks.

• An exact value of 0 is displayed with one 0 to the left of the decimal point and as many 0
digits to the right as specified by the format. A number less than 1 in absolute value is
displayed without a 0 to the left of the decimal point, except with DOLLAR and COMMA
formats.

(PLAIN) Uses the setting on SET DECIMAL for the thousands separator and decimal delim-
iter. PLAIN overrides dictionary formats. This is the default for all functions except
SUM, MEAN, STDDEV, MIN, MAX, MEDIAN, MODE, and VARIANCE. For these func-
tions, the default is the dictionary format of the variable for which the function is
computed.

(d) Number of decimal places.

Example
 /SUMMARY=MEAN(INCOME (DOLLAR)(2))

 ADD(SUM(INCOME)SUM(WEALTH)) (WEALTH(DOLLLAR(2))

• SUMMARY displays the mean of INCOME with dollar format and two decimal places. The
result is displayed in the INCOME column.

• The sums of INCOME and WEALTH are added, and the result is displayed in the WEALTH
column with dollar format and two decimal places.

Table 3 Default print formats for functions

Function Format type Width Decimal places

VALIDN F 5 0
SUM Dictionary Dictionary + 2 Dictionary
MEAN Dictionary Dictionary Dictionary
STDDEV Dictionary Dictionary Dictionary
VARIANCE Dictionary Dictionary Dictionary
MIN Dictionary Dictionary Dictionary
MAX Dictionary Dictionary Dictionary
SKEWNESS F 5 2
KURTOSIS F 5 2
PGT PCT 6 1
PLT PCT 6 1
PIN PCT 6 1
MEDIAN Dictionary Dictionary Dictionary
MODE Dictionary Dictionary Dictionary

782 REPORT

Where DATE formats are specified, functions with the dictionary format type
display the DATE formats, using the column width as the display width.

Other Summary Keywords

The following additional keywords can be specified on SUMMARY. These keywords are not
enclosed in parentheses.

SKIP(n) Blank lines before the summary line. The default is 0. If SKIP is specified for
the first SUMMARY subcommand for a BREAK, it skips the specified lines af-
ter skipping the number of lines specified for BRKSPACE on FORMAT. Sim-
ilarly, with case listings SKIP skips n lines after the blank line at the end of
the listing.

PREVIOUS(n) Use the SUMMARY subcommands specified for the nth BREAK. If n is not
specified, PREVIOUS refers to the set of SUMMARY subcommands for the
previous BREAK. If an integer is specified, the SUMMARY subcommands
from the nth BREAK are used. If PREVIOUS is specified, no other specifica-
tion can be used on that SUMMARY subcommand.

TITLE and FOOTNOTE Subcommands

TITLE and FOOTNOTE provide titles and footnotes for the report.

• TITLE and FOOTNOTE are optional and can be placed anywhere after FORMAT except be-
tween the BREAK and SUMMARY subcommands.

• The specification on TITLE or FOOTNOTE is the title or footnote in apostrophes or quotes.
To specify a multiple-line title or footnote, enclose each line in apostrophes or quotes and
separate the specifications for each line by at least one blank.

• The default REPORT title is the title specified on the TITLE command. If there is no TITLE
command specified in your session, the default REPORT title is the first line of the header.

• Titles begin on the first line of the report page. Footnotes end on the last line of the report
page.

PERCENT F 6 1
FREQUENCY F 5 0
DIVIDE F Dictionary 0
PCT PCT 6 2
SUBTRACT F Dictionary 0
ADD F Dictionary 0
GREAT F Dictionary 0
LEAST F Dictionary 0
AVERAGE F Dictionary 0
MULTIPLY F Dictionary 0

Table 3 Default print formats for functions (Continued)

Function Format type Width Decimal places

REPORT 783

• Titles and footnotes are repeated on each page of a multiple-page report.

• The positional keywords LEFT, CENTER, and RIGHT can each be specified once. The de-
fault is CENTER.

• If the total width needed for the combined titles or footnotes for a line exceeds the page
width, REPORT generates an error message.

LEFT Left-justify titles or footnotes within the report page margins.

RIGHT Right-justify titles or footnotes within the report page margins.

CENTER Center titles and footnotes within the report page width.

The following can be specified as part of the title or footnote.

)PAGE Display the page number right-justified in a five-character field.

)DATE Display the current date in the form dd/mmm/yy, right-justified in a nine-
character field.

)var Display this variable’s value label at this position. If you specify a variable
that has no value label, the value is displayed, formatted according to its print
format. You cannot specify a scratch or system variable or a variable created
with the STRING subcommand. If you want to use a variable named DATE or
PAGE in the file, change the variable’s name with the RENAME VARIABLES
command before you use it on the TITLE or FOOTNOTE subcommands, to
avoid confusion with the)PAGE and)DATE keywords.

•)PAGE,)DATE, and)var are specified within apostrophes or quotes and can be mixed with
string segments within the apostrophes or quotes.

• A variable specified on TITLE or FOOTNOTE must be defined in the working data file, but
does not need to be included as a column on the report.

• One label or value from each variable specified on TITLE or FOOTNOTE is displayed on ev-
ery page of the report. If a new page starts with a case listing, REPORT takes the value label
from the first case listed. If a new page starts with a BREAK line, REPORT takes the value
label from the first case of the new break group. If a new page starts with a summary line,
REPORT takes the value label from the last case of the break group being summarized.

Example
 /TITLE=LEFT ’Personnel Report’ ’Prepared on)DATE’

RIGHT ’Page:)PAGE’

• TITLE specifies two lines for a left-justified title and one line for a right-justified title.
These titles are displayed at the top of each page of the report.

• The second line of the left-justified title contains the date on which the report was processed.
• The right-justified title displays the page number following the string Page: on the same

line as the first line of the left-justified title.

784 REPORT

MISSING Subcommand

MISSING controls the treatment of cases with missing values.

• MISSING specifications apply to variables named on VARIABLES and SUMMARY and to
strings created with the STRING subcommand.

• Missing-value specifications are ignored for variables named on BREAK when
MISSING=VAR or NONE. There is one break category for system-missing values and one
for each user-missing value.

• The character used to indicate missing values is controlled by the FORMAT subcommand.

VAR Missing values are treated separately for each variable. Missing
values are displayed in case listings but are not included in the calcu-
lation of summary statistics on a function-by-function basis. This is
the defalt.

NONE User-missing values are treated as valid values. This applies to all
variables named on VARIABLES.

LIST[([varlist][n])] Cases with the specified number of missing values across the specified
list of variables are not used. The variable list and n are specified in
parentheses. If n is not specified, the default is 1. If no variables are
specified, all variables named on VARIABLES are assumed.

Example
 /MISSING= LIST (XVAR,YVAR,ZVAR 2)

• Any case with two or more missing values across the variables XVAR, YVAR, and ZVAR is
omitted from the report.

785

REREAD

REREAD [FILE=file]
 [COLUMN=expression]

Example:
INPUT PROGRAM.
DATA LIST /KIND 10-14 (A).

DO IF (KIND EQ ’FORD’).
REREAD.
DATA LIST /PARTNO 1-2 PRICE 3-6 (DOLLAR,2) QUANTITY 7-9.
END CASE.

ELSE IF (KIND EQ ’CHEVY’).
REREAD.
DATA LIST /PARTNO 1-2 PRICE 15-18 (DOLLAR,2) QUANTITY 19-21.
END CASE.
END IF.

END INPUT PROGRAM.

BEGIN DATA
111295100FORD
11 CHEVY 295015
END DATA.

Overview

REREAD instructs the program to reread a record in the data. It is available only within an
INPUT PROGRAM structure and is generally used to define data using information obtained
from a previous reading of the record. REREAD is usually specified within a conditional
structure, such as DO IF—END IF, and is followed by a DATA LIST command. When it re-
ceives control for a case, REREAD places the pointer back to the column specified for the
current case and begins reading data as defined by the DATA LIST command that follows.

Options

Data Source. You can use inline data or data from an external file specified on the FILE sub-
command. Using external files allows you to open multiple files and merge data.

Beginning Column. You can specify a beginning column other than column 1 using the
COLUMN subcommand.

786 REREAD

Basic Specification

The basic specification is the command keyword REREAD. The program rereads the current
case according to the data definitions specified on the following DATA LIST.

Subcommand Order

Subcommands can be specified in any order.

Syntax Rules

• REREAD is available only within an INPUT PROGRAM structure.

• Multiple REREAD commands can be used within the input program. Each must be followed
by an associated DATA LIST command.

Operations

• REREAD causes the next DATA LIST command to reread the most recently processed
record in the specified file.

• When it receives control for a case, REREAD places the pointer back to column 1 for
the current case and begins reading data as defined by the DATA LIST that follows. If the
COLUMN subcommand is specified, the pointer begins reading in the specified column
and uses it as column 1 for data definition.

• REREAD can be used to read part of a record in FIXED format and the remainder in LIST
format. Mixing FIXED and FREE formats yields unpredictable results.

• Multiple REREAD commands specified without an intervening DATA LIST do not have a
cumulative effect. All but the last are ignored.

REREAD 787

Example

INPUT PROGRAM.
DATA LIST /PARTNO 1-2 KIND 10-14 (A).

DO IF (KIND EQ ’FORD’).
REREAD.
DATA LIST /PRICE 3-6 (DOLLAR,2) QUANTITY 7-9.
END CASE.

ELSE IF (KIND EQ ’CHEVY’).
REREAD.
DATA LIST /PRICE 15-18 (DOLLAR,2) QUANTITY 19-21.
END CASE.
END IF.
END INPUT PROGRAM.

BEGIN DATA
111295100FORD CHAPMAN AUTO SALES
121199005VW MIDWEST VOLKSWAGEN SALES
11 395025FORD BETTER USED CARS
11 CHEVY 195005 HUFFMAN SALES & SERVICE
11 VW 595020 MIDWEST VOLKSWAGEN SALES
11 CHEVY 295015 SAM’S AUTO REPAIR
12 CHEVY 210 20 LONGFELLOW CHEVROLET
9555032 VW HYDE PARK IMPORTS
END DATA.
LIST.

• Data are extracted from an inventory of automobile parts. The automobile part number
always appears in columns 1 and 2, and the automobile type always appears in columns
10 through 14. The location of other information such as price and quantity depends on
both the part number and the type of automobile.

• The first DATA LIST extracts the part number and type of automobile.
• Depending on the information from the first DATA LIST, the records are reread using one

of two DATA LIST commands, pulling the price and quantity from different places.

• The two END CASE commands limit the working data file to only those cases with part
11 and automobile type Ford or Chevrolet. Without the END CASE commands, cases
would be created for other part numbers and automobile types, with missing values for
price, quantity, and buyer.

The LIST output is shown in Figure 1.

Figure 1 Listed information for part 11
PARTNO KIND PRICE QUANTITY

11 FORD $12.95 100
11 FORD $3.95 25
11 CHEVY $1.95 5
11 CHEVY $2.95 15

788 REREAD

Example

* Multiple REREAD commands for the same record.

INPUT PROGRAM.
DATA LIST NOTABLE/ CDIMAGE 1-20(A).
REREAD COLUMN = 6. /* A, C, and E are in column 6
REREAD COLUMN = 11. /* B, D, and F are in column 11
DATA LIST NOTABLE/ INFO 1(A).
END INPUT PROGRAM.
LIST.
BEGIN DATA
1 A B
2 C D
3 E F
END DATA.

• Multiple REREAD commands are used without an intervening DATA LIST. Only the last
one is used. Thus, the starting column comes from the last REREAD specified and the
pointer is reset to column 11.

• Figure 2 shows the results from the LIST command.

FILE Subcommand

FILE specifies an external raw data file from which the next DATA LIST command reads data.

• The default file is the file specified on the immediately preceding DATA LIST command.

• If the file specified on FILE is not the default file, the same file must be specified on the
next DATA LIST. Otherwise, the FILE subcommand is ignored and the DATA LIST command
reads the next record from the file specified on it or, if no file is specified, from the file
specified on the previous DATA LIST command.

Figure 2 Listed information after multiple REREAD commands

CDIMAGE INFO

1 A B B
2 C D D
3 E F F

REREAD 789

Example
INPUT PROGRAM.
DATA LIST FILE=UPDATE END=#EOF NOTABLE
 /#ID 1-3. /*Get rep ID in new sales file.
DATA LIST FILE = SALESREP NOTABLE
 /ID 1-3 SALES 4-11(F,2)
 NEWSALE 12-19(F,2). /*Get rep record from master file.

LOOP IF #EOF OR (#ID GT ID). /*If UPDATE ends or no new sales made.
+ COMPUTE NEWSALE = 0. /*Set NEWSALE to 0
+ END CASE. /*Build a case.
+ DATA LIST FILE = SALESREP NOTABLE
 /ID 1-3 SALES 4-11(F,2)
 NEWSALE 12-19(F,2). /*Continue reading masterfile.
END LOOP

DO IF NOT #EOF. /*If new sales made.
+ REREAD FILE=UPDATE COLUMN = 4. /*Read new sales from UPDATE.
+ DATA LIST FILE=UPDATE
 /NEWSALE 1-8(F,2).
+ COMPUTE SALES=SALES+NEWSALE. /*Update master file.
END IF.
END CASE. /*Build a case.
END INPUT PROGRAM.

LIST.

• This example uses REREAD to merge two raw data files (SALESREP and UPDATE).

• Both files are sorted by sales representative ID number. The UPDATE file contains
only records for sales representatives who have made new sales, with variables ID and
NEWSALE. The master file SALESREP contains records for all sales representatives,
with variables SALES (which contains year-to-date sales) and NEWSALE (which con-
tains the update values each time the file is updated).

• If a sales representative has made no new sales, there is no matching ID in the UPDATE
file. When UPDATE is exhausted or when the ID’s in the two files do not match, the loop
structure causes the program to build a case with NEWSALE equal to 0 and then continue
reading the master file.

• When the ID’s match (and the UPDATE file is not yet exhausted), the REREAD command
is executed. The following DATA LIST rereads the record in UPDATE that matches the ID
variable. NEWSALE is read from the UPDATE file starting from column 4 and SALES is
updated. Note that the following DATA LIST specifies the same file.

• When the updated base is built, the program returns to the first DATA LIST command in
the input program and reads the next ID from the UPDATE file. If the UPDATE file is ex-
hausted (#EOF=1), the loop keeps reading records from the master file until it reaches the
end of the file.

• The same task can be accomplished using MATCH FILES. With MATCH FILES, the raw data
must be read and saved as SPSS-format data files first.

790 REREAD

COLUMN Subcommand

COLUMN specifies a beginning column for the REREAD command to read data. The default
is column 1. You can specify a numeric expression for the column.

Example
INPUT PROGRAM.
DATA LIST /KIND 10-14 (A).
COMPUTE #COL=1.
IF (KIND EQ ’CHEVY’) #COL=13.

DO IF (KIND EQ ’CHEVY’ OR KIND EQ ’FORD’).
REREAD COLUMN #COL.
DATA LIST /PRICE 3-6 (DOLLAR,2) QUANTITY 7-9.
END CASE.
END IF.
END INPUT PROGRAM.
BEGIN DATA
111295100FORD CHAPMAN AUTO SALES
121199005VW MIDWEST VOLKSWAGEN SALES
11 395025FORD BETTER USED CARS
11 CHEVY 195005 HUFFMAN SALES & SERVICE
11 VW 595020 MIDWEST VOLKSWAGEN SALES
11 CHEVY 295015 SAM’S AUTO REPAIR
12 CHEVY 210 20 LONGFELLOW CHEVROLET
9555032 VW HYDE PARK IMPORTS
END DATA.
LIST.

• The task in this example is to read PRICE and QUANTITY for Chevrolets and Fords only.
A scratch variable is created to indicate the starting column positions for PRICE and
QUANTITY, and a single DATA LIST command is used to read data for both types of auto-
mobiles.

• Scratch variable #COL is set to 13 for Chevrolets and 1 for all other automobiles. For
Fords, the data begin in column 1. Variable PRICE is read from columns 3–6 and
QUANTITY is read from columns 7–9. When the record is a Chevrolet, the data begins
in column 13. Variable PRICE is read from columns 15–18 (15 is 3, 16 is 4, and so
forth), and QUANTITY is read from columns 19–21.

REREAD 791

Example
* Reading both FIXED and LIST input with REREAD.

INPUT PROGRAM.
DATA LIST NOTABLE FIXED/ A 1-14(A). /*Read the FIXED portion
REREAD COLUMN = 15.
DATA LIST LIST/ X Y Z. /*Read the LIST portion
END INPUT PROGRAM.

* The value 1 on the first record is in column 15.

LIST.
BEGIN DATA
FIRST RECORD 1 2 3 -1 -2 -3
NUMBER 2 4 5
THE THIRD 6 7 8
#4
FIFTH AND LAST9 10 11
END DATA.

• Columns 1–14 are read in FIXED format. REREAD then resets the pointer to column 15.
Thus, beginning in column 15, values are read in LIST format.

• The second DATA LIST specifies only three variables. Thus, the values –1, –2, and –3 on
the first record are not read.

• The program generates a warning for the missing value on record 2 and a second warning
for the three missing values on record 4.

• On the fifth and last record there is no delimiter between value LAST and value 9. REREAD
can still read the 9 in LIST format.

792

RESTORE

RESTORE

Overview

RESTORE restores SET specifications that were stored by a previous PRESERVE com-
mand. RESTORE and PRESERVE are especially useful when using the macro facility. PRE-
SERVE—RESTORE sequences can be nested up to five levels.

Basic Specification

The only specification is the command keyword. RESTORE has no additional specifications.

Example

GET FILE=PRSNNL.
FREQUENCIES VAR=DIVISION /STATISTICS=ALL.
PRESERVE.
SET XSORT=NO WIDTH=90 UNDEFINED=NOWARN BLANKS=000 CASE=UPLOW.
SORT CASES BY DIVISION.
REPORT FORMAT=AUTO LIST /VARS=LNAME FNAME DEPT SOCSEC SALARY

/BREAK=DIVISION /SUMMARY=MEAN.
RESTORE.

• GET reads SPSS-format data file PRSNNL.

• FREQUENCIES requests a frequency table and all statistics for variable DIVISION.

• PRESERVE stores all current SET specifications.
• SET changes several subcommand settings.

• SORT sorts cases in preparation for a report. Because SET XSORT=NO, the sort program
is not used to sort cases; another sort program must be available.

• REPORT requests a report organized by variable DIVISION.

• RESTORE reestablishes all the SET specifications that were in effect when PRESERVE
was specified.

793

RMV

RMV new variables={LINT (varlist) }
 {MEAN (varlist [{,2 }]) }
 { {,n } }
 { {ALL} }
 {MEDIAN (varlist [{,2 }])}
 { {,n } }
 { {ALL} }
 {SMEAN (varlist) }
 {TREND (varlist) }

 [/new variables=function (varlist [,span])]

Function keywords:

Example:
RMV NEWVAR1=LINT(OLDVAR1).

Overview

RMV produces new variables by copying existing variables and replacing any system- or
user-missing values with estimates computed by one of several methods. You can also use
RMV to replace the values of existing variables. The estimated values are computed from
valid data in the existing variables. The new or revised variables can be used in any proce-
dure and can be saved in an SPSS-format data file.

Basic Specification

The basic specification is one or more new variable names, an equals sign, a function, and
an equal number of existing variables. RMV displays a list of the new variables, the number
of missing values replaced, the case numbers of the first and last nonmissing cases, the num-
ber of valid cases, and the function used to produce the variables.

Syntax Rules

• The existing variables (and span, if specified) must be enclosed in parentheses.

• The equals sign is required.

• You can specify more than one equation on RMV.

LINT Linear interpolation
MEAN Mean of surrounding values
MEDIAN Median of surrounding values
SMEAN Variable mean
TREND Linear trend at that point

794 RMV

• Equations are separated by slashes.

• You can specify only one function per equation.

• You can create more than one new variable per equation by specifying more than one new
variable name on the left and an equal number of existing variables on the right.

Operations

• Each new variable is added to the working data file.

• If the new variable named already exists, its values are replaced.

• If the new variable named does not already exist, it is created.
• If the same variable is named on both sides of the equation, the new variable will replace

the existing variable. Valid values from the existing variable are copied into the new vari-
able, and missing values are replaced with estimates.

• Variables are created in the order in which they are specified on the RMV command.

• If multiple variables are created on a single equation, the first new variable is based on
the first existing variable, the second new variable is based on the second existing vari-
able, and so forth.

• RMV automatically generates a variable label for each new variable describing the func-
tion and variable used to create it and the date and time of creation.

• The format of a new variable depends on the function specified and on the format of the
existing variable.

• RMV honors the TSET MISSING setting that is currently in effect.
• RMV does not honor the USE command.

Limitations

• Maximum 1 function per equation.

• There is no limit on the number of variables created by an equation.

• There is no limit on the number of equations per RMV command.

LINT Function

LINT replaces missing values using linear interpolation. The last valid value before the miss-
ing value and the first valid value after the missing value are used for the interpolation.

• The only specification on LINT is a variable or variable list in parentheses.

• LINT will not replace missing values at the endpoints of variables.

Example
RMV NEWVAR1=LINT(OLDVAR1).

• This example produces a new variable called NEWVAR1.

• NEWVAR1 will have the same values as OLDVAR1 but with missing values replaced by
linear interpolation.

RMV 795

MEAN Function

MEAN replaces missing values with the mean of valid surrounding values. The number of
surrounding values used to compute the mean depends on the span.

• The specification on MEAN is a variable or variable list and a span, in parentheses.

• The span specification is optional and can be any positive integer or keyword ALL.

• A span of n uses n valid cases before and after the missing value.

• If span is not specified, it defaults to 2.

• Keyword ALL computes the mean of all valid values.
• MEAN will not replace missing values if there are not enough valid surrounding cases to

satisfy the span specification.

Example
RMV B=MEAN(A,3).

• This example produces a new variable called B.

• B will have the same values as variable A but with missing values replaced by means of
valid surrounding values.

• Each mean is based on 6 values, that is, the 3 nearest valid values on each side of the miss-
ing value.

MEDIAN Function

MEDIAN replaces missing values with the median of valid surrounding values. The number
of surrounding values used to compute the median depends on the span.
• The specification on MEDIAN is a variable or variable list and a span, in parentheses.

• The span specification is optional and can be any positive integer or keyword ALL.

• A span of n uses n valid cases before and after the missing value.

• If span is not specified, it defaults to 2.

• Keyword ALL computes the median of all valid values.

• MEDIAN will not replace missing values if there are not enough valid surrounding cases
to satisfy the span specification.

Example
RMV B=MEDIAN(A,3).

• This example produces a new variable called B.
• B will have the same values as A but with missing values replaced by medians of valid

surrounding values.

• Each median is based on 6 values, that is, the 3 nearest valid values on each side of the
missing value.

796 RMV

SMEAN Function

SMEAN replaces missing values in the new variable with the variable mean.

• The only specification on SMEAN is a variable or variable list in parentheses.

• The SMEAN function is equivalent to the MEAN function with a span specification of ALL.

Example
RMV VAR1 TO VAR4=SMEAN(VARA VARB VARC VARD).

• Four new variables (VAR1, VAR2, VAR3, and VAR4) are created.

• VAR1 copies the values of VARA, VAR2 copies VARB, VAR3 copies VARC, and VAR4 cop-
ies VARD. Any missing values in an existing variable are replaced with the mean of that
variable.

TREND Function

TREND replaces missing values in the new variable with the linear trend for that point. The
existing variable is regressed on an index variable scaled 1 to n. Missing values are replaced
with their predicted values.

• The only specification on TREND is a variable or variable list in parentheses.

Example
RMV YHAT=TREND(VARY).

• This example creates a new variable called YHAT.

• YHAT has the same values as VARY but with missing values replaced by predicted values.

797

SAMPLE

SAMPLE {decimal value}
 {n FROM m }

Example:
SAMPLE .25.

Overview

SAMPLE permanently draws a random sample of cases for processing in all subsequent pro-
cedures. For a temporary sample, use a TEMPORARY command before SAMPLE.

Basic Specification

The basic specification is either a decimal value between 0 and 1 or the sample size fol-
lowed by keyword FROM and the size of the working data file.

• To select an approximate percentage of cases, specify a decimal value between 0 and 1.
• To select an exact-size random sample, specify a positive integer less than the file size,

followed by keyword FROM and the file size.

Operations

• SAMPLE is a permanent transformation.

• Sampling is based on a pseudo-random-number generator that depends on a seed value
established by the program. On some implementations of the program, this number de-
faults to a fixed integer, and a SAMPLE command that specifies n FROM m will generate
the identical sample whenever a session is rerun. To generate a different sample each
time, use the SET command to reset SEED to a different value for each session. See the
SET command for more information.

• If sampling is done using the n FROM m method and the TEMPORARY command is spec-
ified, successive samples will not be the same because the seed value changes each time
a random number series is needed within a session.

• A proportional sample (a sample based on a decimal value) usually does not produce the
exact proportion specified.

• If the number specified for m following FROM is less than the actual file size, the sample
is drawn only from the first m cases.

• If the number following FROM is greater than the actual file size, the program samples
an equivalent proportion of cases from the working data file (see example below).

• If SAMPLE follows SELECT IF, it samples only cases selected by SELECT IF.

798 SAMPLE

• If SAMPLE precedes SELECT IF, cases are selected from the sample.

• If more than one SAMPLE is specified in a session, each acts upon the sample selected by
the preceding SAMPLE command.

• If N OF CASES is used with SAMPLE, the program reads as many records as required to
build the specified n cases. It makes no difference whether the N OF CASES precedes or
follows the SAMPLE.

Limitations

SAMPLE cannot be placed in a FILE TYPE—END FILE TYPE or INPUT PROGRAM—END INPUT
PROGRAM structure. It can be placed nearly anywhere following these commands in a trans-
formation program. See Appendix A for a discussion of program states and the placement of
commands.

Example

SAMPLE .25.

• This command samples approximately 25% of the cases in the working data file.

Example

SAMPLE 500 FROM 3420.

• The working data file must have 3420 cases or more to obtain a random sample of exactly
500 cases.

• If the file contains fewer than 3420 cases, proportionally fewer cases are sampled.

• If the file contains more than 3420 cases, a random sample of 500 cases is drawn from the
first 3420 cases.

SAMPLE 799

Example

DO IF SEX EQ ’M’.
SAMPLE 1846 FROM 8000.
END IF.

• SAMPLE is placed inside a DO IF—END IF structure to sample subgroups differently. As-
sume that this is a survey of 10,000 people in which 80% of the sample is male, while the
known universe is 48% male. To obtain a sample that corresponds to the known universe
and that maximizes the size of the sample, 1846 (48/52*2000) males and all females must
be sampled. The DO IF structure is used to restrict the sampling process to the males.

800

SAVE

SAVE OUTFILE=file

[/VERSION={3**}]
 {2 }

[/UNSELECTED=[{RETAIN}]
 {DELETE}

 [/KEEP={ALL** }] [/DROP=varlist]
 {varlist}

 [/RENAME=(old varlist=new varlist)...]

 [/MAP] [/{COMPRESSED }]
 {UNCOMPRESSED}

**Default if the subcommand is omitted.

Example:
SAVE OUTFILE=EMPL /RENAME=(AGE=AGE88) (JOBCAT=JOBCAT88).

Overview

SAVE produces an SPSS-format data file. An SPSS-format data file contains data plus a dic-
tionary. The dictionary contains a name for each variable in the data file plus any assigned
variable and value labels, missing-value flags, and variable print and write formats. The dic-
tionary also contains document text created with the DOCUMENTS command.

XSAVE also creates SPSS-format data files. The difference is that SAVE causes data to be
read; while XSAVE is not executed until data are read for the next procedure.

See SAVE TRANSLATE and SAVE SCSS for information on saving data files that can be
used by other programs.

Options

Compatibility with Early Releases. You can save a data file that can be read by SPSS releases
prior to 7.5.

Variable Subsets and Order. You can save a subset of variables and reorder the variables that
are saved using the DROP and KEEP subcommands.

Variable Names. You can rename variables as they are copied into the SPSS-format data file
using the RENAME subcommand.

Variable Map. To confirm the names and order of the variables saved in the SPSS-format
data file, use the MAP subcommand. MAP displays the variables saved in the SPSS-format
data file next to their corresponding names in the working data file.

SAVE 801

Data Compression. You can write the data file in compressed or uncompressed form using the
COMPRESSED or UNCOMPRESSED subcommand.

Basic Specification

The basic specification is the OUTFILE subcommand, which specifies a name for the SPSS-
format data file to be saved.

Subcommand Order

• Subcommands can be specified in any order.

Syntax Rules

• OUTFILE is required and can be specified only once. If OUTFILE is specified more than
once, only the last OUTFILE specified is in effect.

• KEEP, DROP, RENAME, and MAP can each be used as many times as needed.

• Only one of the subcommands COMPRESSED or UNCOMPRESSED can be specified per
SAVE command.

Operations

• SAVE is executed immediately and causes the data to be read.

• The new SPSS-format data file dictionary is arranged in the same order as the working file
dictionary, unless variables are reordered with the KEEP subcommand. Documentary text
from the working file dictionary is always saved unless it is dropped with the DROP DOCU-
MENTS command before SAVE.

• New variables created by transformations and procedures previous to the SAVE command
are included in the new SPSS-format data file, and variables altered by transformations
are saved in their modified form. Results of any temporary transformations immediately
preceding the SAVE command are included in the file; scratch variables are not.

• SPSS-format data files are binary files designed to be read and written by SPSS only.
SPSS-format data files can be edited only with the UPDATE command. Use the MATCH
FILES and ADD FILES commands to merge SPSS-format data files.

• The working data file is still available for transformations and procedures after SAVE is
executed.

• SAVE processes the dictionary first and displays a message that indicates how many vari-
ables will be saved. Once the data are written, SAVE indicates how many cases were saved.
If the second message does not appear, the file was probably not completely written.

802 SAVE

Example

GET FILE=HUBEMPL.
SAVE OUTFILE=EMPL88 /RENAME=(AGE=AGE88) (JOBCAT=JOBCAT88).

• The GET command retrieves the SPSS-format data file HUBEMPL.

• The RENAME subcommand renames variable AGE to AGE88 and variable JOBCAT to
JOBCAT88.

• SAVE causes the data to be read and saves a new SPSS-format data file with filename
EMPL88. The original SPSS-format data file HUBEMPL is not changed.

Example

GET FILE=HUBEMPL.
TEMPORARY.
RECODE DEPT85 TO DEPT88 (1,2=1) (3,4=2) (ELSE=9).
VALUE LABELS DEPT85 TO DEPT88 1 ‘MANAGEMENT’ 2 ‘OPERATIONS’ 9
‘UNKNOWN’.
SAVE OUTFILE=HUBTEMP.
CROSSTABS DEPT85 TO DEPT88 BY JOBCAT.

• The GET command retrieves the SPSS-format data file HUBEMPL.

• The TEMPORARY command indicates that RECODE and VALUE LABELS are in effect only
for the next command that reads the data (SAVE).

• The RECODE command recodes values for all variables between and including DEPT85
and DEPT88 on the working data file.

• The VALUE LABELS command specifies new labels for the recoded values.

• The OUTFILE subcommand on SAVE specifies HUBTEMP as the new SPSS-format data file.
HUBTEMP will include the recoded values for DEPT85 to DEPT88 and the new value labels.

• The CROSSTABS command crosstabulates DEPT85 to DEPT88 with JOBCAT. Since the
RECODE and VALUE LABELS commands were temporary, the CROSSTABS output does
not reflect the recoding and new labels.

• If XSAVE were specified instead of SAVE, the data would be read only once. Both the
saved SPSS-format data file and the CROSSTABS output would reflect the temporary re-
coding and labeling of the department variables.

OUTFILE Subcommand

OUTFILE specifies the SPSS-format data file to be saved. OUTFILE is required and can be
specified only once. If OUTFILE is specified more than once, only the last OUTFILE is in ef-
fect.

SAVE 803

VERSION Subcommand

VERSION allows you to save a data file that can be opened in SPSS releases prior to 7.5. The
default is 3 if VERSION is not specified or specified with no value. Specify 2 to save a file
compatible with earlier releases.

UNSELECTED Subcommand

UNSELECTED determines whether cases excluded on a previous FILTER or USE command
are to be retained or deleted in the SPSS-format data file. The default is RETAIN. The UNSE-
LECTED subcommand has no effect when the working data file does not contain unselected
cases.

RETAIN Retain the unselected cases. All cases in the working data file are saved. This
is the default when UNSELECTED is specified by itself.

DELETE Delete the unselected cases. Only cases that meet the FILTER or USE criteria
are saved in the SPSS-format data file.

DROP and KEEP Subcommands

DROP and KEEP are used to save a subset of variables. DROP specifies the variables not to
save in the new data file; KEEP specifies the variables to save in the new data file; variables
not named on KEEP are dropped.

• Variables can be specified in any order. The order of variables on KEEP determines the
order of variables in the SPSS-format data file. The order on DROP does not affect the
order of variables in the SPSS-format data file.

• Keyword ALL on KEEP refers to all remaining variables not previously specified on KEEP.
ALL must be the last specification on KEEP.

• If a variable is specified twice on the same subcommand, only the first mention is recognized.

• Multiple DROP and KEEP subcommands are allowed. Specifying a variable that is not in
the working data file or that has been dropped because of a previous DROP or KEEP sub-
command results in an error and the SAVE command is not executed.

• Keyword TO can be used to specify a group of consecutive variables in the active file.

Example
GET FILE=PRSNL.
COMPUTE TENURE=(12-CMONTH +(12*(88-CYEAR)))/12.
COMPUTE JTENURE=(12-JMONTH +(12*(88-JYEAR)))/12.
VARIABLE LABELS TENURE ’Tenure in Company’

JTENURE ’Tenure in Grade’.
SAVE OUTFILE=PRSNL88 /DROP=GRADE STORE
 /KEEP=LNAME NAME TENURE JTENURE ALL.

• The variables TENURE and JTENURE are created by COMPUTE commands and assigned
variable labels by the VARIABLE LABELS command. TENURE and JTENURE are added to
the end of the working data file.

804 SAVE

• DROP excludes variables GRADE and STORE from file PRSNL88. KEEP specifies that
LNAME, NAME, TENURE, and JTENURE are the first four variables in file PRSNL88, fol-
lowed by all remaining variables not specified on DROP. These remaining variables are
saved in the same sequence as they appear in the original file.

RENAME Subcommand

RENAME changes the names of variables as they are copied into the new SPSS-format data
file.

• The specification on RENAME is a list of old variable names followed by an equals sign
and a list of new variable names. The same number of variables must be specified on both
lists. Keyword TO can be used in the first list to refer to consecutive variables in the work-
ing data file and in the second list to generate new variable names. The entire specifica-
tion must be enclosed in parentheses.

• Alternatively, you can specify each old variable name individually, followed by an equals
sign and the new variable name. Multiple sets of variable specifications are allowed. The
parentheses around each set of specifications are optional.

• RENAME does not affect the working data file. However, if RENAME precedes DROP or
KEEP, variables must be referred to by their new names on DROP or KEEP.

• Old variable names do not need to be specified according to their order in the working
data file.

• Name changes take place in one operation. Therefore, variable names can be exchanged
between two variables.

• Multiple RENAME subcommands are allowed.

Example
SAVE OUTFILE=EMPL88 /RENAME AGE=AGE88 JOBCAT=JOBCAT88.

• RENAME specifies two name changes for the file EMPL88: the variable AGE is renamed to
AGE88 and the variable JOBCAT is renamed to JOBCAT88.

Example
SAVE OUTFILE=EMPL88 /RENAME (AGE JOBCAT=AGE88 JOBCAT88).

• The name changes are identical to those in the previous example: AGE is renamed to
AGE88 and JOBCAT is renamed to JOBCAT88. The parentheses are required with this
method.

MAP Subcommand

MAP displays a list of the variables in the SPSS-format data file and their corresponding
names in the working data file.
• The only specification is keyword MAP. There are no additional specifications.

• Multiple MAP subcommands are allowed. Each MAP subcommand maps the results of
subcommands that precede it, but not results of subcommands that follow it.

SAVE 805

Example
GET FILE=HUBEMPL.
SAVE OUTFILE=EMPL88 /RENAME=(AGE=AGE88)(JOBCAT=JOBCAT88)
 /KEEP=LNAME NAME JOBCAT88 ALL /MAP.

• MAP is used to confirm the new names for AGE and JOBCAT and the order of variables in
the EMPL88 file (LNAME, NAME, and JOBCAT88, followed by all remaining variables from
the working data file).

COMPRESSED and UNCOMPRESSED Subcommands

COMPRESSED saves the file in compressed form. UNCOMPRESSED saves the file in uncom-
pressed form. In a compressed file, small integers (from −99 to 155) are stored in one byte
instead of the eight bytes used in an uncompressed file.

• The only specification is the keyword COMPRESSED or UNCOMPRESSED. There are no
additional specifications.

• Compressed data files occupy less disk space than do uncompressed data files.

• Compressed data files take longer to read than do uncompressed data files.

• The GET command, which reads SPSS-format data files, does not need to specify whether
the files it reads are compressed or uncompressed.

• Only one of the subcommands COMPRESSED or UNCOMPRESSED can be specified per
SAVE command. COMPRESSED is usually the default, though UNCOMPRESSED may be
the default on some systems.

806

SAVE TRANSLATE

This command is not available on all operating systems.

SAVE TRANSLATE

[{/OUTFILE=file }]*
 {/CONNECT=ODBC connect string}**

 [/TYPE={DB2 }]
 {DB3 }
 {DB4 }
 {ODBC}
 {PC }
 {SLK }
 {TAB }
 {WKS }
 {WK1 }
 {WK3 }
 {WRK }
 {WR1 }
 {XLS }

 [/TABLE = ODBC table name]**

 [/RENAME=(old varlist=new varlist)[(...)]

 [/KEEP={ALL }]
 {varlist}

 [/DROP=varlist]

 [{/COMPRESSED }]
 {/UNCOMPRESSED}

 [/FIELDNAMES]***

 [/MAP]

 [{/REPLACE}]
 {/APPEND }****

 [/UNSELECTED=[{RETAIN}]
 {DELETE}

* Invalid for TYPE=ODBC; required for all other types.
** Required for TYPE=ODBC; invalid for all other types.
*** Available only for spreadsheet formats
****Available only for ODBC format.

SAVE TRANSLATE 807

Example:
SAVE TRANSLATE OUTFILE=’SALESREP.SLK’
/KEEP=SALES, UNITS, MONTHS, PRICE1 TO PRICE20
/FIELDNAMES.

Overview

SAVE TRANSLATE translates the working data file into a file that can be used by other soft-
ware applications. Supported formats are 1-2-3, Symphony, Multiplan, Excel, dBASE II,
dBASE III, dBASE IV, tab-delimited ASCII files, and SPSS/PC+ data files.

Options

Variable Subsets. You can use the DROP and KEEP subcommands to specify variables to omit
or retain in the resulting file.

Variable Names. You can rename variables as they are copied to the spreadsheet, database, or
tab-delimited ASCII file using the RENAME subcommand.

Variable Map. To confirm the names and order of the variables saved in the resulting file, use
the MAP subcommand. MAP displays the variables saved in the file next to their correspond-
ing names in the working data file.

Spreadsheet Files. You can use the FIELDNAMES subcommand to translate variable names to
field names in a spreadsheet file.

Basic Specification

• The basic specification is OUTFILE with a file specification in apostrophes.

Keyword Type of file

WK1 1-2-3 Release 2.0
WKS 1-2-3 Release 1A
WR1 Symphony Release 2.0
WRK Symphony Release 1.0
SLK Multiplan or Excel in SYLK (symbolic

link) format
XLS Microsoft Excel
DB2 dBASE II
DB3 dBASE III
DB4 dBASE IV
TAB Tab-delimited ASCII file
ODBC Database accessed via ODBC
PC SPSS/PC+ system file

808 SAVE TRANSLATE

• TYPE and a keyword to indicate the type of dBASE file is also required to save dBASE
database files.

Subcommand Order

• OUTFILE or CONNECT must be specified first. OUTFILE is invalid for TYPE=ODBC and
required for all other types. CONNECT is required for TYPE=ODBC and invalid for all oth-
er types.

• The remaining subcommands can be specified in any order.

Operations

• The working data file remains available after SAVE TRANSLATE is executed.

• User-missing values are transferred as actual values.

• If the working data file contains more variables than the file can receive, SAVE TRANS-
LATE writes the maximum number of variables the file can receive.

Spreadsheets

Variables in the working data file become columns, and cases become rows in the spread-
sheet file.

• If you specify FIELDNAMES, variable names become the first row and indicate field
names.

• String variable values are left-justified and numeric variable values are right-justified.

• The resulting spreadsheet file is given the range name of SPSS.
• System-missing values are translated to N/A in spreadsheet files.

SPSS formats are translated as follows:

Databases

Variables in the working data file become fields, and cases become records in the database
file.
• Characters that are allowed in variable names but not in dBASE field names are translated

to colons in dBASE II and underscores in dBASE III and dBASE IV.

SPSS 1-2-3/Symphony Multiplan Excel

Number Fixed Fixed 0.00;#,##0.00;...
COMMA Comma Fixed 0.00;#,##0.00;...
DOLLAR Currency $ (dollar) $#,##0_);...
DATE Date d-mmm-yy
TIME Time hh:mm:ss
String Label Alpha General

SAVE TRANSLATE 809

• Numeric variables containing the system-missing value are translated to **** in dBASE
III and dBASE IV, and 0 in dBASE II.

• The width and precision of translated numeric are taken from the print format; the total
number of characters for the number is taken from the width of the print format, and the
number of digits to the right of the decimal point is taken from the decimals in the print
format. To adjust the width and precision, use the PRINT FORMATS command prior to us-
ing SAVE TRANSLATE. Values that cannot be converted to the given width and precision
are converted to missing values.

variable formats are translated to dBASE formats as follows:

Tab-delimited ASCII Files

Variables in the working data file become columns, and cases become rows in the ASCII file.
• If you specify FIELDNAMES, variable names become the first row as column headings.

• All values are delimited by tabs.

• The resulting ASCII file is given the extension .DAT if no file extension is explicitly
specified.

• System-missing values are translated to N/A in ASCII files.

• SPSS formats are not translated.

SPSS/PC+ System Files

Variables are saved as they are defined. The resulting file is given the extension .SYS if no
extension is explicitly specified. The dictionary is saved so that labels, formats, missing value
specifications, and other dictionary information are preserved.

Limitations

• Maximum 2048 cases can be translated to 1-2-3 Release 1A, maximum 8192 cases to
1-2-3 Release 2.0 or Symphony files, maximum 4095 cases to Multiplan files, and max-
imum 16,384 cases for Excel.

• Maximum 65,535 cases and 32 variables can be translated to a dBASE II; maximum 1
billion cases (subject to disk space availability) and 128 variables to dBASE III; or max-
imum 1 billion cases (subject to disk space availability) and 255 variables to dBASE IV.

SPSS dBASE

Number Numeric
String Character
Dollar Numeric
Comma Numeric

810 SAVE TRANSLATE

OUTFILE Subcommand

OUTFILE assigns a name to the file to be saved. The only specification is the name of the file.
On some operating systems, file specifications should be enclosed in quotes or apostrophes.

Example
SAVE TRANSLATE OUTFILE=’STAFF.DBF’/TYPE=DB3.

• SAVE TRANSLATE creates a dBASE III file called STAFF.DBF. The TYPE subcommand is
required to specify the type of dBASE file to save.

CONNECT Subcommand

CONNECT identifies the database name and other parameters for TYPE=ODBC.

Example
SAVE TRANSLATE
 /CONNECT="DSN=MSAccess;UID=rkrishna;PWD=123xyz"
 /TABLE="mytable"
 /TYPE=ODBC.

TABLE Subcommand

TABLE identifies the table name for TYPE=ODBC.

Example
SAVE TRANSLATE
 /CONNECT="DSN=MSAccess;UID=rkrishna;PWD=123xyz"
 /TABLE="mytable"
 /TYPE=ODBC.

REPLACE Subcommand

REPLACE gives permission to overwrite an existing file of the same name. It takes no further
specifications.

APPEND Sucommand

APPEND appends to an existing database table after type and variable name validations.
There must be a matching column in the table for each SPSS variable. If a column is not
found that can correctly store an SPSS variable, a falure is returned. If the table contains
more columns than the number os SPSS variables, the command still stores the data in the
table.The variable names and column names must match exactly. A variable can be stored in
a column as long as the column type is one which can store values of the SPSS variable type.
So, a column of any numeric type (short integer, integer, float, double etc.) is valid for a nu-
meric SPSS variable, and a column of any character type is valid for a string SPSS variable.

SAVE TRANSLATE 811

APPEND is valid only for TYPE=ODBC. You can specify either APPEND or REPLACE, but
not both.

TYPE Subcommand

TYPE indicates the format of the resulting file.

• TYPE can be omitted for spreadsheet files if the file extension named on OUTFILE is the
default for the type of file you are saving.

• TYPE with keyword DB2, DB3, or DB4 is required for translating to dBASE files.

• TYPE takes precedence over the file extension.
• A file that was read using GET TRANSLATE should be saved as the same type.

WK1 1-2-3 Release 2.0.

WKS 1-2-3 Release 1.4.

WR1 Symphony Release 2.0.

WRK Symphony Release 1.0.

SLK Multiplan (symbolic format).

XLS Excel.

DB2 dBASE II.

DB3 dBASE III or dBASE III PLUS.

DB4 dBASE IV.

TAB Tab-delimited ASCII data files.

PC SPSS/PC+ system files.

ODBC Database accessed via ODBC.

Example
SAVE TRANSLATE OUTFILE=’PROJECT.OCT’ /TYPE=SLK.

• SAVE TRANSLATE translates the working data file into the Multiplan spreadsheet file
named PROJECT.OCT.

Writing to an ODBC Database Source

The following rules apply when writing to a database with TYPE=ODBC:

• If any case cannot be stored in the database for any reason, an error is returned. Therefore,
either all cases are stored or none.

• At insert time, a check is performed to see if the value being stored in a column is likely
to cause an overflow. If that is the case, the user is warned about the overflow and that a
SYSMIS is stored instead.

812 SAVE TRANSLATE

• If any variable names in the working data file contain characters not allowed by the data-
base, they are replaced by an underscore. If this causes a duplicate variable name, a new
variable name is generated.

• The following SPSS variable type classes are supported:
VC_STRING
VC_NUMERIC
VC_PERCENT
VC_CURRENCY
VC_TIME
VC_DATE

• If a variable falls into the VC_UNKNOWN category, it is dropped.
SPSS missing values are treated as missing values in the databases

• Date variables are treated as Date columns, but if the database treats Date variables as
TimeStamp (i.e., as datetime columns), then the time part of the TimeStamp is assigned
a zero value (00:00.00) internally. The date value is unaltered when read back into SPSS.

• Datetime variables are stored as datetime (TImeStamp) columns.

• If a database does not support storing fractional seconds, the fractional value is truncated.
• SPSS dictionary information is not stored in the database table. Any formatting informa-

tion contained in the SPSS dictionary is lost.

FIELDNAMES Subcommand

FIELDNAMES translates variable names into field names in the spreadsheet.

• FIELDNAMES can be used with spreadsheets and tab-delimited ASCII files. FIELDNAMES
is ignored when used with database files.

• variable names are transferred to the first row of the spreadsheet file.

Example.
SAVE TRANSLATE OUTFILE=’STAFF.WRK’ /FIELDNAMES.

• SAVE TRANSLATE creates a Symphony spreadsheet file containing all variables from the
working data file. The variable names are transferred to the Symphony file.

UNSELECTED Subcommand

UNSELECTED determines whether cases excluded on a previous FILTER or USE command
are to be retained or deleted in the SPSS-format data file. The default is RETAIN. The UNSE-
LECTED subcommand has no effect when the working data file does not contain unselected
cases.

RETAIN Retain the unselected cases. All cases in the working data file are saved. This
is the default when UNSELECTED is specified by itself.

DELETE Delete the unselected cases. Only cases that meet the FILTER or USE criteria
are saved in the SPSS-format data file.

SAVE TRANSLATE 813

DROP and KEEP Subcommands

Use DROP or KEEP to include only a subset of variables in the resulting file. DROP specifies
a set of variables to exclude. KEEP specifies a set of variables to retain. Variables not speci-
fied on KEEP are dropped.

• Specify a list of variable, column, or field names separated by commas or spaces.

• KEEP does not affect the order of variables in the resulting file. Variables are kept in their
original order.

• Specifying a variable that is not in the working data file or that has been dropped because
of a previous DROP or KEEP subcommand results in an error and the SAVE command is
not executed.

Example
SAVE TRANSLATE OUTFILE=’ADDRESS.DBF’ /TYPE=DB4 /DROP=PHONENO, ENTRY.

• SAVE TRANSLATE creates a dBASE IV file named ADDRESS.DBF, dropping the variables
PHONENO and ENTRY.

RENAME Subcommand

RENAME changes the names of variables as they are copied into the resulting file.

• The specification on RENAME is a list of old variable names followed by an equals sign
and a list of new variable names. The same number of variables must be specified on both
lists. The keyword TO can be used in the first list to refer to consecutive variables in the
working data file and in the second list to generate new variable names (see “Keyword
TO” on p. 20). The entire specification must be enclosed in parentheses.

• Alternatively, you can specify each old variable name individually, followed by an equals
sign and the new variable name. Multiple sets of variable specifications are allowed. The
parentheses around each set of specifications are optional.

• RENAME does not affect the working data file. However, if RENAME precedes DROP or
KEEP, variables must be referred to by their new names on DROP or KEEP.

• Old variable names do not need to be specified according to their order in the working
data file.

• Name changes take place in one operation. Therefore, variable names can be exchanged
between two variables.

• Multiple RENAME subcommands are allowed.

814 SAVE TRANSLATE

Example
SAVE TRANSLATE OUTFILE=’STAFF.WRK’ /FIELDNAMES
 /RENAME AGE=AGE88 JOBCAT=JOBCAT88.

• RENAME renames the variable AGE to AGE88 and JOBCAT to JOBCAT88 before they are
copied to the first row of the spreadsheet.

Example
SAVE TRANSLATE OUTFILE=’STAFF.WRK’ /FIELDNAMES
 /RENAME (AGE JOBCAT=AGE88 JOBCAT88).

• The name changes are identical to those in the previous example: AGE is renamed to
AGE88 and JOBCAT is renamed to JOBCAT88. The parentheses are required with this
method.

MAP Subcommand

MAP displays a list of the variables in the resulting file and their corresponding names in the
working data file.
• The only specification is the keyword MAP. There are no additional specifications.

• Multiple MAP subcommands are allowed. Each MAP subcommand maps the results of
subcommands that precede it but not the results of subcommands that follow it.

Example
GET FILE=HUBEMPL.
SAVE TRANSLATE OUTFILE=’STAFF.WRK’ /FIELDNAMES
 /RENAME=(AGE=AGE88)(JOBCAT=JOBCAT88).

• MAP is specified to confirm that the variable AGE is renamed to AGE88 and JOBCAT is
renamed to JOBCAT88.

815

SCRIPT

SCRIPT ‘filename’ [(quoted string)]

Overview

SCRIPT runs a script created to customize the program or automate regularly performed
tasks.

Basic Specification

The basic specification is keyword SCRIPT with a filename. The filename is required. The
optional quoted string, enclosed in parentheses, can be passed to the script.

Operations

SCRIPT runs the specified script. The effect is the same as opening the script file in the
Script Editor and running it from there.

Running Scripts that Contain SPSS Commands

If a script run via the SCRIPT command contains SPSS commands, those commands must
be run asynchronously. To run a commands asychronously, set the bSync parameter of the
ExecuteCommands method to False, as in:

Dim objSpssApp as ISpssApp

Dim strCommands as String

Set objSpssApp = CreateObject("SPSS.Application")

’ Construct and execute syntax commands:

strCommands = "GET FILE = ’c:\spss\bank.sav’ " & vbCr

strCommands = strCommands & "Display Dictionary."

objSpssApp.ExecuteCommands strCommands, False

816

SELECT IF

SELECT IF [(]logical expression[)]

The following relational operators can be used in logical expressions:

The following logical operators can be used in logical expressions:

Example:
SELECT IF (SEX EQ ’MALE’).

Overview

SELECT IF permanently selects cases for analysis based upon logical conditions found in the
data. These conditions are specified in a logical expression. The logical expression can contain
relational operators, logical operators, arithmetic operations, and any functions allowed in
COMPUTE transformations (see COMPUTE and see “Transformation Expressions” on p. 34).
For temporary case selection, specify a TEMPORARY command before SELECT IF.

Basic Specification

The basic specification is simply a logical expression.

Symbol Definition Symbol Definition

EQ or = Equal to NE or <>* Not equal to
LT or < Less than LE or <= Less than or equal to
GT or > Greater than GE or >= Greater than or equal to*

* On ASCII systems (for example, UNIX, VAX, and all PC’s) you can also use ~=;
on IBM EBCDIC systems (for example, IBM 360 and IBM 370) you can also use ¬=.

Symbol Definition

AND or & Both relations must be true
Or or | Either relation can be true
Not* Reverses the outcome of an expression*

* On ASCII systems you can also use ~; on IBM EBCDIC systems
you can also use ¬ (or the symbol above number 6).

SELECT IF 817

Syntax Rules

• Logical expressions can be simple logical variables or relations, or complex logical tests in-
volving variables, constants, functions, relational operators, and logical operators. The log-
ical expression can use any of the numeric or string functions allowed in COMPUTE
transformations (see COMPUTE and see “Transformation Expressions” on p. 34).

• Parentheses can be used to enclose the logical expression. Parentheses can also be used
within the logical expression to specify the order of operations. Extra blanks or parentheses
can be used to make the expression easier to read.

• A relation can compare variables, constants, or more complicated arithmetic expressions.
Relations cannot be abbreviated. For example, (A EQ 2 OR A EQ 5) is valid while
(A EQ 2 OR 5) is not. Blanks (not commas) must be used to separate relational operators
from the expressions being compared.

• A relation cannot compare a string variable to a numeric value or variable, or vice versa.
A relation cannot compare the result of the logical functions SYSMIS, MISSING, ANY, or
RANGE to a number.

• String values used in expressions must be specified in quotes and must include any lead-
ing or trailing blanks. Lowercase letters are considered distinct from uppercase letters.

Operations

• SELECT IF permanently selects cases. Cases not selected are dropped from the working
data file.

• The logical expression is evaluated as true, false, or missing. If a logical expression is
true, the case is selected; if it is false or missing, the case is not selected.

• Multiple SELECT IF commands issued prior to a procedure command must all be true for
a case to be selected.

• SELECT IF should be placed before other transformations for efficiency considerations.

• Logical expressions are evaluated in the following order: first numeric functions, then ex-
ponentiation, then arithmetic operators, then relational operators, and last logical opera-
tors. Use parentheses to change the order of evaluation.

• If N OF CASES is used with SELECT IF, the program reads as many records as required to
build the specified n cases. It makes no difference whether the N OF CASES precedes or
follows the SELECT IF.

• System variable $CASENUM is the sequence number of a case in the working data file.
Although it is syntactically correct to use $CASENUM on SELECT IF, it does not produce
the expected results. To select a set of cases based on their sequence in a file, create your
own sequence variable with the transformation language prior to selecting (see the exam-
ple below).

818 SELECT IF

Missing Values

• If the logical expression is indeterminate because of missing values, the case is not selected.
In a simple relational expression, a logical expression is indeterminate if the expression on
either side of the relational operator is missing.

• If a compound expression is used in which relations are joined by the logical operator OR,
the case is selected if either relation is true, even if the other is missing.

• To select cases with missing values for the variables within the expression, use the miss-
ing-value functions. To include cases with values that have been declared user-missing
along with other cases, use the VALUE function (see p. 49).

Limitations

SELECT IF cannot be placed within a FILE TYPE—END FILE TYPE or INPUT PROGRAM—END
INPUT PROGRAM structure. It can be placed nearly anywhere following these commands in
a transformation program. See Appendix A for a discussion of program states and the place-
ment of commands.

Example

SELECT IF (SEX EQ ’MALE’).

• All subsequent procedures will use only cases in which the value of SEX is MALE.

• Since upper and lower case are treated differently in comparisons of string variables, cases
for which the value of SEX is male are not selected.

Example

SELECT IF (INCOME GT 75000 OR INCOME LE 10000).

• The logical expression tests whether a case has a value either greater than 75,000 or less
than or equal to 10,000. If either relation is true, the case is used in subsequent analyses.

 Example

SELECT IF (V1 GE V2).

• This example selects cases where variable V1 is greater than or equal to V2. If either V1
or V2 is missing, the logical expression is indeterminate and the case is not selected.

SELECT IF 819

Example

SELECT IF (SEX = ’F’ & INCOME <= 10000).

• The logical expression tests whether string variable SEX is equal to F and if numeric variable
INCOME is less than or equal to 10,000. Cases that meet both conditions are included in sub-
sequent analyses. If either SEX or INCOME is missing for a case, the case is not selected.

Example

SELECT IF (SYSMIS(V1)).

• The logical expression tests whether V1 is system-missing. If it is, the case is selected for
subsequent analyses.

Example

SELECT IF (VALUE(V1) GT 0).

• Cases are selected if V1 is greater than 0, even if the value of V1 has been declared user-
missing.

Example

SELECT IF (V1 GT 0).

• Cases are not selected if V1 is user-missing, even if the user-missing value is greater than 0.

Example

SELECT IF (RECEIV GT DUE AND (REVNUS GE EXPNS OR BALNCE GT 0)).

• By default, AND is executed before OR. This expression uses parentheses to change the
order of evaluation.

• The program first tests whether variable REVNUS is greater than or equal to variable EX-
PNS, or variable BALNCE is greater than 0. Second, the program tests whether RECEIV is
greater than DUE. If one of the expressions in parentheses is true and RECEIV is greater
than DUE, the case is selected.

• Without the parentheses, the program would first test whether RECEIV is greater than DUE
and REVNUS is greater than or equal to EXPNS. Second, the program would test whether
BALNCE is greater than 0. If the first two expressions are true or if the third expression is
true, the case is selected.

820 SELECT IF

Example

SELECT IF ((V1-15) LE (V2*(-0.001))).

• The logical expression compares whether V1 minus 15 is less than or equal to V2 multi-
plied by −0.001. If it is, the case is selected.

Example

SELECT IF ((YRMODA(88,13,0) - YRMODA(YVAR,MVAR,DVAR)) LE 30).

• The logical expression subtracts the number of days representing the date (YVAR, MVAR,
and DVAR) from the number of days representing the last day in 1988. If the difference is
less than or equal to 30, the case is selected.

Example

* Creating a sequence number.

COMPUTE #CASESEQ=#CASESEQ+1.
SELECT IF (MOD(#CASESEQ,2)=0).

• This example computes a scratch variable, #CASESEQ, containing the sequence numbers
for each case. Every other case beginning with the second is selected.

• #CASESEQ must be a scratch variable so that it is not reinitialized for every case. An al-
ternative is to use the LEAVE command.

Example

DO IF SEX EQ ’M’.
+ SELECT IF PRESTIGE GT 50.
ELSE IF SEX EQ ’F’.
+ SELECT IF PRESTIGE GT 45.
END IF.

• The SELECT IF commands within the DO IF structure select males with prestige scores
above 50 and females with prestige scores above 45.

821

SET

SET [WORKSPACE={512**}] [MXMEMORY= {14000**}]]MXCELLS={AUTOMATIC**}]
 { n } { n } {n }

 [FORMAT={F8.2**}] [CTEMPLATE {NONE** }
{Fw.d } {filename}

[TLOOK {NONE** }]
{filename}

[ONUMBERS={LABELS**}] [OVARS={LABELS**}]
{VALUES } {NAMES }
{BOTH } {BOTH }

[TFIT={BOTH**}] [TNUMBERS={VALUES**}] [TVARS={NAMES**}]
{LABELS} {LABELS } {LABELS }

{BOTH } {BOTH }

 [SEED={2000000**}
 {RANDOM }]

{n }

 [EPOCH={AUTOMATIC }]
 {begin year}

 [{ERRORS } = {LISTING**}]
 {RESULTS } {NONE }

 {PRINTBACK} = {NONE** }
 {MESSAGES } {LISTING}

 [JOURNAL=[{YES**}] [filename]]
 {NO }

 [MEXPAND={ON**}] [MPRINT={OFF**}] [MNEST={50**}] [MITERATE={1000**}]
 {OFF } {ON } {n } {n }

 [BLANKS={SYSMIS**}] [UNDEFINED={WARN**}]
 {value } {NOWARN}

[MXWARNS={10**}] [MXLOOPS={40**}]
{n } {n }

 [EXTENSIONS={OFF**}
 {ON }

 [COMPRESSION={ON**}]
 {OFF }

 [HIGHRES={ON**}]
 {OFF }

 [BLOCK={X’2A’** }]
 {X’hexchar’ }
 {’character’}

 [BOX={X’2D7C2B2B2B2B2B2B2B2B2B’**}]
 {X’hexstring’ }
 {’character’ }

[CCA={’-,,,’ }] [CCB={’-,,,’ }] [CCC={’-,,,’ }]
 {'format’} {'format’} {'format'}

 [CCD={ ’-,,,’ }] [CCE={ ’-,,,’ }]

822 SET

 {'format’} {'format'}

[HEADER={NO** }]
 {YES }
 {BLANK}

 [LENGTH={ 59**}] [WIDTH={ 80**}]
 {n } { 132 }
 {NONE} {n }

** Default setting at installation.

See the discussions of specific subcommands in this manual and consult the documentation for your system
for more details.

Example:
SET BLANKS=0/UNDEFINED=NOWARN/TLOOK=’C:\SPSSWIN7\MYTABLE.TLO’.

Overview

Many of the running options in the program can be tailored to your own preferences with the
SET command. The default settings for these options vary from system to system. To display
the current settings, use the SHOW command. A setting changed by SET remains in effect for
the entire working session unless changed again by another SET command. The PRESERVE
command saves the current settings so that you can return to them later in the session with the
RESTORE command. PRESERVE and RESTORE are especially useful with the macro facility.

Options

Memory Management. Dynamically allocate memory using the WORKSPACE and MXMEMO-
RY subcommands when some procedures complain of memory shortage. Increase maximum
cell numbers for a pivot table using the MXCELLS subcommand.

Output Format. Change the default (F8.2) print and write formats used for numeric variables
using the FORMAT subcommand. Specify a TableLook file and/or a chart template file using
the TLOOK and CTEMPLATE subcommands. Define default display of variables in the outline
or pivot tables using the ONUMBERS, OVARS, TNUMBERS, and TVARS subcommands, and
specify default column widths using the TFIT subcommand.

Samples and Random Numbers. You can change the initial seed value to a particular number
using the SEED subcommand.

Output Destination. You can send error messages, resource utilization messages, command
printback and the output from your commands to your screen and/or to a file using the
ERRORS, MESSAGES, PRINTBACK, and RESULTS subcommands. You can also suppress
each of these using the keyword NONE.

Journal Files. You can determine whether or not the program keeps a journal file during a ses-
sion using the JOURNAL subcommand. A journal file records the commands you have en-
tered along with any error or warning messages generated by the commands. A modified
journal file can be used as a command file in subsequent sessions.

SET 823

Macro Displays. You can control macro expansion, the maximum number of loop iterations,
and nesting levels within a macro using the MEXPAND, MITERATE, and MNEST subcom-
mands. You can also control the display of the variables, commands, and parameters that a
macro uses using the MPRINT subcommands.

Blanks and Undefined Input Data. You can specify the value that the program should use when
it encounters a completely blank field for a numeric variable using the BLANKS subcom-
mand. You can also turn off the warning message that the program issues when it encounters
an invalid value for a numeric variable using UNDEFINED.

Maximum Errors and Loops. You can raise or lower the default number of errors and warnings
allowed in a session before processing stops using the MXERRS and MXWARNS subcom-
mands. You can raise or lower the maximum number of iterations allowed for the LOOP—
END LOOP structure using the MXLOOPS.

Data File Extension. You can specify the default extensions used for SPSS-format data files
saved with SAVE or XSAVE or portable files saved with EXPORT using the EXTENSIONS sub-
command.

Scratch File Compression. You can specify whether scratch files are kept in compressed or un-
compressed form using the COMPRESSION subcommand.

Charts and Plots. You can turn high-resolution graphics off using the HIGHRES subcommand.
For text output, you can specify the characters used to draw grids in MULT RESPONSE, or the
characters used to draw icicle plots in CLUSTER (available in the SPSS Professional Statistics
option) using the BLOCK and BOX subcommands.

Custom Currency Formats. You can customize currency formats for your own applications using
the CCA, CCB, CCC, CCD, and CCE subcommands. For example, you can display currency as
French francs rather than American dollars.

Basic Specification

The basic specification is at least one subcommand.

Subcommand Order

Subcommands can be named in any order.

Syntax Rules

• You can specify as many subcommands as needed. Subcommands must be separated by
at least one space or slash.

• Only one keyword or argument can be specified for each subcommand.

• SET can be used more than once in the command sequence.

• YES and ON are aliases for each other. NO and OFF are aliases for each other.

824 SET

Operations

• Settings specified on SET remain in effect until they are changed by another SET com-
mand or until the current session is ended.

• Each time SET is used, only the specified settings are changed. All others remain at their
previous settings or the default.

Example

SET BLANKS=0/UNDEFINED=NOWARN/TLOOK=’C:\SPSSWIN7\MYTABLE.TLO’.

• BLANKS specifies 0 as the value the program should use when it encounters a completely
blank field for a numeric variable.

• UNDEFINED=NOWARN suppresses the message that the program displays whenever any-
thing other than a number or a blank is encountered as the value for a numeric variable.

• TLOOK specifies that the table properties defined in c:\spsswin7\mytable.tlo will be used to
define the default TableLook in the output. The default is NONE, which uses the TableLook
provided as the system default.

WORKSPACE, MXMEMORY, and MXCELLS Subcommands

WORKSPACE and MXMEMORY are used to allocate more memory for some procedures when
you receive a message that the available memory has been used up or that only a given num-
ber of variables can be processed. MXCELLS is used to increase the maximum number of cells
you can create for a new pivot table when you receive a warning that a pivot table cannot be
created because it exceeds the maximum number of cells allowed by the available memory.

• WORKSPACE allocates workspace memory in kilobytes for some procedures that allocate
only one block of memory, such as Crosstabs or Frequencies. The default is 512.

• MXMEMORY allocates the maximum memory in kilobytes to the program. The default is
14,000.

• Do not increase either the workspace memory or the maximum memory allocation unless
the program issues a message that there is not enough memory to complete a procedure.

• Use MXCELLS with caution. Set MXCELLS at a number higher than the limit indicated
in the warning message you receive. Set the number back to the default after the table is
created.

• The memory allocation or cell maximum number increase takes effect as soon as you run
the SET command.

FORMAT Subcommand

FORMAT specifies the default print and write formats for numeric variables. This default for-
mat applies to numeric variables defined on DATA LIST in freefield format and to all numeric
variables created by transformation commands, unless a format is explicitly specified.

• The specification must be a simple F format. The default is F8.2.

SET 825

• You can use the PRINT FORMATS, WRITE FORMATS, and FORMATS commands to change
print and write formats.

• Format specifications on FORMAT are output formats. When specifying the width, enough
positions must be allowed to include any punctuation characters such as decimal points,
commas, and dollar signs.

• If a numeric data value exceeds its width specification, the program attempts to display
some value nevertheless. First, the program rounds decimal values, then removes punc-
tuation characters, then tries scientific notation, and finally, if there is still not enough
space, produces asterisks indicating that a value is present but cannot be displayed in the
assigned width.

TLOOK and CTEMPLATE Subcommands

TLOOK and CTEMPLATE specify a file used to define the table and chart appearance in the
output. The default for either command is NONE, which produces tables and charts using the
system defaults.

• TLOOK determines the properties of output tables produced. The properties include the
borders, placement of titles, column and row labels, text font, and column and cell for-
mats. For details on TableLooks, see the SPSS Base User’s Guide.

• CTEMPLATE determines the properties of output charts and plots. The properties include
line style, color, fill pattern, and text font of relevant chart elements such as frames, titles,
labels, and legends. For details on chart templates, see the SPSS Base User’s Guide.

• The specification on TLOOK or CTEMPLATE remains in effect until a new TLOOK or
CTEMPLATE is specified.

NONE Use the system defaults. The tables and charts in the output do not use cus-
tomized properties.

filename Use the specified file as templates for tables/charts in the output. You can
specify a full path in quotation marks.

ONUMBERS, OVARS, TNUMBERS, and TVARS Subcommands

ONUMBERS, OVARS, TNUMBERS, and TVARS control how variables are displayed in the out-
line for pivot table output and in the pivot tables.

• ONUMBERS controls the display of variable values in the outline for pivot tables. The
default at installation is LABELS.

• OVARS controls the display of variables in the outline for pivot tables. The default at
installation is LABELS.

• TNUMBERS controls the display of variable values in the pivot tables. The default at
installation is VALUES.

• TVARS controls the display of variables in the pivot tables. The default at installation is
NAMES.

NAMES Displays variable names.

826 SET

VALUES Displays variable values.

LABELS Displays variable labels.

BOTH Displays both labels and values for variable values or both names and labels for
variables.

TFIT Subcommand

TFIT controls the default column widths of the pivot tables. The default at installation is
BOTH.

BOTH Adjust column widths to accommodate both labels and data.

LABELS Adjust column widths to accommodate labels only. This setting produces
compact tables, but data values wider than labels will be displayed as asterisks.

SEED Subcommand

SEED specifies the random number seed. You can specify any integer, preferably a number
greater than 1 but less than 2,000,000,000, which approaches the limit on some machines.

• The program uses a pseudo-random-number generator to select random samples or create
uniform or normal distributions of random numbers. The generator begins with a seed, a
large integer. Starting with the same seed, the system will repeatedly produce the same
sequence of numbers and will select the same sample from a given data file.

• At the start of each session, the seed is set to a value that may vary or may be fixed, de-
pending on the implementation. You can set the seed yourself with the SEED subcom-
mand.

• By default, the seed value changes each time a random-number series is needed in a ses-
sion. To repeat the same random distribution within a session, specify the same seed each
time.

• The random number seed can be changed any number of times within a session.
• To set the seed to a random number explicitly, use the keyword RANDOM.

Example
SET SEED=987654321.

• The random number seed is set to the value 987,654,321. The seed will be in effect the
next time the random-number generator is called.

EPOCH Subcommand

EPOCH defines the 100-year span dates entered with two-digit years and for date functions
with a two-digit year specification.

AUTOMATIC 100 year span beginning 69 years prior to the current date and ending 30
years after the current date.

SET 827

begin year First year of the 100 year span.

Example
SET EPOCH=1900.

• All dates entered with two-digit year values are read as years between 1900 and 1999 cen-
tury. For example, a date entered as 10/29/87 is read as 10/29/1997.

Example
SET EPOCH=1980.

• Dates entered wth two-digit year values between 80 and 99 are read as years between
1980 and 1999.

• Dates entered with two-digit year values between 00 and 79 are read as years between
2000 and 2079.

ERRORS, MESSAGES, RESULTS, and PRINTBACK Subcommands

ERRORS, MESSAGES, RESULTS, and PRINTBACK are used with keywords LISTING and NONE
to route program output. ERRORS, MESSAGES, and RESULTS apply only to text output. PRINT-
BACK applies to all commands entered in a syntax window or generated from a dialog box during
a session.
• ERRORS refers to both error messages and warning messages for text output.

• MESSAGES refers to resource utilization messages displayed with text output, including the
heading and the summaries (such as the amount of memory used by a command).

• RESULTS refers to the text output generated by program commands.

• PRINTBACK refers to command printback in the journal file. Syntax is always displayed
as part of the Notes in the syntax window.

LISTING Display output in the designated output window. Alias ON or YES. For
PRINTBACK, alias BOTH. The executed commands are printed back in the
journal and displayed in the log in the output window. You can either display
an icon only or list all of the commands. For ways to display an icon only,
refer to the SPSS Base User’s Guide.

NONE Suppress the output. Alias NO or OFF.

The default routes vary from operating system to operating system and according to the way
commands are executed. In windowed environments, the typical defaults are:

Subcommand Windowed environments

ERRORS Listing
MESSAGES None
PRINTBACK Both
RESULTS Listing

828 SET

JOURNAL Subcommand

Alias to LOG. The program creates a journal file to keep track of the commands submitted
and error and warning messages generated during a session. JOURNAL is used to assign a file-
name to the journal file or to stop or resume the journal.

• Journal files with the default filename are erased at the beginning of each session. To pre-
serve the contents of a journal file, assign a name with SET JOURNAL at the beginning of
the session. Alternatively, if you have used the default name for a journal file, you can
rename the file before beginning another session.

• If you use multiple journal files, you should not start with one file, go to another file, and
then return to the first file. On many systems, the program will not append new informa-
tion to the first file but will overwrite the previous contents.

filename Filename for the journal file. The default name varies by system.

YES Start sending commands and messages to the journal file.

NO Stop sending commands and messages to the journal file.

Example
SET JOURNAL MYLOG.
GET FILE=HUBDATA.
SET JOURNAL OFF.
LIST.
SET JOURNAL ON.
FREQUENCIES VARIABLES=ALL.

• The first SET command opens the journal file MYLOG.
• The GET command is copied into the journal file. The SET command then turns the jour-

nal off. The LIST command is not copied into the journal file but is executed. The second
SET command turns the journal on again, and the FREQUENCIES command is copied into
the journal file.

MEXPAND and MPRINT Subcommands

MEXPAND and MPRINT control whether macros are expanded and whether the expanded
macros are displayed. For more information on macros, see DEFINE and Appendix D.

The specifications for MEXPAND are:

ON Expand macros. This is the default.

OFF Do not expand macros. The command line that calls the macro is treated like any
other command line. If the macro call is an command, it will be executed; other-
wise, it will trigger an error message.

The specifications for MPRINT are:

ON Include expanded macro commands in the output.

OFF Exclude expanded macro commands from the output. This is the default.

SET 829

• MPRINT is effective only when MEXPAND is ON and is independent of the PRINTBACK
subcommand.

MITERATE and MNEST Subcommands

MITERATE and MNEST control the maximum loop traversals and the maximum nesting levels
permitted in macro expansions, respectively.

• The specification on MITERATE or MNEST is a positive integer. The default for MITERATE
is 1000. The default for MNEST is 50.

BLANKS Subcommand

BLANKS specifies the value the program should use when it encounters a completely blank
field for a numeric variable. By default, the program uses the system-missing value.
• BLANKS controls only the translation of numeric fields. If a blank field is read with a

string format, the resulting value is a blank.

• The value specified on BLANKS is not automatically defined as a missing value.

• The BLANKS specification applies to all numeric variables. You cannot use different spec-
ifications for different variables.

• BLANKS must be specified before data are read. Otherwise, blanks in numeric fields are
converted to the system-missing value (the default) as they are read.

UNDEFINED Subcommand

UNDEFINED controls whether the program displays a warning message when it encounters
anything other than a number or a blank as the value for a numeric variable. The default is
WARN.

• Warning messages that are suppressed are still counted toward the maximum allowed be-
fore the session is terminated. To control the number of warnings (and therefore the num-
ber of invalid values) allowed in a session, use the MXWARNS subcommand.

WARN Display a warning message when an invalid value is encountered for a nu-
meric variable. This is the default.

NOWARN Suppress warning messages for invalid values.

MXWARNS Subcommand

MXWARNS controls the maximum number of error messages and warnings the program
displays for text output during one working session. The default for MXWARNS is 10.

• All errors are included with warnings in the count toward the MXWARNS limit. Notes are
not.

• If you have set MXWARNS, the program stops displaying warning messages when the limit
is exceeded but the working session continues.

830 SET

• The setting on MXWARNS has no effect on output displayed in pivot tables.

Example
SET MXWARNS=200.

• MXWARNS specifies that a maximum of 200 warnings can be displayed. When the limit
is exceeded, the program stops displaying warnings if it is in a windowed environment or
if it is running the commands interactively. Otherwise, the session is terminated.

MXLOOPS Subcommand

MXLOOPS specifies the maximum number of times a loop defined by the LOOP—END LOOP
structure is executed for a single case or input record. The default is 40.

• MXLOOPS prevents infinite loops, which may occur if no cutoff is specified for the loop
structure (see LOOP—END LOOP).

• When a loop is terminated, control passes to the command immediately following the
END LOOP command, even if the END LOOP condition is not yet met.

EXTENSIONS Subcommand

EXTENSIONS controls whether the program adds default extensions to the data files it saves
during a session. The default extensions are .SAV for SPSS-format data files saved with SAVE
or XSAVE and .POR for portable data files saved with EXPORT. The specification on EXTEN-
SIONS is either OFF or ON. The default is OFF.

• EXTENSIONS is effective only when you run SAVE, XSAVE, or EXPORT with command
syntax. It does not affect files saved using a dialog box in windowed environments.

• EXTENSIONS has no effect when the filename is specified in apostrophes or quotes.

OFF Do not use default extensions. This is the default.

ON Add a default extension to the file if an extension is not explicitly specified.

Example
SET EXTENSIONS=ON.
SAVE OUTFILE=BANK89.
SAVE OUTFILE=’BANK89’.

• This example saves two SPSS-format data files from the same working file. The first
SAVE command saves the working data file as BANK89.SAV; the second SAVE command
saves the working file as BANK89 regardless of the setting on EXTENSIONS.

COMPRESSION Subcommand

COMPRESSION determines whether scratch files created during a session are in compressed
or uncompressed form.

SET 831

• A compressed scratch file occupies less space on disk than does an uncompressed scratch
file but requires more processing.

• The specification takes effect the next time a scratch file is written and stays in effect until
SET COMPRESSION is specified again or until the end of the session.

• The default setting varies. Use SHOW to display the default on your system.

YES Compress scratch files.

NO Do not compress scratch files.

HIGHRES Subcommand

The program generates high-resolution charts and plots for statistical procedures. HIGHRES
controls whether such charts and plots are displayed using high-resolution graphics or printer
characters. The default is ON.

ON Display charts and plots using high-resolution graphics.

OFF Do not display charts.

BLOCK Subcommand

BLOCK specifies the character used for drawing icicle plots.

• You can specify any single character either as a quoted string or as a quoted hexadecimal
pair preceded by the character X.

• The default is X’2A’.

Example
SET BLOCK=’#’.

• This command specifies a pound sign (#) as the character to be used for drawing bar
charts. The character is specified as a quoted string.

BOX Subcommand

BOX specifies the characters used to draw grids in MULT RESPONSE. Other procedures, like
FACTOR, may also use these characters in plots and other displays. The specification is either
a 3- or an 11-character quoted string, in which the characters represent, respectively:

1 horizontal line 7 upper-right corner
2 vertical line 8 left T
3 middle (cross) 9 right T
4 lower-left corner 10 top T
5 upper-left corner 11 bottom T
6 lower-right corner

832 SET

• The characters can be specified either as a quoted string or hexadecimal pairs. Specify an
X before the quoted hexadecimal pairs.

• The defaults vary from system to system. To display the current settings, use the SHOW
command.

• The default is X’2D7C2B2B2B2B2B2B2B2B2B’.

LENGTH and WIDTH Subcommands

LENGTH and WIDTH specify the maximum page length and width for the output, respectively.
The default for LENGTH is 59 lines; the default for WIDTH is 80. These two subcommands ap-
ply only to text output.

• The page length includes the first printed line on the page through the last line that can be
printed. The printer you use most likely includes a margin at the top; that margin is not
included in the length used by this program. The default, 59 lines, allows for a 1/2-inch
margin at the top and bottom of an 11-inch page printed with 6 lines per inch, or an 8 1/2-
inch page printed with 8 lines per inch.

• You can specify any length from 40 through 999,999 lines. If a long page length is spec-
ified, the program continues to provide page ejects and titles at the start of each procedure
and at logical points in the display, such as between crosstabulations.

• To suppress page ejects, use keyword NONE on LENGTH. The program will insert titles at
logical points in the display but will not supply page ejects.

• You can specify any number of characters from 80 through 132 for WIDTH. The specified
width does not include the carriage control character. All procedures can fit the output to
an 80-column page.

HEADER Subcommand

HEADER controls whether the output includes headings. The HEADER subcommand applies
to both default headings and those specified on the TITLE and SUBTITLE commands. This
command applies only to text output from this program. The default is NO.

NO Suppress headings in text output. All general headings, including pagination, are
replaced by a single blank line.

YES Display headings in text output.

BLANK Suppress headings but start a new page.

CCA, CCB, CCC, CCD, and CCE Subcommands

You can specify up to five custom currency formats using the subcommands CCA, CCB, CCC,
CCD, and CCE. In the Windows environment, use the Regional Settings Properties to set the
currency formats.

SET 833

• Each custom currency subcommand defines one custom format and can include four
specifications in the following order: a negative prefix, a prefix, a suffix, and a negative
suffix.

• The specifications are separated by either periods or commas, whichever you do not want
to use as a decimal point in the format.

• Each currency specification must always contain three commas or three periods. All other
specifications are optional.

• Use blanks in the specification only where you want blanks in the format.

• The entire specification must be enclosed in apostrophes.

• A specification cannot exceed 16 characters (excluding the apostrophes).

• Custom currency formats cannot be specified as input formats on DATA LIST. Use them
only as output formats in the FORMATS, WRITE FORMATS, PRINT FORMATS, WRITE, and
PRINT commands.

Example
SET CCA=’-,$,,’.

• A minus sign (−) preceding the first command is used as the negative prefix.
• A dollar sign is specified for the prefix.

• No suffixes are specified (there are two consecutive commas before the closing apostrophe).

• Since commas are used as separators in the specification, the decimal point is represented
by a period.

Example
SET CCA=’(,,,-)’ CCB=’,,%,’ CCC=’(,$,,)’ CCD=’-/-.Dfl ..-’.
FORMATS VARA(CCA9.0)/ VARB(CCB6.1)/ VARC(CCC8.0)/ VARD(CCD14.2).

• SET defines four custom currency formats. Table 1 summarizes the currency specifications.

• FORMATS assigns these formats to specific variables.

Table 1 Custom currency examples

 CCA CCB CCC CCD

negative prefix (none (-/-
prefix none none $ Dfl
suffix none % none none
negative suffix -) none) -
separator , , , .
sample positive number 23,456 13.7% $352 Dfl 37.419,00
sample negative number (19,423-) 13.7% ($189) -/-Dfl 135,19-

834

SHOW

SHOW [ALL] [BLANKS] [BLKSIZE] [BOX] [BLOCK] [BUFNO] [CC] [CCA] [CCB]

 [CCC] [CCD] [CCE] [COMPRESSION] [CTEMPLATE] [ERRORS] [EXTENSIONS] [FORMAT]

 [HEADER] [HIGHRES] [JOURNAL] [LENGTH] [MESSAGES] [MEXPAND]

 [MITERATE] [MNEST] [MPRINT] [MXCELLS] [MXLOOPS] [MXMEMORY] [MXWARNS]

 [N] [ONUMBERS] [OVARS] [PRINTBACK] [RESULTS] [SCOMPRESSION] [SEED]

 [SYSMIS] [TFIT] [TLOOK] [TNUMBERS] [TVARS] [UNDEFINED]

 [WEIGHT] [WIDTH] [WORKSPACE] [$VARS]

Overview

SHOW displays current settings for running options. Most of these settings can be changed
with the SET command.

Basic Specification

The basic specification is simply the command keyword, which displays important current
settings (keyword ALL). Some displayed option settings are applicable only when you have
options such as Tables and Categories.

Subcommand Order

Subcommands can be named in any order.

Syntax

• If any subcommands are specified, only the requested settings are displayed.

• SHOW can be specified more than once.

Example

SHOW BLANKS /UNDEFINED /MXWARNS.

• BLANKS shows the value to which a completely blank field for a numeric variable is
translated.

• UNDEFINED indicates whether a message displays whenever the program encounters
anything other than a number or a blank as the value for a numeric variable.

• MXWARNS displays the maximum number of warnings allowed before a session is
terminated.

SHOW 835

Subcommands

The following alphabetical list shows the available subcommands.

ALL Display important settings applicable to your system. This is the
default.

BLANKS Value to which a completely blank field for a numeric variable is
translated. The default is the system-missing value.

BLKSIZE Default block length used for scratch files and SPSS-format data files.
The default varies by system. BLKSIZE cannot be changed with SET.

BOX Characters used to draw boxes. Both character and hexadecimal repre-
sentations are displayed. The default is X’2D7C2B2B2B2B2B2B2B2B2B’.
This setting applies only to text output from the program.

BLOCK Character used to draw bar charts. Both character and hexadecimal
representations are displayed. The default is X’2A’. This setting applies
only to the text output from the program.

BUFFNO The default number of buffers used for all files managed by the system
for input and output. The default varies by system. BUFFNO cannot be
changed with SET.

CC Custom currency formats. CC shows the current custom currency for-
mats that have been defined for CCA, CCB, CCC, CCD, and CCE on
SET. In Windows environments, they reflect the Regional Settings
Properties. You can also request any of these keywords individually.

COMPRESSION Compression of scratch files. The setting is either ON or OFF (alias
YES or NO). The default varies by system.

CTEMPLATE Chart template file. The setting is either NONE or a filename.

ERRORS Error messages for text output. The setting can be LISTING (alias YES
or ON) or NONE (alias NO or OFF).

EXTENSIONS Default extensions for saved data files. The setting is either ON or OFF.
The default is OFF.

FORMAT Default print and write formats for numeric variables defined on
DATA LIST in freefield format and to all numeric variables created by
transformation commands. The default is F8.2.

HEADER Headings for text output. The setting is YES, NO, or BLANK. The de-
fault is NO.

HIGHRES High-resolution or low-resolution (character-based) charts and plots.
The setting is either ON or OFF, where ON is high-resolution. The de-
fault is ON.

JOURNAL Journal file during a session. The setting is either ON or OFF (alias
YES or NO). The default varies by system.

836 SHOW

LENGTH Maximum page length for output. The default is 59. This setting ap-
plies only to the text output from the program.

MESSAGES Resource utilization messages for text output. The setting can be
LISTING (alias YES or ON) or NONE (alias NO or OFF).

MEXPAND Macro expansion. The setting is either ON or OFF (alias YES or NO).
The default is ON.

MITERATE Maximum loop iterations permitted in macro expansions. The default
is 1000.

MNEST Maximum nesting level for macros. The default is 50.

MPRINT Inclusion of expanded macros in the output. The setting is either ON
or OFF (alias YES or NO). The default is OFF.

MXCELLS Maximum number of cells allowed for a new pivot table. The default
is AUTOMATIC, allowing the number to be determined by the available
memory.

MXLOOPS Maximum executions of a loop on a single case. The default is 40.

MXMEMORY Maximum memory allocation in kilobytes. The default is 14,000.

MXWARNS Maximum number of warnings and errors shown for text output. The
default is 10.

N Unweighted number of cases in the working data file. N displays
UNKNOWN if a working data file has not yet been created. N cannot
be changed with SET.

ONUMBERS Display of variable values in the outline for pivot tables. The settings
can be LABELS, VALUES, and BOTH.

OVARS Display of variables as headings. The settings can be LABELS,
NAMES, and BOTH.

PRINTBACK Command printback. The setting can be BOTH (alias LISTING, YES, or
ON) or NONE (alias NO or OFF). The default is BOTH at system instal-
lation.

RESULTS Output from commands. Not applicable to output displayed in pivot
tables. The setting can be LISTING (alias YES or ON) or NONE (alias
NO or OFF).

SCOMPRESSION Compression of SPSS-format data files. This setting can be overridden
by the COMPRESSED or UNCOMPRESSED subcommands on the
SAVE or XSAVE commands. The default setting varies by system.
SCOMPRESSION cannot be changed with SET.

SEED Seed for the random-number generator. The default is generally
2,000,000 but may vary by system.

SYSMIS The system-missing value. SYSMIS cannot be changed with SET.

SHOW 837

TFIT Adjust column widths in pivot tables. The settings can be BOTH (label
and data) and LABELS.

TLOOK Pivot table template file. The setting can be either NONE or a filename.

TNUMBER Display of variable values in pivot tables. The settings can be VALUES,
LABELS, and BOTH.

TVARS Display of variables as headings. The settings can be NAMES,
LABELS, and BOTH.

UNDEFINED Warning message for undefined data. WARN is the default. NOWARN
suppresses messages but does not alter the count of warnings toward
the MXWARNS total.

WEIGHT Variable used to weight cases. WEIGHT can be specified for SHOW
only; it cannot be changed with SET.

WIDTH Maximum page width for the output. The default is 132 columns for
batch mode and 80 for interactive mode. This setting applies only to
text output from the program.

WORKSPACE Special workspace memory limit in kilobytes. The default is 512.

$VARS Values of system variables. $VARS cannot be changed with SET.

838

SORT CASES

SORT CASES [BY] varlist[({A})] [varlist...]
 {D}

Example:
SORT CASES BY DIVISION (A) STORE (D).

Overview

SORT CASES reorders the sequence of cases in the working data file based on the values of
one or more variables. You can optionally sort cases in ascending or descending order, or
use combinations of ascending and descending order for different variables.

Basic Specification

The basic specification is a variable or list of variables that are used as sort keys. By default,
cases are sorted in ascending order of each variable, starting with the first variable named.
For each subsequent variable, cases are sorted in ascending order within categories of the
previously named variables.

Syntax Rules

• Keyword BY is optional.

• BY variables can be numeric or string but not scratch, system, or temporary variables.

• You can explicitly request the default sort order (ascending) by specifying A or UP in
parentheses after the variable name. To sort cases in descending order, specify D or
DOWN.

• An order specification (A or D) applies to all variables in the list up to the previous order
specification. If you combine ascending and descending order on the same SORT CASES
command, you may need to specify the default A explicitly.

Operations

• SORT CASES first sorts the file according to the first variable named. For subsequent
variables, cases are sorted within categories of the previously named variables.

• The sort sequence of string variables depends on the character set in use on your system.
With EBCDIC character sets, most special characters are sorted first, followed by lower-
case alphabetical characters, uppercase alphabetical characters, and, finally, numbers. The
order is almost exactly reversed with ASCII character sets. Numbers are sorted first, fol-
lowed by uppercase alphabetical characters and then lowercase alphabetical characters. In

SORT CASES 839

addition, special characters are sorted between the other character types. Use the INFO com-
mand (not available on all systems) to obtain information on the character set in use on your
system and the exact sort sequence.

SORT CASES with Other Procedures

• In AGGREGATE, cases are sorted in order of the break variable or variables. You do not
have to use SORT CASES prior to running AGGREGATE, since the procedure does its own
sorting.

• You can use SORT CASES in conjunction with the BY keyword in ADD FILES to interleave
cases with the same variables but from different files.

• With MATCH FILES, cases must be sorted in the same order for all files you combine.

• With UPDATE, cases must be sorted in ascending order of the key variable or variables in
both the master file and all transaction files.

• You can use the PRINT command to check the results of a SORT CASES command. PRINT
must be followed by a procedure or EXECUTE to be executed.

Example

SORT CASES BY DIVISION (A) STORE (D).

• Cases are sorted in ascending order of variable DIVISION. Cases are further sorted in
descending order of STORE within categories of DIVISION. A must be specified so that D
applies to STORE only.

Example

SORT DIVISION STORE (A) AGE (D).

• Cases are sorted in ascending order of DIVISION. Keyword BY is not used in this example.
• Cases are further sorted in ascending order of STORE within values of DIVISION. Speci-

fication A applies to both DIVISION and STORE.

• Cases are further sorted in descending order of AGE within values of STORE and DIVISION.

•

840

SPCHART

This command is available only on systems with high-resolution graphics capabilities.

SPCHART

 [/TEMPLATE=’filename’]

 [/TITLE=’line 1’ [’line 2’]]
 [/SUBTITLE=’line 1’]
 [/FOOTNOTE=’line 1’ [’line 2’]]

 {[/XR=]{var BY var } }
 {var var [var var...][BY var]}

 { /XS= {var BY var } }
 {var var [var var...][BY var]}

 { /IR= var [BY var] }

 { /I= var [BY var] }

 { /NP= {var BY var }}
 {COUNT(var) N({var }) [BY var]}
 {value }

 { /P= {var BY var } }
 {COUNT(var) N({var }) [BY var]}
 {value }

 { /C= {var BY var } }
 {COUNT(var) N({var }) [BY var]}
 {value }

 { /U= {var BY var }}
 {COUNT(var) N({var }) [BY var]}
 {value}

 [/SPAN={2**}]
 {n }

 [{/CONFORM }=value]
 {/NOCONFORM}

 [/SIGMA={3**}]
 {n }

 [/MINSAMPLE={2**}]
 {n }

 [/LSL=value] [/USL=value]

 [/MISSING=[{NOREPORT**}] [{EXCLUDE**}]
 {REPORT } {INCLUDE }

**Default if the subcommand is omitted.

Overview

SPCHART generates several types of high-resolution control charts. A control chart plots a
quality characteristic measured or computed from a sample versus the sample number or

SPCHART 841

time. It is a widely used process-control technique for testing the hypothesis that the process
is in a state of statistical control. All control charts display four series:

• The process line representing the quality characteristic for each sample.

• The center line indicating the average value of the quality characteristic corresponding to
the in-control state.

• Two horizontal lines showing the upper control limit and the lower control limit.

Control charts are used as a technique for improving productivity, preventing defects and un-
necessary process adjustments, and gathering information about process capability.

 SPCHART produces X-bar, R, s, individuals, and moving range charts as well as np, p, c,
and u charts. You may need to transform your data so that they conform to the required data
organization described under each chart type subcommand.

Control charts are available only on systems where high-resolution display is available.

Options

Titles and Footnotes. You can specify a title, subtitle, and footnote for the control chart using
the TITLE, SUBTITLE, and FOOTNOTE subcommands.

Chart Type. You can request a specific type of control chart using the XR, XS, IR, I, NP, P, C,
or U subcommand.

Templates. You can specify a template, using the TEMPLATE subcommand, to override the de-
fault chart attribute settings on your system.

Control Limits. You can specify a sigma value on the SIGMA subcommand to modify the cal-
culated upper and lower control limits. You can also specify fixed limits using the USL and
LSL subcommands. The upper and lower limits you specify will be displayed simultaneously
with the calculated control limits.

Basic Specification

The basic specification is a chart type subcommand. By default, the title of the generated
chart is Control Chart followed by the label of the process variable. The subtitle provides
split-file information if split-file processing is in effect, and the one-line footnote provides
the sigma value.

Subcommand Order

Subcommands can be specified in any order.

Syntax Rules

• Only one chart type subcommand can be specified.

• Keyword SPAN is used only with IR and I subcommands.

842 SPCHART

• Keyword CONFORM or NOCONFORM is used only with NP and P subcommands.

Operations

• SPCHART plots four basic series: the process, the center line, the upper control line, and
the lower control line.

• The chart title, subtitle, and footnote are assigned as they are specified on TITLE, SUBTITLE,
and FOOTNOTE subcommands. If you do not use these subcommands, the chart title is Con-
trol Chart, followed by the label of the process variable, and a one-line footnote displays the
sigma level.

• The category variable label is used as the title for the category axis. If no variable label is
defined, the variable name is used. If no category variable is defined, the title is null.

• The category variable value labels are used as the category axis labels. If no value labels
are defined, values are used. If no category variable is defined, integer values from 1 to n
are used, where n is the number of subgroups or units plotted.

• All series are plotted as lines. When a series has a constant value across all samples, the
value is reported in the legend entry for the series.

• Case weights are not honored for control charts when each case is a subgroup. They are
honored when each case is a unit and when the weights are integers. When weighted data
are used in an individuals chart, replicated cases are plotted on the control chart.

• The calculated control limits are always displayed and can be suppressed only by editing
the chart in a chart window.

• You can specify preset control limits for an X-bar or I chart, as some industries often do.
The specified control limits are displayed simultaneously with the calculated limits.

Limitations

• Control charts cannot have fewer than 2 or more than 3000 points.

• The subgroup size in X-bar and range charts cannot exceed 100.

• The span for individual charts is limited to 100.

Example

SPCHART /TEMPLATE=’CNTR.CHT’
 /IR=SUBSIZE.

• This command generates an individuals chart and a moving range chart. The process vari-
able SUBSIZE is a numeric variable that measures the size variation of the product.

• Both charts uses the attributes defined for the template saved in CNTR.CHT.

• The default span (2) and sigma value (3) are used.

• Since no BY variable is specified, the x-axis is labeled by sequence numbers.

SPCHART 843

TITLE, SUBTITLE, and FOOTNOTE Subcommands

TITLE, SUBTITLE, and FOOTNOTE specify lines of text placed at the top or bottom of the con-
trol chart.

• One or two lines of text can be specified for TITLE or FOOTNOTE, and one line of text for
SUBTITLE.

• Each line of text must be enclosed in apostrophes or quotation marks. The maximum
length of any line is 72 characters.

• The default font sizes and types are used for the title, subtitle, and footnote.
• By default, the title, subtitle, and footnote are left-aligned with the y axis.

• If you do not specify TITLE, the default title is Control Chart followed by the label of the
process variable.

• If you do not specify SUBTITLE, the subtitle provides the split-file information if split-file
processing is in effect; otherwise it is null, which leaves more space for the chart.

• If you do not specify FOOTNOTE, the sigma level is identified as the first line of the footnote.

Example
SPCHART TITLE = ’Wheel Production’

/SUBTITLE = ’Process Control’
 /IR=SUBSIZE.

XR and XS Subcommands

XR produces an X-bar chart and an R chart. XS produces an X-bar chart and an s chart. X-bar,
R, and s charts are control charts for continuous variables, such as size, weight, length, and
temperature.

An X-bar chart plots the mean of each subgroup. The center line indicates the mean of
subgroup means. The control limits are calculated from subgroup means, numbers, standard
deviations, and the user-specified SIGMA value (see “SIGMA Subcommand” on p. 852).
Figure 3 shows an X-bar chart.

An R chart plots range values (maximum-minimum) of successive subgroups. The center
line indicates the mean of subgroup ranges. The control limits are calculated from subgroup

Figure 3 X-bar chart

844 SPCHART

ranges, numbers, and the user-specified SIGMA value (see “SIGMA Subcommand” on p.
852). The R chart tests whether the process variability is in control. When the subgroup size
is relatively small (4, 5, or 6), the range method yields almost as good an estimator of the
variance as does the subgroup variance. Figure 4 shows an R chart.

An s chart plots subgroup standard deviations. The center line indicates the mean of sub-
group standard deviations. The control limits are calculated from subgroup standard devia-
tions, numbers, and the user-specified SIGMA value (see “SIGMA Subcommand” on p. 852).
The s chart tests whether the process variability is in control, especially when the subgroup
size is from moderate to large. Figure 5 shows an s chart.

Data Organization

For X-bar, R, or s charts, data can be organized in two ways: each case is a unit or each case
is a subgroup.

• Each case is a unit with a subgroup identifier. Cases are assigned to a category according
to the value of the identifier. Table 1 is an example of this type of data organization. The
data do not have to be sorted by subgroup. A BY variable (the subgroup identifier) is re-
quired to sort and aggregate data and label the process variable.

Figure 4 R chart

Figure 5 S chart

SPCHART 845

• Each case is a subgroup. There are as many variables as individuals within one sample. A
sample identifier is not required. When there is one, it is used for labeling. Table 2 shows
the same data as Table 1 but organized in a different way.

Variable Specification

If data are organized as shown in Table 1, the variable specifications on XR and XS subcom-
mands are

VAR BY VAR

The variable specified before BY is the process variable, the variable that contains values for
all instances to be plotted (for example, LENGTH in Table 1). The variable specified after BY
is the category variable or the BY variable, which is the subgroup identifier (for example,
SUBGROUP in Table 1). The process variable must be numeric while the category variable
can be of any type. The chart is sorted by the category variable.

If data are organized as shown in Table 2, the variable specifications on XR and XS sub-
commands are

VAR VAR [VAR...] [BY VAR]

Each of the variables specified before BY represents an instance to be plotted (for example,
N1 to N3 in Table 2). At least two variables are required and each must be numeric. Keyword
BY and the category variable (for example, SUBGROUP in Table 2) are optional; if specified,
the category variable provides labels for the category axis and can be any type of variable. If
omitted, the category axis is labeled from 1 to the number of variables specified before key-
word BY.

Table 1 Each case is a unit for X-bar, R, and s charts

Subgroup Length

 8:50 6.35
11:30 6.39
 8:50 6.40
11:30 6.46
 8:50 6.32
11:30 6.37
 8:50 6.39
11:30 6.36
... ...

Table 2 Each case is a subgroup for X-bar, R, and s charts

Subgroup N1 N2 N3 N4

 8:50 6.35 6.40 6.32 6.39
11:30 6.39 6.46 6.37 6.36
...

846 SPCHART

Example
SPCHART /TEMPLATE=’CTRL.CHT’
 /XR SUBSIZE BY SHIFT.

• The data are organized as shown in Table 1. SUBSIZE is a numeric variable that measures
the part size. SHIFT contains the subgroup identifier (work shift number).

• The chart template is stored in the chart file CTRL.CHT.

I and IR Subcommands

I produces an individuals chart and IR produces an individuals and a moving range chart. Both
types are control charts for continuous variables, such as size, weight, length, and temperature.

An individuals chart plots each individual observation on a control chart. The center line
indicates the mean of all individual values and the control limits are calculated from the
mean of the moving ranges, the span, and the user-specified SIGMA value. Individuals charts
are often used with moving range charts to test process variability when the subgroup size is
1. This occurs frequently when automated inspection and measurement technology is used
and every unit manufactured is analyzed. It also occurs when the process is so slow that a
larger subgroup size becomes impractical. Figure 6 shows an individuals chart.

A moving range chart plots moving ranges of n successive observations on a control chart,
where n is the specified span (see “SPAN Subcommand” on p. 852). The center line is the
mean of moving ranges and the control limits are calculated from the ranges, the span, and
the user-specified SIGMA value (see “SIGMA Subcommand” on p. 852). Figure 7 shows a
moving range chart.

Figure 6 Individuals chart

SPCHART 847

Data Organization

For individuals and moving range charts, data must be organized so that each case is a unit.
Cases are not sorted or aggregated before plotting.

 Variable Specification

The variable specification for I or IR subcommand is

VAR [BY VAR]

You must specify the process variable that contains the value for each individual observation.
Each observation is plotted for the individuals chart. The range of n consecutive observations
(where n is the value specified on the SPAN subcommand) is calculated and plotted for the
moving range chart. The range data for the first n-1 cases are missing, but the mean and the
limit series are not.

Keyword BY and the category variable are optional. When specified, the category variable
is used for labeling the category axis and can be any type of variable. If omitted, the category
axis is labeled 1 to the number of individual observations in the process variable.

Example
SPCHART /TEMPLATE=’CTRL.CHT’
 /IR=SUBSIZE.

• This command requests an individuals chart and a moving range chart. The two charts are
shown in Figure 6 and Figure 7.

• The default span (2) and sigma value (3) are used.

P and NP Subcommands

P produces a p chart and NP produces an np chart. Both types are control charts for attributes.
That is, they use data that can be counted, such as the number of nonconformities and the
percentage of defects.

Figure 7 Moving range chart

848 SPCHART

A p chart plots the fraction nonconforming on a control chart. Fraction nonconforming
is the proportion of nonconforming or defective items in a subgroup to the total number of
items in that subgroup. It is usually expressed as a decimal or, occasionally, as a percentage.
The center line of the control chart is the mean of the subgroup fractions and the control lim-
its are based on a binomial distribution and can be controlled by the user-specified SIGMA
value.

An np chart plots the number nonconforming rather than the fraction nonconforming. The
center line is the mean of the numbers of nonconforming or defective items. The control
limits are based on the binomial distribution and can be controlled by the user-specified
SIGMA value. When the subgroup sizes are unequal, np charts are not recommended.

Data Organization

Data for p and np charts can be organized in two ways: each case is a unit or each case is a
subgroup.

• Each case is a unit with a conformity status variable and a subgroup identifier. Cases are
assigned to a category by the value of the subgroup identifier. Table 3 is an example of
this type of data organization. The data do not have to be sorted. A BY variable (the sub-
group identifier) is required to sort and aggregate data and label the category axis.

Figure 8 P chart

Figure 9 NP chart

SPCHART 849

• Each case is a subgroup. One variable contains the total number of items within a sub-
group and one variable contains the total number of nonconforming or defective items in
the subgroup. The subgroup identifier is optional. If specified, it is used for labeling pur-
poses. Table 4 is an example of this type of data organization. The data are the same as
used in Table 3.

Variable Specification

If data are organized as illustrated in Table 3, the variable specification on P or NP subcom-
mands is

VAR BY VAR

The variable specified before BY is the status variable (for example, OUTCOME in Table 3). The
value of this variable determines whether an item is considered conforming or nonconforming.
The status variable can be any type, but if it is a string, the value specified on CONFORM (or
NOCONFORM) must be enclosed in apostrophes (see “CONFORM and NOCONFORM Sub-
commands” on p. 852). The variable specified after BY is the category variable. It can be any
type of variable. The chart is sorted by values of the category variable.

If data are organized as shown in Table 4, the variable specification on P or NP is

COUNT(VAR) N({VAR}) [BY VAR]
 {VAL}

The variable specified on keyword COUNT is the variable containing the number of noncon-
forming or defective items (for example, RELAPSE in Table 4). The specification on keyword
N is either the variable containing the sample size or a positive integer for a constant size
across samples (for example, N in Table 4). The COUNT variable cannot be larger than the N

Table 3 Each case is a unit for p and np charts

Subgroup Outcome

January Cured
January Cured
January Cured
January Relapse
February Relapse
February Cured
February Relapse
February Relapse
... ...

Table 4 Each case is a subgroup for p and np charts

Subgroup Relapse N

January 1 4
February 3 4
...

850 SPCHART

variable for any given subgroup; if it is, the subgroup is dropped from calculation and plot-
ting. Keyword BY and the category variable are optional. When specified, the category vari-
able is used for category axis labels; otherwise, the category axis is labeled 1 to the number
of subgroups. Cases are unsorted for the control chart.

C and U Subcommands

C produces a c chart and U produces a u chart. Both types are control charts for attributes.
That is, they use data that can be counted.

A c chart plots the total number of defects or nonconformities in each subgroup. A defect
or nonconformity is one specification that an item fails to satisfy. Each nonconforming item
has at least one defect, but any nonconforming item may have more than one defect. The center
line of the c chart indicates the mean of the defect numbers of all subgroups. The control limits
are based on the Poisson distribution and can be controlled by the user-specified SIGMA value.
When the sample sizes are not equal, c charts are not recommended.

A u chart plots the average number of defects or nonconformities per inspection unit within
a subgroup. Each subgroup contains more than one inspection unit. The center line of the u
chart indicates the average number of defects per unit of all subgroups. The control limits are
based on Poisson distribution and can be controlled by the user-specified SIGMA value.

Figure 10 C chart

Figure 11 U chart

SPCHART 851

Data Organization

Data for c and u charts can be organized in two ways: each case is a unit or each case is a
subgroup.

• Each case is a unit with a variable containing the number of defects for that unit and a
subgroup identifier. Cases are assigned to each subgroup by the value of the identifier.
Table 5 is an example of this type of data organization. Data do not have to be sorted by
subgroup. A BY variable (the subgroup identifier) is required to sort and aggregate data
and to label the category axis.

• Each case is a subgroup. One variable contains the total number of units within the sub-
group and one variable contains the total number of defects for all units within the sub-
group. The subgroup identifier is optional. When specified, it is used as category axis
labels; otherwise, the number 1 to the number of subgroups are used to label the category
axis. Table 6 is an example of this method of data organization. The data are the same as
in Table 5.

Variable Specification

If data are organized as in Table 5, the variable specification on C and U subcommands is

VAR BY VAR

The variable specified before keyword BY contains the number of defects in each unit (for
example, COUNT in Table 5). It must be numeric. The variable specified after keyword BY is
the subgroup identifier (for example, SUBGROUP in Table 5). It can be any type of variable.
The chart is sorted by values of the subgroup identifier.

Table 5 Each case is a unit for c and u charts

ID Subgroup Count

1 January 0
2 January 2
3 January 0
4 January 0
5 February 5
6 February 1
7 February 0
8 February 0
...

Table 6 Each case is a sample for c and u charts

Subgroup Relapses N

JANUARY 1 4
FEBRUARY 3 4
...

852 SPCHART

If data are organized as shown in Table 6, the variable specification on C and U subcom-
mands is

COUNT(VAR) N({VAR}) [BY VAR]
 {VAL}

The specification is the same as that for p and np charts.

SPAN Subcommand

SPAN specifies the span from which the moving range for an individuals chart is calculated.
The specification must be an integer value greater than 1. The default is 2. SPAN applies only
to I and IR chart specifications.

Example
SPCHART /IR=SUBSIZE /SPAN=5.

• The SPAN subcommand specifies that the moving ranges are computed from every five
individual samples.

CONFORM and NOCONFORM Subcommands

Either CONFORM or NOCONFORM is required when you specify a status variable on the P or
NP subcommand. That occurs when data are organized so that each case is an inspection unit
(see “P and NP Subcommands” on p. 847).

• Either subcommand requires a value specification. The value can be numeric or string.
String values must be enclosed within apostrophes.

• If CONFORM is specified, all values for the status variable other than the value specified
are tabulated as nonconformities. If NOCONFORM is specified, only the specified value
is tabulated as nonconformities.

• CONFORM and NOCONFORM apply only to P and NP chart specifications.

SIGMA Subcommand

SIGMA allows you to define the sigma level for a control chart. The value specified on SIGMA
is used in calculating the upper and lower control limits on the chart. You can specify a num-
ber larger than 1 but less than or equal to 10. The larger the SIGMA value, the greater the range
between the upper and the lower control limits. The default is 3.

MINSAMPLE Subcommand

MINSAMPLE specifies the minimum sample size for X-bar, R, or s charts. When you specify
XR or XS on SPCHART, any subgroup with a size smaller than that specified on MINSAMPLE
is excluded from the chart and from all computations. If each case is a subgroup, there must
be at least as many variables named as the number specified on MINSAMPLE. The default is 2.

SPCHART 853

LSL and USL Subcommand

LSL and USL allow you to specify fixed lower and upper control limits. Fixed control limits
are often used in manufacturing processes as designer-specified limits. These limits are dis-
played on the chart along with the calculated limits. If you do not specify LSL and USL, no
fixed control limits are displayed. However, if you want only the specified control limits, you
must edit the chart in a chart window to suppress the calculated series.

Example
SPCHART /TEMPLATE=’CTRL.CHT’
 /XS=SUBSIZE
 /USL=74.50
 /LSL=73.50.

• The USL and LSL subcommands specify the control limits according to the designing en-
gineer. The center line is most probably at 74.00.

• The specified upper and lower limits are displayed together with the control limits calcu-
lated from the observed standard deviation and the sigma value.

MISSING Subcommand

MISSING controls the treatment of missing values in the control chart.

• The default is NOREPORT and EXCLUDE.

• REPORT and NOREPORT are alternatives and apply only to category variables. They con-
trol whether categories (subgroups) with missing values are created.

• INCLUDE and EXCLUDE are alternatives and apply to process variables.

NOREPORT Suppress missing-value categories. This is the default.

REPORT Report and plot missing-value categories.

EXCLUDE Exclude user-missing values. Both user- and system-missing values for the pro-
cess variable are excluded from computation and plotting. This is the default.

INCLUDE Include user-missing values. Only system-missing values for the process
variable are excluded from computation and plotting.

854

SPLIT FILE

SPLIT FILE {OFF }
 [{LAYERED }] {BY varlist}
 {SEPARATE}

Example:
SORT CASES BY SEX.
SPLIT FILE BY SEX.
FREQUENCIES VARS=INCOME /STATISTICS=MEDIAN.

Overview

SPLIT FILE splits the working data file into subgroups that can be analyzed separately. These
subgroups are sets of adjacent cases in the file that have the same values for the specified
split variables. Each value of each split variable is considered a break group, and cases with-
in a break group must be grouped together in the working data file. If they are not, the SORT
CASES command must be used before SPLIT FILE to sort cases in the proper order.

Basic Specification

The basic specification is keyword BY followed by the variable or variables that define the
split-file groups.

• By default, the split-file groups are compared within the same table(s).

• You can turn off split-file processing using keyword OFF.

Syntax Rules

• SPLIT FILE can specify both numeric and string split variables, including long string vari-
ables and variables created by temporary transformations. It cannot specify scratch or
system variables.

• SPLIT FILE is in effect for all procedures in a session unless you limit it with a TEMPORARY
command, turn it off, or override it with a new SPLIT FILE or SORT CASES command.

Operations

• Unlike most transformations, SPLIT FILE takes effect as soon as it is encountered in the
command sequence. Thus, special attention should be paid to its position among com-
mands. For more information, see “Command Order” on p. 6.

• The file is processed sequentially. A change or break in values on any one of the split
variables signals the end of one break group and the beginning of the next.

SPLIT FILE 855

• AGGREGATE ignores the SPLIT FILE command. To split files using AGGREGATE, name
the variables used to split the file as break variables ahead of any other break variables on
AGGREGATE. AGGREGATE still produces one file, but the aggregated cases are in the
same order as the split-file groups.

• If SPLIT FILE is in effect when a procedure writes matrix materials, the program writes
one set of matrix materials for every split group. If a procedure reads a file that contains
multiple sets of matrix materials, the procedure automatically detects the presence of mul-
tiple sets.

• If SPLIT FILE names any variable that was defined by the NUMERIC command, the pro-
gram prints page headings indicating the split-file grouping.

Limitations

• SPLIT FILE can specify or imply up to eight variables.

LAYERED and SEPARATE Subcommands

LAYERED and SEPARATE specify how split-file groups are displayed in the output.

• Only one of them can be specified. If neither is specified with the BY variable list, LAYERED
is the default.

• LAYERED and SEPARATE do not apply to the text output.

LAYERED Display split-file groups in the same table in the outermost column.

SEPARATE Display split-file groups as separate tables.

Example

SORT CASES BY SEX.
SPLIT FILE BY SEX.
FREQUENCIES VARS=INCOME /STATISTICS=MEDIAN.

• SORT CASES arranges cases in the file according to the values of variable SEX.

• SPLIT FILE splits the file according to the values of variable SEX, and FREQUENCIES gen-
erates separate median income tables for men and women.

• By default, the two groups (men and women) are compared in the same Frequency and
Statistics tables.

Example

SORT CASES BY SEX.
TEMPORARY.
SPLIT FILE SEPARATE BY SEX.
FREQUENCIES VARS=INCOME /STATISTICS=MEDIAN.
FREQUENCIES VARS=INCOME /STATISTICS=MEDIAN.

856 SPLIT FILE

• Because of the TEMPORARY command, SPLIT FILE applies to the first procedure only.
Thus, the first FREQUENCIES procedure generates separate tables for men and women.
The second FREQUENCIES procedure generates tables that include both sexes.

Example

SORT CASES BY SEX.
SPLIT FILE SEPARATE BY SEX.
FREQUENCIES VARS=INCOME /STATISTICS=MEDIAN.
SPLIT FILE OFF.
FREQUENCIES VARS=INCOME /STATISTICS=MEDIAN.

• SPLIT FILE does not apply to the second FREQUENCIES procedure because it is turned off
after the first FREQUENCIES procedure. This example produces the same results as the
example above.

Example

SORT CASES BY SEX RACE.
SPLIT FILE BY SEX.
FREQUENCIES VARS=INCOME /STATISTICS=MEDIAN.
SPLIT FILE BY SEX RACE.
FREQUENCIES VARS=INCOME /STATISTICS=MEDIAN.

• The first SPLIT FILE command applies to the first FREQUENCIES procedure. The second
SPLIT FILE command overrides the first and splits the file by sex and race. This split is in
effect for the second FREQUENCIES procedure.

857

STRING

STRING varlist (An) [/varlist...]

Example:
STRING STATE1 (A2).
RECODE STATE (’IO’=’IA’) (ELSE=COPY) INTO STATE1.

Overview

STRING declares new string variables that can be used as target variables in data transfor-
mations.

Basic Specification

The basic specification is the name of the new variables and, in parentheses, the variable
format.

Syntax Rules

• If keyword TO is used to create multiple string variables, the specified format applies to
each variable named and implied by TO.

• To declare variables with different formats, separate each format group with a slash.

• STRING can be used within an input program to determine the order of string variables
in the dictionary of the working data file. When used for this purpose, STRING must pre-
cede DATA LIST in the input program. See p. 598 for an example.

• STRING cannot be used to redefine an existing variable.

• String variables cannot have zero length; A0 is an illegal format.

• All implementations of the program allow the A format. Other string formats may be
available on some systems. In addition, the definition of a long string depends on your
operating system. Use keyword LOCAL on the INFO command to obtain documentation
for your operating system.

Operations

• Unlike most transformations, STRING takes effect as soon as it is encountered in the
command sequence. Thus, special attention should be paid to its position among com-
mands. For more information, see “Command Order” on p. 6.

• New string variables are initialized as blanks.

858 STRING

• Variables declared on STRING are added to the working data file in the order they are
specified. This order is not changed by the order in which the variables are used in the
transformation language.

• The length of a string variable is fixed by the format specified when it is declared and can-
not be changed by FORMATS. To change the length of a string variable, declare a new
variable with the desired length and then use COMPUTE to assign the values of the origi-
nal variable to it.

Example

STRING STATE1 (A2).
RECODE STATE (’IO’=’IA’) (ELSE=COPY) INTO STATE1.

• STRING declares variable STATE1 with an A2 format.

• RECODE specifies STATE as the source variable and STATE1 as the target variable. The
original value IO is recoded to IA. Keywords ELSE and COPY copy all other state codes
over unchanged. Thus, STATE and STATE1 are identical except for cases with the original
value IO.

Example

STRING V1 TO V6 (A8) / V7 V10 (A16).

• STRING declares variables V1, V2, V3, V4, V5, and V6, each with an A8 format, and vari-
ables V7 and V10, each with an A16 format.

859

SUBTITLE

SUBTITLE [’]text[’]

Example:
SUBTITLE "Children’s Training Shoes Only".

Overview

SUBTITLE inserts a left-justified subtitle on the second line from the top of each page of the
output. The default subtitle contains the installation name and information about the hard-
ware and operating system.

Basic Specification

The only specification is the subtitle itself.

Syntax Rules

• The subtitle can include any characters. To specify a blank subtitle, enclose a blank be-
tween apostrophes.

• The subtitle can be up to 60 characters long. Subtitles longer than 60 characters are
truncated.

• The apostrophes or quotation marks enclosing the subtitle are optional; using them al-
lows you to include apostrophes or quotation marks in the subtitle.

• If the subtitle is enclosed in apostrophes, quotation marks are valid characters but apos-
trophes must be specified as double apostrophes. If the subtitle is enclosed in quotation
marks, apostrophes are valid characters but quotation marks must be specified as double
quotation marks.

• More than one SUBTITLE command is allowed in a single session.

• A subtitle cannot be placed between a procedure command and BEGIN DATA—END DATA
or within data records when the data are inline.

Operations

• Each SUBTITLE command overrides the previous one and takes effect on the next output
page.

• SUBTITLE is independent of TITLE and each can be changed separately.

• The subtitle will not be displayed if HEADER=NO is specified on SET.

860 SUBTITLE

Example

TITLE ’Running Shoe Study from Runner’’s World Data’.
SUBTITLE "Children’s Training Shoes Only".

• The title is enclosed in apostrophes, so the apostrophe in Runner’s must be specified as a
double apostrophe.

• The subtitle is enclosed in quotation marks, so the apostrophe in Children’s is simply
specified as an apostrophe.

Example

TITLE ’Running Shoe Study from Runner’’s World Data’.
SUBTITLE ’ ’.

• This subtitle is specified as a blank. This suppresses the default subtitle.

861

SUMMARIZE

SUMMARIZE [TABLES=]{varlist} [BY varlist] [BY...] [/varlist...]
 {ALL }

 [/TITLE =’string’] [FOOTNOTE= ’string’]

 [/CELLS= [COUNT**] [MEAN] [STDDEV]
 [MEDIAN] [GMEDIAN] [SEMEAN] [SUM]
 [MIN] [MAX] [RANGE] [VARIANCE]
 [KURT] [SEKURT] [SKEW] [SESKEW]
 [FIRST] [LAST]
 [NPCT] [SPCT] [NPCT(var)] [SPCT(var)]

[HARMONIC] [GEOMETRIC]
[DEFAULT]

 [ALL] [NONE]]

 [/MISSING=[{ EXCLUDE**}][{ VARIABLE** }]
 {INCLUDE } {TABLE }
 {DEPENDENT}

 [FORMAT=[{ NOLIST** }] [{ CASENUM }] [{ TOTAL**}] [MISSING=’string’]
 {LIST } {NOCASENUM } {NOTOTAL}
 {VALIDLIST}

 [/STATISTICS=[ANOVA] [{LINEARITY}] [NONE**]]
 {ALL }

**Default if the subcommand is omitted.

Example:
SUMMARIZE TABLES=V1 TO V5 BY GROUP

/STATISTICS=ANOVA.

Overview

SUMMARIZE produces univariate statistics for specified variables. You can break the variables
into groups defined by one or more control (independent) variables. Another procedure that
displays univariate statistics is FREQUENCIES.

Options

Cell Contents. By default, SUMMARIZE displays means, standard deviations, and cell counts.
You can also display aggregated statistics, including sums, variances, median, range, kurto-
sis, skewness, and their standard error, using the CELLS subcommand.

Statistics. In addition to the statistics displayed for each cell of the table, you can obtain a
one-way analysis of variance and test of linearity using the STATISTICS subcommand.

Format. By default, SUMMARIZE produces a Summary Report with a total category for each
group defined by the control variables. You can request a Listing Report with or without
case numbers using the FORMAT subcommand. You can also remove the total category from

862 SUMMARIZE

each group. You can specify a title and a caption for the Summary or Listing Report using
the TITLE and FOOTNOTE subcommands.

Basic Specification

The basic specification is TABLES with a variable list. Each variable creates a category.
The actual keyword TABLES can be omitted.

• The minimum specification is a dependent variable.
• By default, SUMMARIZE displays Case Processing Summary table showing the number

and percentage of cases included, excluded, and their total, and a Summary Report show-
ing means, standard deviations, and number of cases for each category.

Syntax Rules

• Both numeric and string variables can be specified. String variables can be short or long.

• If there is more than one TABLES subcommand, FORMAT=LIST or VALIDLIST results in an
error.

• String specifications for TITLE and FOOTNOTE cannot exceed 255 characters. Quotation
marks or apostrophes are required. When the specification breaks on multiple lines, en-
close each line in apostrophes or quotes and separate the specifications for each line by at
least one blank.

• Each subcommand except TABLES can be specified only once. Multiple use results in a
warning while the last specification is used.

• Multiple TABLES subcommands are allowed, but multiple specifications use a lot of com-
puter resources and time.

• There is no limit on the number of variables you can specify on each TABLES subcommand.

• When a variable is specified more than once, only the first occurrence is honored. The
same variables specified after different BY keywords will result in an error.

Limitations

• Only 5 BY keywords can be specified.

Operations

• The data are processed sequentially. It is not necessary to sort the cases before processing.
If a BY keyword is used, the output is always sorted.

• A Case Processing Summary table is always generated, showing the number and percent-
age of the cases included, excluded, and the total.

• For each combination of control variables specified after different BY keywords,
SUMMARIZE produces a group in the Summary Report (depending on the specification on

SUMMARIZE 863

the FORMAT subcommand). By default, mean, standard deviation, and number of cases
are displayed for each group and for the total.

• An ANOVA table and a Measure of Association table are produced if additional statistics
are requested.

Example

SUMMARIZE TABLES=V1 BY SEX BY GROUP
/STATISTICS=ANOVA.

• A Case Processing Summary table lists the number and percentage of cases included, ex-
cluded, and the total.

• A Summary Report displays means, standard deviations, and numbers of cases for each
group defined by each combination of SEX and GROUP.

• An ANOVA table displays analysis of variance with only SEX as the grouping variable.

TABLES Subcommand

TABLES specifies the dependent and control variables.

• You can specify multiple TABLES subcommands on a single SUMMARIZE command.

• For FORMAT=LIST or VALIDLIST, only one TABLES subcommand is allowed. Multiple de-
pendent and control variables add more breaks to the Listing Report. Total statistics are dis-
played at the end for each combination defined by different values of the control variables.

• For FORMAT=NOLIST, which is the default, each use of keyword BY adds a dimension to
the table requested. Total statistics are displayed with each group.

• The order in which control variables are displayed is the same as the order in which they
are specified on TABLES. The values of the first control variable defined for the table ap-
pear in the leftmost column of the table and change the most slowly in the definition of
groups.

• Statistics are displayed for each dependent variable in the same report.

• More than one dependent variable can be specified in a table list, and more than one con-
trol variable can be specified in each dimension of a table list.

TITLE and FOOTNOTE Subcommands

TITLE and FOOTNOTE provide a title and a caption for the Summary or Listing Report.

• TITLE and FOOTNOTE are optional and can be placed anywhere.
• The specification on TITLE or FOOTNOTE is a string within apostrophes or quotes. To

specify a multiple-line title or footnote, enclose each line in apostrophes or quotes and
separate the specifications for each line by at least one blank.

• The string you specify cannot exceed 255 characters.

864 SUMMARIZE

CELLS Subcommand

By default, SUMMARIZE displays the means, standard deviations, and cell counts in each cell.
Use CELLS to modify cell information.

• If CELLS is specified without keywords, SUMMARIZE displays the default statistics.

• If any keywords are specified on CELLS, only the requested information is displayed.

• MEDIAN and GMEDIAN use a lot of computer resources and time. Requesting these statis-
tics (via these keywords or ALL) may slow down performance.

DEFAULT Means, standard deviations, and cell counts. This is the default if CELLS is
omitted.

MEAN Cell means.

STDDEV Cell standard deviations.

COUNT Cell counts.

MEDIAN Cell median.

GMEDIAN Grouped median.

SEMEAN Standard error of cell mean.

SUM Cell sums.

MIN Cell minimum.

MAX Cell maximum.

RANGE Cell range.

VARIANCE Variances.

KURT Cell kurtosis.

SEKURT Standard error of cell kurtosis.

SKEW Cell skewness.

SESKEW Standard error of cell skewness.

FIRST First value.

LAST Last value.

SPCT Percent of total sum.

NPCT Percent of total number of cases.

SPCT(var) Percent of total sum within specified variable. The specified variable must
be one of the control variables.

NPCT(var) Percent of total number of cases within specified variable. The specified
variable must be one of the control variables.

HARMONIC Harmonic mean.

GEOMETRIC Geometric mean.

SUMMARIZE 865

ALL All cell information.

MISSING Subcommand

MISSING controls the treatment of cases with missing values. There are two groups of key-
words.

• EXCLUDE, INCLUDE, and DEPENDENT specify the treatment of user-missing values. The
default is EXCLUDE.

EXCLUDE All user-missing values are excluded. This is the default.

INCLUDE User-missing values are treated as valid values.

DEPENDENT User-missing values are considered missing in a dependent variable
and valid in a grouping variable (variables specified after a BY
keyword).

• VARIABLE and TABLE specify how cases with missing values for dependent variables are
excluded. The default is VARIABLE.

• Cases with missing values for any control variables are always excluded.

VARIABLE A case is excluded when all of the values for variables in that table are
missing. This is the default.

TABLE A case is excluded when any value is missing within a table.

FORMAT Subcommand

FORMAT specifies whether you want a case listing for your report, and if you do, whether you
want case numbers displayed for the listing. It also determines whether your reports will dis-
play a total category for each group and how they are going to indicate missing values.

NOLIST Display a Summary Report without a case listing. This is the default.

LIST Display a Listing Report showing all cases.

VALIDLIST Display a Listing Report showing only the valid cases.

CASENUM Display case numbers as a category in the Listing Reports. This is the
default when FORMAT=LIST or VALIDLIST.

NOCASENUM Do not display case numbers.

TOTAL Display the summary statistics for the total of each group with the la-
bel Total. This is the default.

NOTOTAL Display the total category without a label.

MISSING=’string’ Display system-missing values as a specified string.

866 SUMMARIZE

STATISTICS Subcommand

Use STATISTICS to request a one-way analysis of variance and a test of linearity for each table
list.

• Statistics requested on STATISTICS are computed in addition to the statistics displayed in
the Group Statistics table.

• If STATISTICS is specified without keywords, SUMMARIZE computes ANOVA.
• If two or more dimensions are specified, the second and subsequent dimensions are ig-

nored in the analysis-of-variance table.

ANOVA Analysis of variance. ANOVA displays a standard analysis-of-variance table
and calculates eta and eta squared (displayed in the Measures of Association
table). This is the default if STATISTICS is specified without keywords.

LINEARITY Test of linearity. LINEARITY (alias ALL) displays additional statistics to the ta-
bles created by the ANOVA keyword—the sums of squares, degrees of free-
dom, and mean square associated with linear and nonlinear components, the
F ratio, and the significance level for the ANOVA table and Pearson’s r and
r2 for the Measures of Association table. LINEARITY is ignored if the control
variable is a string.

NONE No additional statistics. This is the default if STATISTICS is omitted.

Example
SUMMARIZE TABLES=INCOME BY SEX BY RACE

/STATISTICS=ANOVA.

• SUMMARIZE produces a Group Statistics table of INCOME by RACE within SEX and com-
putes an analysis of variance only for INCOME by SEX.

867

SYSFILE INFO

SYSFILE INFO [FILE=] ’file specification’

Example:
SYSFILE INFO FILE=’PERSNL.SAV’.

Overview

SYSFILE INFO displays complete dictionary information for all variables in an SPSS-format
data file. You do not have to retrieve the file with GET to use SYSFILE INFO. If the file has
already been retrieved, use DISPLAY DICTIONARY to display dictionary information.

Basic Specification

The basic specification is the command keyword and a complete file specification enclosed
in apostrophes.

Syntax Rules

• Only one file specification is allowed per command. To display dictionary information
for more than one SPSS-format data file, use multiple SYSFILE INFO commands.

• The file extension, if there is one, must be specified, even if it is the default.

• The subcommand keyword FILE is optional. When FILE is specified, the equals sign is
required.

Operations

• No procedure is needed to execute SYSFILE INFO, since SYSFILE INFO obtains informa-
tion from the dictionary alone.

• SYSFILE INFO displays the variable name, label, sequential position in the file, print and
write format, missing values, and value labels for each variable in the specified file. Up
to 60 characters can be displayed for variable and value labels.

Example

SYSFILE INFO FILE=’PERSNL.SAV’.

• The program displays the complete dictionary information for all variables in the SPSS-
format data file PERSNL.SAV.

868

TEMPORARY

TEMPORARY

Example:
SORT CASES BY SEX.
TEMPORARY.
SPLIT FILE BY SEX.
FREQUENCIES VARS=INCOME /STATISTICS=MEDIAN.
FREQUENCIES VARS=INCOME /STATISTICS=MEDIAN.

Overview

TEMPORARY signals the beginning of temporary transformations that are in effect only for the
next procedure. New numeric or string variables created after the TEMPORARY command are
temporary variables. Any modifications made to existing variables after the TEMPORARY
command are also temporary.

With TEMPORARY you can perform separate analyses for subgroups in the data and then
repeat the analysis for the file as a whole. You can also use TRANSFORM to transform data
for one analysis but not for other subsequent analyses.

TEMPORARY can be applied to the following commands:

• Transformation commands COMPUTE, RECODE, IF, and COUNT, and the DO REPEAT
utility.

• The LOOP and DO IF structures.
• Format commands PRINT FORMATS, WRITE FORMATS, and FORMATS.

• Data selection commands SELECT IF, SAMPLE, FILTER, and WEIGHT.

• Variable declarations NUMERIC, STRING, and VECTOR.

• Labeling commands VARIABLE LABELS and VALUE LABELS, and the MISSING VALUES
command.

• SPLIT FILE.
• XSAVE.

Basic Specification

The only specification is the keyword TEMPORARY. There are no additional specifications.

Operations

• Once TEMPORARY is specified, you cannot refer to previously existing scratch variables.

• Temporary transformations apply to the next command that reads the data. Once the data
are read, the temporary transformations are no longer in effect.

TEMPORARY 869

• The XSAVE command leaves temporary transformations in effect. SAVE, however, reads the
data and turns temporary transformations off after the file is written. (See example below.)

• TEMPORARY cannot be used with SORT CASES, MATCH FILES, ADD FILES, or COMPUTE
with a LAG function. If any of these commands follows TEMPORARY in the command se-
quence, there must be an intervening procedure or command that reads the data to first
execute the TEMPORARY command.

• TEMPORARY cannot be used within the DO IF—END IF or LOOP—END LOOP structures.

Example

SORT CASES BY SEX.
TEMPORARY.
SPLIT FILE BY SEX.
FREQUENCIES VARS=INCOME /STATISTICS=MEDIAN.
FREQUENCIES VARS=INCOME /STATISTICS=MEDIAN.

• SPLIT FILE applies to the first FREQUENCIES procedure, which generates separate median
income tables for men and women.

• SPLIT FILE is not in effect for the second FREQUENCIES procedure, which generates a
single median income table that includes both men and women.

Example

DATA LIST FILE=HUBDATA RECORDS=3
/1 #MOBIRTH #DABIRTH #YRBIRTH 6-11 DEPT88 19.

COMPUTE AGE=($JDATE - YRMODA(#YRBIRTH,#MOBIRTH,#DABIRTH))/365.25.
VARIABLE LABELS AGE ’EMPLOYEE’’S AGE’

DEPT88 ’DEPARTMENT CODE IN 1988’.

TEMPORARY.
RECODE AGE (LO THRU 20=1)(20 THRU 25=2)(25 THRU 30=3)(30 THRU 35=4)

(35 THRU 40=5)(40 THRU 45=6)(45 THRU 50=7)(50 THRU 55=8)
(55 THRU 60=9)(60 THRU 65=10)(65 THRU HI=11).

VARIABLE LABELS AGE ’EMPLOYEE AGE CATEGORIES’.
VALUE LABELS AGE 1 ’Up to 20’ 2 ’20 to 25’ 3 ’25 to 30’ 4 ’30 to 35’

5 ’35 to 40’ 6 ’40 to 45’ 7 ’45 to 50’ 8 ’50 to 55’
9 ’55 to 60’ 10 ’60 to 65’ 11 ’65 and older’.

FREQUENCIES VARIABLES=AGE.
MEANS AGE BY DEPT88.

• COMPUTE creates variable AGE from the dates in the data.

• FREQUENCIES uses the temporary version of variable AGE with temporary variable and
value labels.

• MEANS uses the unrecoded values of AGE and the permanent variable label.

870 TEMPORARY

Example

GET FILE=HUBEMPL.
TEMPORARY.
RECODE DEPT85 TO DEPT88 (1,2=1) (3,4=2) (ELSE=9).
VALUE LABELS DEPT85 TO DEPT88 1 ’MANAGEMENT’
 2 ’OPERATIONS’
 3 ’UNKNOWN’.
XSAVE OUTFILE=HUBTEMP.
CROSSTABS DEPT85 TO DEPT88 BY JOBCAT.

• Both the saved SPSS-format data file and the CROSSTABS output will reflect the tem-
porary recoding and labeling of the department variables.

• If XSAVE is replaced with SAVE, the SPSS-format data file will reflect the temporary re-
coding and labeling but the CROSSTABS output will not.

871

TITLE

TITLE [’]text[’]

Example:
TITLE "Running Shoe Study from Runner’s World Data".

Overview

TITLE inserts a left-justified title on the top line of each page of output. The default title in-
dicates the version of the system being used.

Basic Specification

The only specification is the title.

Syntax Rules

• The title can include any characters. To specify a blank title, enclose a blank between
apostrophes.

• The title can be up to 60 characters long. Titles longer than 60 characters are truncated.

• The apostrophes or quotation marks enclosing the title are optional; using them allows
you to include apostrophes or quotation marks in the title.

• If the subtitle is enclosed in apostrophes, quotation marks are valid characters but apos-
trophes must be specified as double apostrophes. If the subtitle is enclosed in quotation
marks, apostrophes are valid characters but quotation marks must be specified as double
quotation marks.

• More than one TITLE command is allowed in a single session.

• A title cannot be placed between a procedure command and BEGIN DATA—END DATA or
within data records when the data are inline.

Operations

• The title is displayed as part of the output heading, which also includes the date and page
number. If HEADER=NO is specified on SET, the heading, including the title and subtitle,
will not be displayed.

• Each TITLE command overrides the previous one and takes effect on the next output
page.

• Only the title portion of the heading changes. The date and page number are still displayed.

• TITLE is independent of SUBTITLE and each can be changed separately.

872 TITLE

Example

TITLE "Running Shoe Study from Runner’s World Data".
SUBTITLE ’Children’’s Training Shoes Only’.

• The title is enclosed in quotations, so the apostrophe in Runner’s is a valid character.

• The subtitle is enclosed in apostrophes, so the apostrophe in Children’s must be specified
as a double apostrophe.

Example

TITLE ’ ’.
SUBTITLE ’ ’.

• The title and subtitle are specified as blanks. This suppresses the default title and subtitle.
The date and page number still display on the title line.

873

TSET

TSET
 [PRINT={DEFAULT**}] [/NEWVAR={CURRENT**}] [/MXAUTO={16**}]
 {BRIEF } {NONE } {lags}
 {DETAILED } {ALL }

 [/MXCROSS={7** }] [/MXNEWVARS={60**}] [/MXPREDICT={60**}]
 {lags} {n } {n }

 [/MISSING={EXCLUDE**}] [/CIN={95** }] [/TOLER={0.0001**}]
 {INCLUDE } {value} {value }

 [/CNVERGE={0.001**}] [/ACFSE={IND**}]
 {value } {MA }

 [/PERIOD=n] [/ID=varname]

 [/{CONSTANT**}]
 {NOCONSTANT}

 [/DEFAULT]

**Default if the subcommand is omitted.

Example:
TSET PERIOD 6 NEWVAR NONE MXAUTO 25.

Overview

TSET sets global parameters to be used by procedures that analyze time series and sequence
variables. To display the current settings of these parameters, use the TSHOW command.

Basic Specification

The basic specification is at least one subcommand.

Subcommand Order

• Subcommands can be specified in any order.

Syntax Rules

• The slash between subcommands is optional.

• You can specify DEFAULT on any subcommand to restore the default setting for that sub-
command.

• Subcommand DEFAULT restores all TSET subcommands to their defaults.

874 TSET

Operations

• TSET takes effect immediately.

• Only the settings specified are affected. All others remain at their previous settings or the
default.

• Subcommands on other procedures that perform the same function as subcommands on
TSET override the TSET specifications for those procedures.

• Procedures that are affected by TSET specifications are CASEPLOT, NPPLOT, and
TSPLOT.

TSET 875

DEFAULT Subcommand

DEFAULT resets all TSET settings back to their defaults. There are no additional specifications
on DEFAULT.

ID Subcommand

ID specifies a variable whose values are used to label observations in plots.

• The only specification on ID is the name of a variable in the working data file.

• If ID is not specified, the DATE_ variable is used to label observations.

• If ID is specified within the procedure, it overrides the TSET specification for that procedure.

MISSING Subcommand

MISSING controls the treatment of user-missing values.

• The specification on MISSING is keyword INCLUDE or EXCLUDE. The default is EXCLUDE.

• INCLUDE indicates that observations with user-missing values should be treated as valid
values and included in analyses.

• EXCLUDE indicates that observations with user-missing values should be excluded from
analyses.

MXNEWVARS Subcommand

MXNEWVARS indicates the maximum number of new variables that can be generated by a
procedure.

• The specification on MXNEWVARS indicates the maximum and can be any positive integer.

• The default maximum number is 60 new variables per procedure.

MXPREDICT Subcommand

MXPREDICT indicates the maximum number of new cases that can be added to the working
data file per procedure when the PREDICT command is used.

• The specification on MXPREDICT can be any positive integer.

• The default maximum number of new cases is 60 per procedure.

PERIOD Subcommand

PERIOD indicates the size of the period to be used for seasonal differencing.

• The specification on PERIOD indicates how many observations are in one season or peri-
od and can be any positive integer.

• There is no default for the PERIOD subcommand.

876 TSET

• The specification on TSET PERIOD overrides the periodicity of DATE variables.

• If a period is specified within an individual procedure, it overrides the TSET PERIOD
specification for that procedure.

PRINT Subcommand

PRINT controls how much output is produced.

• The specification on PRINT can be BRIEF, DETAILED, or DEFAULT. The amount of output
produced by DEFAULT is generally between the amount produced by BRIEF and DETAILED.

• For procedures with multiple iterations, BRIEF generally means that final statistics are
displayed with no iteration history. DEFAULT provides a one-line summary at each itera-
tion in addition to the final statistics. DETAILED provides a complete summary of each
iteration (where necessary) plus the final statistics.

• For some procedures, the default and detailed output is the same. For many of the simpler
procedures, brief, default, and detailed are all the same.

877

TSHOW

TSHOW

Example:
TSHOW.

Overview

TSHOW displays a list of all the current specifications on the TSET, USE, PREDICT, and
DATE commands.

Basic Specification

The command keyword TSHOW is the only specification.

Operations

• TSHOW is executed immediately.
• TSHOW lists every current specification for the TSET, USE, PREDICT, and DATE com-

mands, as well as the default settings.

Example

TSHOW.

• The TSHOW command produces a list similar to the one below of the current settings on
TSET, USE, PREDICT, and DATE commands.

878

TSPLOT

TSPLOT [VARIABLES=] variable names

 [/DIFF={1}]
 {n}

 [/SDIFF={1}]
 {n}

 [/PERIOD=n]

 [/{NOLOG**}]
 {LN }

 [/ID=varname]

 [/MARK={varname}]
 {date }

 [/SPLIT {UNIFORM**}]
 {SCALE }

 [/APPLY [=’model name’]]

For plots with one variable:

 [/FORMAT=[{NOFILL**}] [{NOREFERENCE**}]
 {LEFT } {REFERENCE }
 {RIGHT }

For plots with multiple variables:

 [/FORMAT={NOJOIN**}]
 {JOIN }
 {HILO }

**Default if the subcommand is omitted.

Example:
TSPLOT TICKETS
 /LN
 /DIFF
 /SDIFF
 /PERIOD=12
 /FORMAT=REFERENCE
 /MARK=Y 55 M 6.

Overview

TSPLOT produces a plot of one or more time series or sequence variables. You can request
natural log and differencing transformations to produce plots of transformed variables. Sev-
eral plot formats are available.

TSPLOT 879

Options

Modifying the Variables. You can request a natural log transformation of the variables using
the LN subcommand and seasonal and nonseasonal differencing to any degree using the
SDIFF and DIFF subcommands. With seasonal differencing, you can also specify the period-
icity on the PERIOD subcommand.

Plot Format. With the FORMAT subcommand, you can fill in the space on one side of the plot-
ted values on plots with one variable. You can also plot a reference line indicating the vari-
able mean. For plots with two or more variables, you can specify whether you want to join
the values for each observation with a vertical line. With the ID subcommand you can label
the horizontal axis with the values of a specified variable. You can mark the onset of an in-
tervention variable on the plot with the MARK subcommand.

Split-File Processing. You can control how data that have been divided into subgroups by a
SPLIT FILE command should be plotted using the SPLIT subcommand.

Basic Specification

The basic specification is one or more variable names.

• If the DATE command has been specified, the horizontal axis is labeled with the DATE_
variable at periodic intervals. Otherwise, sequence numbers are used. The vertical axis is
labeled with the value scale of the plotted variable(s).

Figure 12 shows a default high-resolution plot with DATE=YEAR 1900. Figure 13 shows the
same default plot in low resolution.

Figure 12 TSPLOT VARIABLES=PRICE (in high resolution)

880 TSPLOT

Subcommand Order

• Subcommands can be specified in any order.

Syntax Rules

• VARIABLES can be specified only once.

• Other subcommands can be specified more than once, but only the last specification of
each one is executed.

Figure 13 TSPLOT VARIABLES=PRICE (in low resolution)
The following plot symbols are used:
 P - Variable PRICE
 M - Missing Data (placed on the horizontal axis)

2.6

 PPPP
 P P
 P PP
 P PP
 P P
2.4 PP
 P

 P

 P P
 P

2.2 P

 P
 PP PP P
 PP P PPP P
2.0 PP PPPPP PPPPPPP P P
 P P P
 P PP
 P PP P
 P PPP
 P P
 PP

1.8

 1909 1919 1929 1939 1949 1959

TSPLOT 881

Operations

• Subcommand specifications apply to all variables named on the TSPLOT command.
• If the LN subcommand is specified, any differencing requested on that TSPLOT command

is done on the log-transformed variables.

• In high-resolution plots, split-file information is displayed as part of the subtitle and trans-
formation information is displayed as part of the footnote.

• In low resolution, the plot frame size depends on the page size specified on the SET command.

Limitations

• Maximum 1 VARIABLES subcommand. There is no limit on the number of variables
named on the list.

Example

TSPLOT TICKETS
 /LN
 /DIFF
 /SDIFF
 /PERIOD=12
 /FORMAT=REFERENCE
 /MARK=Y 55 M 6.

• This command produces a plot of TICKETS after a natural log transformation, differenc-
ing, and seasonal differencing have been applied.

• LN transforms the data using the natural logarithm (base e) of TICKETS.

• DIFF differences the logged variable once.

• SDIFF and PERIOD apply one degree of seasonal differencing with a period of 12.

• FORMAT=REFERENCE adds a reference line representing the variable mean. In low resolu-
tion, the area between the plotted values and the mean is filled with the plotting symbol (T).

• MARK provides a marker on the plot at June 1955. The marker is displayed as a vertical
reference line in high-resolution plots.

VARIABLES Subcommand

VARIABLES specifies the names of the variables to be plotted and is the only required sub-
command. The actual keyword VARIABLES can be omitted.

DIFF Subcommand

DIFF specifies the degree of differencing used to convert a nonstationary variable to a station-
ary one with a constant mean and variance before plotting.

• You can specify any positive integer on DIFF.

882 TSPLOT

• If DIFF is specified without a value, the default is 1.

• The number of values plotted decreases by 1 for each degree of differencing.

Example
TSPLOT TICKETS
 /DIFF=2.

• In this example, TICKETS is differenced twice before plotting.

SDIFF Subcommand

If the variable exhibits a seasonal or periodic pattern, you can use the SDIFF subcommand to
seasonally difference the variable before plotting.

• The specification on SDIFF indicates the degree of seasonal differencing and can be any
positive integer.

• If SDIFF is specified without a value, the degree of seasonal differencing defaults to 1.

• The number of seasons plotted decreases by 1 for each degree of seasonal differencing.

• The length of the period used by SDIFF is specified on the PERIOD subcommand. If the
PERIOD subcommand is not specified, the periodicity established on the TSET or DATE
command is used (see the PERIOD subcommand below).

PERIOD Subcommand

PERIOD indicates the length of the period to be used by the SDIFF subcommand.
• The specification on PERIOD indicates how many observations are in one period or sea-

son and can be any positive integer.

• If PERIOD is not specified, the periodicity established on TSET PERIOD is in effect. If
TSET PERIOD is not specified, the periodicity established on the DATE command is used.
If periodicity was not established anywhere, the SDIFF subcommand will not be executed.

Example
TSPLOT TICKETS
 /SDIFF=1
 /PERIOD=12.

• This command applies one degree of seasonal differencing with 12 observations per sea-
son to TICKETS before plotting.

LN and NOLOG Subcommands

LN transforms the data using the natural logarithm (base e) of the variable and is used to re-
move varying amplitude over time. NOLOG indicates that the data should not be log trans-
formed. NOLOG is the default.

TSPLOT 883

• If you specify LN on TSPLOT, any differencing requested on that command will be done
on the log-transformed variables.

• There are no additional specifications on LN or NOLOG.

• Only the last LN or NOLOG subcommand on a TSPLOT command is executed.

• If a natural log transformation is requested, any value less than or equal to zero is set to
system-missing.

• NOLOG is generally used with an APPLY subcommand to turn off a previous LN specification.

Example
TSPLOT TICKETS
 /LN.

• In this example, TICKETS is transformed using the natural logarithm before plotting.

ID Subcommand

ID names a variable whose values will be used as labels for the horizontal axis.

• The only specification on ID is a variable name. If you have a variable named ID in your
working data file, the equals sign after the subcommand is required.

• If the ID subcommand is not used and TSET ID has not been specified, the axis is labeled
with the DATE_ variable created by the DATE command. If the DATE command has not
been specified, the observation number is used as the label.

Example
TSPLOT VARA
 /ID=VARB.

• In this example the values of VARB will be used to label the horizontal axis of VARA at
periodic intervals.

FORMAT Subcommand

FORMAT controls the plot format.

• The specification on FORMAT is one of the keywords listed below.

• Keywords NOFILL, LEFT, RIGHT, NOREFERENCE, and REFERENCE apply to plots with
one variable. NOFILL, LEFT, and RIGHT are alternatives and indicate how the plot is filled.
NOREFERENCE and REFERENCE are alternatives and specify whether a reference line is
displayed. For low-resolution plots, only one keyword can be specified. One keyword
from each set can be specified for high-resolution plots. NOFILL and NOREFERENCE are
the defaults.

• Keywords JOIN, NOJOIN, and HILO apply to plots with multiple variables and are alterna-
tives. NOJOIN is the default. Only one keyword can be specified on a FORMAT subcom-
mand for plots with multiple variables.

884 TSPLOT

The following formats are available for plots with one variable:

NOFILL Plot only the values for the variable with no fill. NOFILL produces a plot with
no fill above or below the plotted values. This is the default format when one
variable is specified.

BOTTOM Plot the values for the variable and fill in the area below the curve. In low-
resolution plots, the area below the plotted curve is filled in with the first char-
acter of the variable name. For high-resolution plots, if the plotted variable
has missing or negative values, BOTTOM is ignored and the default NOFILL is
used instead. Figure 14 shows a filled high-resolution plot.

TOP Plot the values for the variable and fill in the area above the curve. In low
resolution, the area above the plotted curve is filled in with the first character
of the variable name. For high-resolution plots, TOP is ignored and the de-
fault NOFILL is used instead.

NOREFERENCE Do not plot a reference line. This is the default when one variable is specified.

REFERENCE Plot a reference line indicating the variable mean. In high resolution, a fill
chart is displayed as an area chart with a reference line and a non-fill chart is
displayed as a line chart with a reference line. In low-resolution, the area be-
tween the plotted curve and the reference line are filled in with the plotting
character (the first character of the variable name). You can request either fill
or a reference line for a low-resolution chart, but not both. Figure 15 shows a
high-resolution no-fill plot with a reference line indicating the variable mean.

Figure 14 FORMAT=BOTTOM

TSPLOT 885

The following formats are available for plots with multiple variables:

NOJOIN Plot the values of each variable named. In high-resolution plots, different colors or
line patterns are used for multiple variables. In low-resolution plots, the plotting
character for each variable is the first character of the variable name. Multiple oc-
currences of the same value for a single observation are plotted using a dollar sign
($). This is the default format for plots with multiple variables.

JOIN Plot the values of each variable and join the values for each observation. Values
are plotted as described for NOJOIN and the values for each observation are joined
together by a line. Figure 16 contains a high-resolution plot in this format with three
time series (PRICE, INCOME, and CONSUMP).

HILO Plot the highest and lowest values across variables for each observation and join
the two values together. The high and low values are plotted as a horizontal bar and
are joined with a line. For high-resolution plots, if more than three variables are
specified HILO is ignored and the default NOJOIN is used. Figure 17 contains a high-
resolution high-low plot with three time series (PRICE, INCOME, and CONSUMP).

Figure 15 FORMAT=REFERENCE

Figure 16 FORMAT=JOIN

886 TSPLOT

MARK Subcommand

MARK indicates the onset of an intervention variable.

• The onset date is indicated in high resolution by a vertical reference line and in low res-
olution by a tick mark on the top and bottom axes.

• The specification on MARK can be either a variable name or an onset date if the DATE_
variable exists.

• If a variable is named, the plot indicates where the values of that variable change.

• A date specification follows the same format as the DATE command; that is, a keyword
followed by a value. For example, the specification for June 1955 is Y 1955 M 6 (or Y 55
M 6 if only the last 2 digits of the year are used on DATE).

Figure 18 shows a high-resolution plot with the year 1945 marked as the onset date.

SPLIT Subcommand

SPLIT specifies how to plot data that have been divided into subgroups by a SPLIT FILE com-
mand. The default is UNIFORM.

Figure 17 FORMAT=HILO

Figure 18 MARK=Y 1945

TSPLOT 887

UNIFORM Scale uniformly. The vertical axis is scaled according to the values of the en-
tire data set.

SCALE Scale individually. The vertical axis is scaled according to the values of each
individual subgroup.

• If FORMAT=REFERENCE is specified when SPLIT=SCALE, the reference line is placed at
the mean of the subgroup. If FORMAT=REFERENCE is specified when SPLIT=UNIFORM,
the reference line is placed at the overall mean.

Example
SPLIT FILE BY REGION.
TSPLOT TICKETS / SPLIT=SCALE.

• In this example, the data have been split into subgroups by REGION. The plots produced
with the SCALE subcommand have vertical axes that are individually scaled according to
the values of each particular region.

APPLY Subcommand

APPLY allows you to produce a plot using previously defined specifications without having
to repeat the TSPLOT subcommands.

• The only specification on APPLY is the name of a previous model enclosed in apostrophes.
If a model name is not specified, the specifications from the previous TSPLOT command
are used.

• To change one or more specifications of the plot, specify the subcommands of only those
portions you want to change after subcommand APPLY.

• If no variables are specified, the variables that were specified for the original plot are used.

• To plot different variables, enter new variable names before or after the APPLY subcommand.

Example
TSPLOT TICKETS
 /LN
 /DIFF=1
 /SDIFF=1
 /PERIOD=12.
TSPLOT ROUNDTRP
 /APPLY.
TSPLOT APPLY
 /NOLOG.

• The first command produces a plot of TICKETS after a natural log transformation, differ-
encing, and seasonal differencing have been applied.

• The second command plots the values for ROUNDTRP using the same subcommands
specified for TICKETS.

• The third command produces another plot of ROUNDTRP but this time without a log trans-
formation. ROUNDTRP is still differenced once and seasonally differenced with a period-
icity of 12.

888

T-TEST

One-sample tests:

T-TEST TESTVAL n /VARIABLE=varlist

Independent-samples tests:

T-TEST GROUPS=varname ({1,2** }) /VARIABLES=varlist
 {value }
 {value,value}

Paired-samples tests:

 T-TEST PAIRS=varlist [WITH varlist [(PAIRED)]] [/varlist ...]

All types of tests:

[/MISSING={ANALYSIS**} [INCLUDE]]
 {LISTWISE }

[/CRITERIA=CI({0.95**})
 {value }

**Default if the subcommand is omitted.

Examples:
T-TEST GROUPS=WORLD(1,3) /VARIABLES=NTCPRI NTCSAL NTCPUR.

T-TEST PAIRS=TEACHER CONSTRUC MANAGER.

Overview

T-TEST compares sample means by calculating Student’s t and displays the two-tailed
probability of the difference between the means. Statistics are available for one-sample
(tested against a specified value), independent samples (different groups of cases), or
paired samples (different variables). Other procedures that compare group means are
ANOVA, ONEWAY, GLM, and MANOVA (GLM and MANOVA are available in the SPSS
Advanced Statistics option).

Options

Statistics. There are no optional statistics. All statistics available are displayed by default.

Basic Specification

The basic specification depends on whether you want a one-sample test, an independent-
samples test or a paired-samples test. For all types of tests, T-TEST displays Student’s t,

T-TEST 889

degrees of freedom, and two-tailed probabilities, as well as the mean, standard deviation,
standard error, and count for each group or variable.

• To request a one-sample test, use the TESTVAL and VARIABLES subcommands. The output
includes a One-Sample Statistics table showing univariate statistics and a One-Sample
Test table showing the test value, the difference between the sample mean and the test val-
ue and two-tailed probability level.

• To request an independent-samples test, use the GROUPS and VARIABLES subcommands.
The output includes a Group Statistics table showing summary statistics by group for each
dependent variable and an Independent-Samples Test table showing both pooled- and
separate-variance estimates, along with the F value used to test homogeneity of variance
and its probability. The two-tailed probability is displayed for the t value.

• To request a paired-samples test, use the PAIRS subcommand. The output includes a Paired
Statistics table showing univariate statistics by pairs, a Paired Samples Correlations table
showing correlation coefficients and two-tailed probability level for a test of the coefficient
for each pair, and a Paired Samples Test table showing the paired differences between the
means and two-tailed probability levels for a test of the differences.

Subcommand Order

Subcommands can be named in any order.

Operations

• If a variable specified on GROUPS is a long string, only the short-string portion is used to
identify groups in the analysis.

• Probability levels are two-tailed. To obtain the one-tailed probability, divide the two-
tailed probability by 2.

Limitations

• Maximum 1 TESTVAL and 1 VARIABLES subcommand per one-sample t test.

• Maximum 1 GROUPS and 1 VARIABLES subcommand per independent-samples t test.

Example

T TEST TESTVAL 28000 /VARIABLES=CHISAL LASAL NYSAL.

• This one-sample t test compares the means of CHISAL, LASAL, and NYSAL each with the
standard value (28000).

Example

T-TEST GROUPS=WORLD(1,3) /VARIABLES=NTCPRI NTCSAL NTCPUR.

890 T-TEST

• This independent-samples t test compares the means of the two groups defined by values
1 and 3 of WORLD for variables NTCPRI, NTCSAL, and NTCPUR.

Example

T-TEST PAIRS=TEACHER CONSTRUC MANAGER.

• This paired-samples t test compares the means of TEACHER with CONSTRUC, TEACHER
with MANAGER, and CONSTRUC with MANAGER.

VARIABLES Subcommand

VARIABLES specifies the dependent variables to be tested in a one-sample or an independent-
samples t test.

• VARIABLES can specify multiple variables, all of which must be numeric.

• When specified along with TESTVAL, the mean of all cases for each variable is compared
with the specified value.

• When specified along with GROUPS, the means of two groups of cases defined by the
GROUPS subcommand are compared.

• If both TESTVAL and GROUPS are specified, a one-sample test and an independent-
samples test are performed on each variable.

TESTVAL Subcommand

TESTVAL specifies the value with which a sample mean is compared.

• Only one TESTVAL subcommand is allowed.

• Only one value can be specified on the TESTVAL subcommand.

GROUPS Subcommand

GROUPS specifies a variable used to group cases for independent-samples t tests.

• GROUPS can specify only one variable, which can be numeric or string.

Any one of three methods can be used to define the two groups for the variable specified on
GROUPS:

• Specify a single value in parentheses to group all cases with a value equal to or greater
than the specified value into one group and the remaining cases into the other group.

• Specify two values in parentheses to include cases with the first value in one group and
cases with the second value in the other group. Cases with other values are excluded.

• If no values are specified on GROUP, T-TEST uses 1 and 2 as default values for numeric
variables. There is no default for string variables.

T-TEST 891

PAIRS Subcommand

PAIRS requests paired-samples t tests.
• The minimum specification for a paired-samples test is PAIRS with an analysis list. Only

numeric variables can be specified on the analysis list. The minimum analysis list is two
variables.

• If keyword WITH is not specified, each variable in the list is compared with every other
variable on the list.

• If keyword WITH is specified, every variable to the left of WITH is compared with every
variable to the right of WITH. WITH can be used with PAIRED to obtain special pairing.

• To specify multiple analysis lists, use multiple PAIRS subcommands, each separated by a
slash. Keyword PAIRS is required only for the first analysis list; a slash can be used to sep-
arate each additional analysis list.

(PAIRED) Special pairing for paired-samples test. PAIRED must be enclosed in paren-
theses and must be used with keyword WITH. When PAIRED is specified, The
first variable before WITH is compared with the first variable after WITH, the
second variable before WITH is compared with the second variable after
WITH, and so forth. The same number of variables should be specified before
and after WITH; unmatched variables are ignored and a warning message is
issued. PAIRED generates an error message if keyword WITH is not specified
on PAIRS.

Example
T-TEST PAIRS=TEACHER CONSTRUC MANAGER.
T-TEST PAIRS=TEACHER MANAGER WITH CONSTRUC ENGINEER.
T-TEST PAIRS=TEACHER MANAGER WITH CONSTRUC ENGINEER (PAIRED).

• The first T-TEST compares TEACHER with CONSTRUC, TEACHER with MANAGER, and
CONSTRUC with MANAGER.

• The second T-TEST compares TEACHER with CONSTRUC, TEACHER with ENGINEER,
MANAGER with CONSTRUC, and MANAGER with ENGINEER. TEACHER is not compared
with MANAGER, and CONSTRUC is not compared with ENGINEER.

• The third T-TEST compares TEACHER with CONSTRUC and MANAGER with ENGINEER.

CRITERIA Subcommand

CRITERIA resets the value of the confidence interval. Keyword CI is required. You can spec-
ify a value between 0 and 1 in the parentheses. The default is 0.95.

MISSING Subcommand

MISSING controls the treatment of missing values. The default is ANALYSIS.
• ANALYSIS and LISTWISE are alternatives; however, each can be specified with INCLUDE.

892 T-TEST

ANALYSIS Delete cases with missing values on an analysis-by-analysis or pair-by-pair
basis. For independent-samples tests, cases with missing values for either the
grouping variable or the dependent variable are excluded from the analysis of
that dependent variable. For paired-samples tests, a case with a missing value
for either of the variables in a given pair is excluded from the analysis of that
pair. This is the default.

LISTWISE Exclude cases with missing values listwise. A case with a missing value for
any variable specified on either GROUPS or VARIABLES is excluded from
any independent-samples test. A case with a missing value for any variable
specified on PAIRS is excluded from any paired-samples test.

INCLUDE Include user-missing values. User-missing values are treated as valid values.

893

UNIANOVA

UNIANOVA dependent var [BY factor list [WITH covariate list]]

[/RANDOM=factor factor...]

[/REGWGT=varname]

[/METHOD=SSTYPE({1 })]
 {2 }
 {3**}
 {4 }

[/INTERCEPT=[INCLUDE**] [EXCLUDE]]

[/MISSING=[INCLUDE] [EXCLUDE**]]

[/CRITERIA=[EPS({1E-8**})][ALPHA({0.05**})]
 {a } {a }

[/PRINT = [DESCRIPTIVE] [HOMOGENEITY] [PARAMETER][ETASQ]
 [GEF] [LOF] [OPOWER] [TEST(LMATRIX)]]

[/PLOT=[SPREADLEVEL] [RESIDUALS]
 [PROFILE (factor factor*factor factor*factor*factor ...)]

[/TEST=effect VS {linear combination [DF(df)]}]
 {value DF (df) }

[/LMATRIX={["label"] effect list effect list ...;...}]
 {["label"] effect list effect list ... }
 {["label"] ALL list; ALL... }
 {["label"] ALL list }

[/KMATRIX= {number }]
 {number;...}

[/CONTRAST (factor name)={DEVIATION[(refcat)]** }]
 {SIMPLE [(refcat)] }
 {DIFFERENCE }
 {HELMERT }
 {REPEATED }
 {POLYNOMIAL [({1,2,3...})]}

 {metric }
 {SPECIAL (matrix) }

[/POSTHOC =effect [effect...]
 ([SNK] [TUKEY] [BTUKEY][DUNCAN]
 [SCHEFFE] [DUNNETT(refcat)] [DUNNETTL(refcat)]
 [DUNNETTR(refcat)] [BONFERRONI] [LSD] [SIDAK]
 [GT2] [GABRIEL] [FREGW] [QREGW] [T2] [T3] [GH] [C]
 [WALLER ({100** })])]
 {kratio}
 [VS effect]

[/EMMEANS=TABLES({OVERALL })] [COMPARE ADJ([LSD(none)] [BONFERRONI] [SIDAK])]
 {factor }
 {factor*factor...}

[/SAVE=[tempvar [(name)]] [tempvar [(name)]]...]

 [/OUTFILE= [{COVB (filename)}] [EFFECT(filename)] [DESIGN(filename)]
 {CORB (filename)}

[/DESIGN={[INTERCEPT...] }]

 {[effect effect...]}

** Default if subcommand or keyword is omitted.

894 UNIANOVA

Temporary variables (tempvar) are:

PRED, WPRED, RESID, WRESID, DRESID, ZRESID, SRESID, SEPRED, COOK, LEVER

Example:
UNIANOVA YIELD BY SEED FERT
 /DESIGN.

Overview

This section describes the use of UNIANOVA for univariate analyses. The UNIANOVA proce-
dure provides regression analysis and analysis of variance for one dependent variable by one
or more factors and/or variables.

Options

Design Specification. You can specify which terms to include in the design on the DESIGN sub-
command. This allows you to estimate a model other than the default full factorial model,
incorporate factor-by-covariate interactions or covariate-by-covariate interactions, and indi-
cate nesting of effects.

Contrast Types. You can specify contrasts other than the default deviation contrasts on the
CONTRAST subcommand.

Optional Output. You can choose from a wide variety of optional output on the PRINT subcom-
mand. Output appropriate to univariate designs includes descriptive statistics for each cell,
parameter estimates, Levene’s test for equality of variance across cells, partial eta-squared
for each effect and each parameter estimate, the general estimable function matrix, and a
contrast coefficients table (L’ matrix). The OUTFILE subcommand allows you to write out the
covariance or correlation matrix, the design matrix, or the statistics from the between-
subjects ANOVA table into a separate SPSS data file.

Using the EMMEANS subcommand, you can request tables of estimated marginal means
of the dependent variable and their standard deviations. The SAVE subcommand allows you
to save predicted values and residuals in weighted or unweighted and standardized or
unstandardized forms. You can specify different means comparison tests for comparing all
possible pairs of cell means using the POSTHOC subcommand. In addition, you can specify
your own hypothesis tests by specifying an L matrix and a K matrix to test the univariate
hypothesis LB = K.

Basic Specification

• The basic specification is a variable list identifying the dependent variable, the factors (if
any), and the covariates (if any).

• By default, UNIANOVA uses a model that includes the intercept term, the covariate (if any),
and the full factorial model, which includes all main effects and all possible interactions
among factors. The intercept term is excluded if it is excluded in the model by specifying
the keyword EXCLUDE on the INTERCEPT subcommand. Sums of squares are calculated

UNIANOVA 895

and hypothesis tests are performed using type-specific estimable functions. Parameters are
estimated using the normal equation and a generalized inverse of the SSCP matrix.

Subcommand Order

• The variable list must be specified first.

• Subcommands can be used in any order.

Syntax Rules

• For many analyses, the UNIANOVA variable list and the DESIGN subcommand are the only
specifications needed.

• If you do not enter a DESIGN subcommand, UNIANOVA will use a full factorial model, with
main effects of covariates, if any.

• Minimum syntax—at least one dependent variable must be specified, and at least one of
the following must be specified: INTERCEPT, a between-subjects factor, or a covariate.
The design contains the intercept by default.

• If more than one DESIGN subcommand is specified, only the last one is in effect.

• Dependent variables and covariates must be numeric, but factors can be numeric or string
variables.

• If a string variable is specified as a factor, only the first eight characters of each value are
used in distinguishing among values.

• If more than one MISSING subcommand is specified, only the last one is in effect.

• The following words are reserved as keywords or internal commands in the UNIANOVA pro-
cedure:

INTERCEPT, BY, WITH, ALL, OVERALL, WITHIN

Variable names that duplicate these words should be changed before you run UNIANOVA.

Limitations

• Any number of factors can be specified, but if the number of between-subjects factors
plus the number of split variables exceeds 18, the Descriptive Statistics table is not printed
even when you request it.

• Memory requirements depend primarily on the number of cells in the design. For the
default full factorial model, this equals the product of the number of levels or categories
in each factor.

Example

UNIANOVA YIELD BY SEED FERT WITH RAINFALL
 /PRINT=DESCRIPTIVE PARAMETER
 /DESIGN.

896 UNIANOVA

• YIELD is the dependent variable; SEED and FERT are factors; RAINFALL is a covariate.

• The PRINT subcommand requests the descriptive statistics for the dependent variable for
each cell and the parameter estimates, in addition to the default tables Between-Subjects
Factors and Univariate Tests.

• The DESIGN subcommand requests the default design, a full factorial model with a cova-
riate. This subcommand could have been omitted or could have been specified in full as

/DESIGN = INTERCEPT RAINFALL, SEED, FERT, SEED BY FERT.

UNIANOVA Variable List

The variable list specifies the dependent variable, the factors, and the covariates in the model.

• The dependent variable must be the first specification on UNIANOVA.

• The names of the factors follow the dependent variable. Use the keyword BY to separate
the factors from the dependent variable.

• Enter the covariates, if any, following the factors. Use the keyword WITH to separate co-
variates from factors (if any) and the dependent variable.

Example
UNIANOVA DEPENDNT BY FACTOR1 FACTOR2, FACTOR3.

• In this example, three factors are specified.

• A default full factorial model is used for the analysis.

Example
UNIANOVA Y BY A WITH X
 /DESIGN.

• In this example, the DESIGN subcommand requests the default design, which includes the
intercept term, the covariate X and the factor A.

RANDOM Subcommand

RANDOM allows you to specify which effects in your design are random. When the RANDOM
subcommand is used, a table of expected mean squares for all effects in the design is displayed,
and an appropriate error term for testing each effect is calculated and used automatically.

• Random always implies a univariate mixed-model analysis.

• If you specify an effect on RANDOM, higher-order effects containing the specified effect
(excluding any effects containing covariates) are automatically treated as random effects.

• The keyword INTERCEPT and effects containing covariates are not allowed on this sub-
command.

• The RANDOM subcommand cannot be used if there is any within-subjects factor in the
model (that is, RANDOM cannot be specified if WSFACTOR is specified).

• When the RANDOM subcommand is used, the appropriate error terms for the hypothesis
testing of all effects in the model are automatically computed and used.

• More than one RANDOM subcommand is allowed. The specifications are accumulated.

UNIANOVA 897

Example
UNIANOVA DEP BY A B
 /RANDOM = B
 /DESIGN = A,B, A*B.

• In the example, effects B and A*B are considered as random effects. Notice that if only
effect B is specified in the RANDOM subcommand, A*B is automatically considered as a
random effect.

• The hypothesis testing for each effect (A, B, and A*B) in the design will be carried out
using the appropriate error term, which is calculated automatically.

REGWGT Subcommand

The only specification on REGWGT is the name of the variable containing the weights to be
used in estimating a weighted least-squares model.
• Specify a numeric weight variable name following the REGWGT subcommand. Only

observations with positive values in the weight variable will be used in the analysis.

• If more than one REGWGT subcommand is specified, only the last one is in effect.

Example
UNIANOVA OUTCOME BY TREATMNT
 /REGWGT WT.

• The procedure performs a weighted least-squares analysis. The variable WT is used as the
weight variable.

METHOD Subcommand

METHOD controls the computational aspects of the UNIANOVA analysis. You can specify one
of four different methods for partitioning the sums of squares. If more than one METHOD sub-
command is specified, only the last one is in effect.

SSTYPE(1) Type I sum-of-squares method. The Type I sum-of-squares method is also
known as the hierarchical decomposition of the sum-of-squares method.
Each term is adjusted only for the terms that precede it on the DESIGN sub-
command. Under a balanced design, it is an orthogonal decomposition, and
the sums of squares in the model add up to the total sum of squares.

SSTYPE(2) Type II sum-of-squares method. This method calculates the sum of squares
of an effect in the model adjusted for all other “appropriate” effects. An
appropriate effect is one that corresponds to all effects that do not contain the
effect being examined.

For any two effects F1 and F2 in the model, F1 is said to be contained in F2
under the following three conditions:
• Both effects F1 and F2 have the same covariate, if any.
• F2 consists of more factors than F1.
• All factors in F1 also appear in F2.

898 UNIANOVA

The intercept effect is treated as contained in all the pure factor effects.
However, it is not contained in any effect involving a covariate. No effect is
contained in the intercept effect. Thus, for any one effect F of interest, all
other effects in the model can be classified as in one of the following two
groups: the effects that do not contain F or the effects that contain F.

If the model is a main-effects design (that is, only main effects are in the
model), the Type II sum-of-squares method is equivalent to the regression
approach sums of squares. This means that each main effect is adjusted for
every other term in the model.

SSTYPE(3) Type III sum-of-squares method. This is the default. This method calculates
the sum of squares of an effect F in the design as the sum of squares adjusted
for any other effects that do not contain it, and orthogonal to any effects (if
any) that contain it. The Type III sums of squares have one major advan-
tage—they are invariant with respect to the cell frequencies as long as the
general form of estimability remains constant. Hence, this type of sums of
squares is often used for an unbalanced model with no missing cells. In a fac-
torial design with no missing cells, this method is equivalent to the Yates’
weighted squares of means technique, and it also coincides with the overpa-
rameterized -restricted model.

SSTYPE(4) Type IV sum-of-squares method. This method is designed for a situation in
which there are missing cells. For any effect F in the design, if F is not
contained in any other effect, then Type IV = Type III = Type II. When F is
contained in other effects, then Type IV distributes the contrasts being made
among the parameters in F to all higher-level effects equitably.

Example
UNIANOVA DEP BY A B C
 /METHOD=SSTYPE(3)
 /DESIGN=A, B, C.

• The design is a main-effects model.

• The METHOD subcommand requests that the model be fitted with Type III sums of
squares.

INTERCEPT Subcommand

INTERCEPT controls whether an intercept term is included in the model. If more than one
INTERCEPT subcommand is specified, only the last one is in effect.

INCLUDE Include the intercept term. The intercept (constant) term is included in the
model. This is the default.

EXCLUDE Exclude the intercept term. The intercept term is excluded from the model.
Specification of the keyword INTERCEPT on the DESIGN subcommand
overrides INTERCEPT = EXCLUDE.

Σ

UNIANOVA 899

MISSING Subcommand

By default, cases with missing values for any of the variables on the UNIANOVA variable list
are excluded from the analysis. The MISSING subcommand allows you to include cases with
user-missing values.

• If MISSING is not specified, the default is EXCLUDE.

• Pairwise deletion of missing data is not available in UNIANOVA.

• Keywords INCLUDE and EXCLUDE are mutually exclusive.

• If more than one MISSING subcommand is specified, only the last one is in effect.

EXCLUDE Exclude both user-missing and system-missing values. This is the default
when MISSING is not specified.

INCLUDE User-missing values are treated as valid. System-missing values cannot be
included in the analysis.

CRITERIA Subcommand

CRITERIA controls the statistical criteria used to build the models.

• More than one CRITERIA subcommand is allowed. The specifications are accumulated.
Conflicts across CRITERIA subcommands are resolved using the conflicting specification
given on the last CRITERIA subcommand.

• The keyword must be followed by a positive number in parentheses.

EPS(n) The tolerance level in redundancy detection. This value is used for redundan-
cy checking in the design matrix. The default value is 1E-8.

ALPHA(n) The alpha level. This keyword has two functions. First, it gives the alpha level
at which the power is calculated for the F test. Once the noncentrality param-
eter for the alternative hypothesis is estimated from the data, then the power is
the probability that the test statistic is greater than the critical value under the
alternative hypothesis. The second function of alpha is to specify the level of
the confidence interval. If the alpha level specified is n, the value

 indicates the level of confidence for all individual and simulta-
neous confidence intervals generated for the specified model. The value of n
must be between 0 and 1, exclusive. The default value of alpha is 0.05. This
means that the default power calculation is at the 0.05 level, and the default
level of the confidence intervals is 95%, since .

PRINT Subcommand

PRINT controls the display of optional output.

• Some PRINT output applies to the entire UNIANOVA procedure and is displayed only once.

• Additional output can be obtained on the EMMEANS, PLOT, and SAVE subcommands.

• Some optional output may greatly increase the processing time. Request only the output
you want to see.

1 n–() 100×

1 0.05–() 100× 95=

900 UNIANOVA

• If no PRINT command is specified, default output for a univariate analysis includes a
factor information table and a Univariate Tests table (ANOVA) for all effects in the model.

• If more than one PRINT subcommand is specified, only the last one is in effect.

The following keywords are available for UNIANOVA univariate analyses.

DESCRIPTIVES Basic information about each cell in the design. Observed means,
standard deviations, and counts for the dependent variable in all cells.
The cells are constructed from the highest-order crossing of the
between-subjects factors. If the number of between-subjects factors
plus the number of split variables exceeds 18, the Descriptive Statis-
tics table is not printed.

HOMOGENEITY Tests of homogeneity of variance. Levene’s test for equality of vari-
ances for the dependent variable across all level combinations of the
between-subjects factors. If there are no between-subjects factors, this
keyword is not valid.

PARAMETER Parameter estimates. Parameter estimates, standard errors, t tests, and
confidence intervals for each test.

OPOWER Observed power. The observed power for each test.

LOF Lack of fit. Lack of fit test which allows you to determine if the current
model adequately accounts for the relationship between the response
variable and the predictors.

ETASQ Partial eta-squared (). This value is an overestimate of the actual
effect size in an F test. It is defined as

where F is the test statistic and dfh and dfe are its degrees of freedom
and degrees of freedom for error. The keyword EFSIZE can be used in
place of ETASQ.

GEF General estimable function table. This table shows the general form
of the estimable functions.

TEST(LMATRIX) Set of contrast coefficients (L) matrices. The transpose of the L ma-
trix (L’) is displayed. This set always includes one matrix displaying
the estimable function for each between-subjects effect appearing or
implied in the DESIGN subcommand. Also, any L matrices generated
by the LMATRIX or CONTRAST subcommands are displayed.
TEST(ESTIMABLE) can be used in place of TEST(LMATRIX).

Example
UNIANOVA DEP BY A B WITH COV
 /PRINT=DESCRIPTIVE, TEST(LMATRIX), PARAMETER
 /DESIGN.

η2

partial eta-squared dfh F×
dfh F× dfe+
--------------------------------=

UNIANOVA 901

• Since the design in the DESIGN subcommand is not specified, the default design is used.
In this case, the design includes the intercept term, the covariate COV, and the full facto-
rial terms of A and B, which are A, B, and A*B.

• For each combination of levels of A and B, SPSS displays the descriptive statistics of DEP.

• The set of L matrices that generates the sums of squares for testing each effect in the
design is displayed.

• The parameter estimates, their standard errors, t tests, confidence intervals, and the
observed power for each test are displayed.

PLOT Subcommand

PLOT provides a variety of plots useful in checking the assumptions needed in the analysis.
The PLOT subcommand can be specified more than once. All of the plots requested on each
PLOT subcommand are produced.

Use the following keywords on the PLOT subcommand to request plots:

SPREADLEVEL Spread-versus-level plots. Plots of observed cell means versus standard de-
viations, and versus variances.

RESIDUALS Observed by predicted by standardized residuals plot. A plot is produced for
each dependent variable. In a univariate analysis, a plot is produced for the
single dependent variable.

PROFILE Line plots of dependent variable means for one-way, two-way, or three-way
crossed factors. The PROFILE keyword must be followed by parentheses
containing a list of one or more factor combinations. All factors specified
(either individual or crossed) must be made up of only valid factors on the
factor list. Factor combinations on the PROFILE keyword may use an asterisk
(*) or the keyword BY to specify crossed factors. A factor cannot occur in a
single factor combination more than once.

The order of factors in a factor combination is important, and there is no
restriction on the order of factors. If a single factor is specified after the
PROFILE keyword, a line plot of estimated means at each level of the factor is
produced. If a two-way crossed factor combination is specified, the output
includes a multiple-line plot of estimated means at each level of the first spec-
ified factor, with a separate line drawn for each level of the second specified
factor. If a three-way crossed factor combination is specified, the output
includes multiple-line plots of estimated means at each level of the first
specified factor, with separate lines for each level of the second factor, and
separate plots for each level of the third factor.

Example
UNIANOVA DEP BY A B
 /PLOT = SPREADLEVEL PROFILE(A A*B A*B*C)
 /DESIGN.

Assume each of the factors A, B, and C has three levels.

902 UNIANOVA

• Spread-versus-level plots are produced showing observed cell means versus standard
deviations and observed cell means versus variances.

• Five profile plots are produced. For factor A, a line plot of estimated means at each level
of A is produced (one plot). For the two-way crossed factor combination A*B, a multiple-
line plot of estimated means at each level of A, with a separate line for each level of B, is
produced (one plot). For the three-way crossed factor combination A*B*C, a multiple-line
plot of estimated means at each level of A, with a separate line for each level of B, is
produced for each of the three levels of C (three plots).

TEST Subcommand

The TEST subcommand allows you to test a hypothesis term against a specified error term.

• TEST is valid only for univariate analyses. Multiple TEST subcommands are allowed,
each executed independently.

• You must specify both the hypothesis term and the error term. There is no default.

• The hypothesis term is specified before the keyword VS. It must be a valid effect specified
or implied on the DESIGN subcommand.

• The error term is specified after the keyword VS. You can specify either a linear combi-
nation or a value. The linear combination of effects takes the general form:
coefficient*effect +/– coefficient*effect ...

• All effects in the linear combination must be specified or implied on the DESIGN subcom-
mand. Effects specified or implied on DESIGN but not listed after VS are assumed to have
a coefficient of 0.

• Duplicate effects are allowed. UNIANOVA adds coefficients associated with the same ef-
fect before performing the text. For example, the linear combination 5*A–0.9*B–A will
be combined to 4*A–0.9B.

• A coefficient can be specified as a fraction with a positive denominator—for example,
1/3 or –1/3, but 1/–3 is invalid.

• If you specify a value for the error term, you must specify the degrees of freedom after
the keyword DF. The degrees of freedom must be a positive real number. DF and the
degrees of freedom are optional for a linear combination.

Example
UNIANOVA DEP BY A B
 /TEST = A VS B + A*B
 /DESIGN = A, B, A*B.

• A is tested against the pooled effect of B + A*B.

LMATRIX Subcommand

The LMATRIX subcommand allows you to customize your hypotheses tests by specifying the L
matrix (contrast coefficients matrix) in the general form of the linear hypothesis LB = K, where
K = 0 if it is not specified on the KMATRIX subcommand. The vector B is the parameter vector in
the linear model.

UNIANOVA 903

• The basic format for the LMATRIX subcommand is an optional label in quotes, an effect
name or the keyword ALL, and a list of real numbers. There can be multiple effect names
(or the keyword ALL) and number lists.

• The optional label is a string with a maximum length of 255 characters. Only one label can be
specified.

• Only valid effects appearing or implied on the DESIGN subcommand can be specified on
the LMATRIX subcommand.

• The length of the list of real numbers must be equal to the number of parameters (including
the redundant ones) corresponding to that effect. For example, if the effect A*B takes up six
columns in the design matrix, then the list after A*B must contain exactly six numbers.

• A number can be specified as a fraction with a positive denominator—for example, 1/3
or –1/3, but 1/–3 is invalid.

• A semicolon (;) indicates the end of a row in the L matrix.

• When ALL is specified, the length of the list that follows ALL is equal to the total number of
parameters (including the redundant ones) in the model.

• Effects appearing or implied on the DESIGN subcommand but not specified here are
assumed to have entries of 0 in the corresponding columns of the L matrix.

• Multiple LMATRIX subcommands are allowed. Each is treated independently.

Example
UNIANOVA DEP BY A B
 /LMATRIX = “B1 vs B2 at A1”
 B 1 -1 0 A*B 1 -1
 /LMATRIX = “Effect A”
 A 1 0 -1
 A*B 1/3 1/3 1/3
 0 0 0
 -1/3 -1/3 -1/3;
 A 0 1 -1
 A*B 0 0 0
 1/3 1/3 1/3
 -1/3 -1/3 -1/3
 /LMATRIX = “B1 vs B2 at A2”
 ALL 0
 0 0 0
 1 -1 0
 0 0 0 1 -1 0 0 0 0
 /DESIGN = A, B, A*B.

Assume that factors A and B each have three levels. There are three LMATRIX subcommands;
each is treated independently.
• B1 versus B2 at A1. In the first LMATRIX subcommand, the difference is tested between levels

1 and 2 of effect B when effect A is fixed at level 1. Since there are three levels each in effects
A and B, the interaction effect A*B should take up nine columns in the design matrix. Notice
that only the first two columns of A*B are specified with values 1 and –1; the rest are all
assumed to be 0. Columns corresponding to effect B are all assumed to be 0.

• Effect A. In the second LMATRIX subcommand, effect A is tested. Since there are three levels
in effect A, at most two independent contrasts can be formed; thus, there are two rows in
the L matrix, which are separated by a semicolon (;). The first row tests the difference

904 UNIANOVA

between levels 1 and 3 of effect A, while the second row tests the difference between levels
2 and 3 of effect A.

• B1 versus B2 at A2. In the last LMATRIX subcommand, the keyword ALL is used. The first 0
corresponds to the intercept effect; the next three zeros correspond to effect A.

KMATRIX Subcommand

The KMATRIX subcommand allows you to customize your hypothesis tests by specifying the
K matrix (contrast results matrix) in the general form of the linear hypothesis LB = K. The
vector B is the parameter vector in the linear model.
• The default K matrix is a zero matrix; that is, LB = 0 is assumed.

• For the KMATRIX subcommand to be valid, at least one of the following subcommands must
be specified: the LMATRIX subcommand or the INTERCEPT = INCLUDE subcommand.

• If KMATRIX is specified but LMATRIX is not specified, the LMATRIX is assumed to take the row
vector corresponding to the intercept in the estimable function, provided the subcommand
INTERCEPT = INCLUDE is specified. In this case, the K matrix can be only a scalar matrix.

• If KMATRIX and LMATRIX are specified, then the number of rows in the requested K and
L matrices must be equal. If there are multiple LMATRIX subcommands, then all requested
L matrices must have the same number of rows, and K must have the same number of
rows as these L matrices.

• A semicolon (;) can be used to indicate the end of a row in the K matrix.

• If more than one KMATRIX subcommand is specified, only the last one is in effect.

Example
UNIANOVA DEP BY A B
 /LMATRIX = “Effect A”
 A 1 0 -1; A 1 -1 0
 /LMATRIX = “Effect B”
 B 1 0 -1; B 1 -1 0
 /KMATRIX = 0; 0
 /DESIGN = A B.

In this example, assume that factors A and B each have three levels.

• There are two LMATRIX subcommands; both have two rows.

• The first LMATRIX subcommand tests whether the effect of A is 0, while the second
LMATRIX subcommand tests whether the effect of B is 0.

• The KMATRIX subcommand specifies that the K matrix also has two rows, each with value 0.

CONTRAST Subcommand

CONTRAST specifies the type of contrast desired among the levels of a factor. For a factor with
k levels or values, the contrast type determines the meaning of its degrees of freedom.

• Specify the factor name in parentheses following the subcommand CONTRAST.

• You can specify only one factor per CONTRAST subcommand, but you can enter multiple
CONTRAST subcommands.

• After closing the parentheses, enter an equals sign followed by one of the contrast keywords.

k 1–

UNIANOVA 905

• This subcommand creates an L matrix such that the columns corresponding to the factor
match the contrast given. The other columns are adjusted so that the L matrix is estimable.

The following contrast types are available:

DEVIATION Deviations from the grand mean. This is the default for between-subjects
factors. Each level of the factor except one is compared to the grand mean.
One category (by default, the last) must be omitted so that the effects will be
independent of one another. To omit a category other than the last, specify
the number of the omitted category (which is not necessarily the same as its
value) in parentheses after the keyword DEVIATION. For example,

UNIANOVA Y BY B
 /CONTRAST(B)=DEVIATION(1).

Suppose factor B has three levels, with values 2, 4, and 6. The specified con-
trast omits the first category, in which B has the value 2. Deviation contrasts
are not orthogonal.

POLYNOMIAL Polynomial contrasts. This is the default for within-subjects factors. The
first degree of freedom contains the linear effect across the levels of the fac-
tor, the second contains the quadratic effect, and so on. In a balanced
design, polynomial contrasts are orthogonal. By default, the levels are as-
sumed to be equally spaced; you can specify unequal spacing by entering
a metric consisting of one integer for each level of the factor in parentheses
after the keyword POLYNOMIAL. (All metrics specified cannot be equal;
thus, (1, 1, . . . 1) is not valid.) For example,

UNIANOVA RESPONSE BY STIMULUS
 /CONTRAST(STIMULUS) = POLYNOMIAL(1,2,4).

Suppose that factor STIMULUS has three levels. The specified contrast indi-
cates that the three levels of STIMULUS are actually in the proportion 1:2:4.
The default metric is always (1, 2, . . . k), where k levels are involved. Only
the relative differences between the terms of the metric matter (1, 2, 4) is the
same metric as (2, 3, 5) or (20, 30, 50) because, in each instance, the differ-
ence between the second and third numbers is twice the difference between
the first and second.

DIFFERENCE Difference or reverse Helmert contrasts. Each level of the factor except the
first is compared to the mean of the previous levels. In a balanced design, dif-
ference contrasts are orthogonal.

HELMERT Helmert contrasts. Each level of the factor except the last is compared to the
mean of subsequent levels. In a balanced design, Helmert contrasts are
orthogonal.

SIMPLE Each level of the factor except the last is compared to the last level. To use a
category other than the last as the omitted reference category, specify its
number (which is not necessarily the same as its value) in parentheses
following the keyword SIMPLE. For example,

UNIANOVA Y BY B
 /CONTRAST(B)=SIMPLE(1).

906 UNIANOVA

Suppose that factor B has three levels with values 2, 4, and 6. The specified
contrast compares the other levels to the first level of B, in which B has the
value 2. Simple contrasts are not orthogonal.

REPEATED Comparison of adjacent levels. Each level of the factor except the first is
compared to the previous level. Repeated contrasts are not orthogonal.

SPECIAL A user-defined contrast. Values specified after this keyword are stored in a
matrix in column major order. For example, if factor A has three levels, then
CONTRAST(A)= SPECIAL(1 1 1 1 -1 0 0 1 -1) produces the following contrast
matrix:

1 1 0
1 –1 1
1 0 –1

Orthogonal contrasts are particularly useful. In a balanced design, contrasts are orthogo-
nal if the sum of the coefficients in each contrast row is 0 and if, for any pair of contrast
rows, the products of corresponding coefficients sum to 0. DIFFERENCE, HELMERT, and
POLYNOMIAL contrasts always meet these criteria in balanced designs.

Example
UNIANOVA DEP BY FAC
 /CONTRAST(FAC)=DIFFERENCE
 /DESIGN.

• Suppose that the factor FAC has five categories and therefore four degrees of freedom.

• CONTRAST requests DIFFERENCE contrasts, which compare each level (except the first)
with the mean of the previous levels.

POSTHOC Subcommand

POSTHOC allows you to produce multiple comparisons between means of a factor. These
comparisons are usually not planned at the beginning of the study but are suggested by the
data in the course of study.

• Post hoc tests are computed for the dependent variable. The alpha value used in the tests
can be specified by using the keyword ALPHA on the CRITERIA subcommand. The default
alpha value is 0.05. The confidence level for any confidence interval constructed is

. The default confidence level is 95.

• Only between-subjects factors appearing in the factor list are valid in this subcommand.
Individual factors can be specified.

• You can specify one or more effects to be tested. Only fixed main effects appearing or
implied on the DESIGN subcommand are valid test effects.

• Optionally, you can specify an effect defining the error term following the keyword VS
after the test specification. The error effect can be any single effect in the design that is
not the intercept or a main effect named on a POSTHOC subcommand.

• A variety of multiple comparison tests are available. Some tests are designed for detecting
homogeneity subsets among the groups of means, some are designed for pairwise
comparisons among all means, and some can be used for both purposes.

1 α–() 100×

UNIANOVA 907

• For tests that are used for detecting homogeneity subsets of means, non-empty group
means are sorted in ascending order. Means that are not significantly different are included
together to form a homogeneity subset. The significance for each homogeneity subset of
means is displayed. In a case where the numbers of valid cases are not equal in all groups,
for most post hoc tests, the harmonic mean of the group sizes is used as the sample size in
the calculation. For QREGW or FREGW, individual sample sizes are used.

• For tests that are used for pairwise comparisons, the display includes the difference between
each pair of compared means, the confidence interval for the difference, and the signifi-
cance. The sample sizes of the two groups being compared are used in the calculation.

• Output for tests specified on the POSTHOC subcommand are available according to their
statistical purposes. The following table illustrates the statistical purpose of the post hoc
tests:

• Tests that are designed for homogeneity subset detection display the detected homogeneity
subsets and their corresponding significances.

• Tests that are designed for both homogeneity subset detection and pairwise comparisons
display both kinds of output.

Post Hoc Tests Statistical Purpose

Keyword Homogeneity Subsets
Detection

Pairwise Comparison and
Confidence Interval

LSD Yes
SIDAK Yes
BONFERRONI Yes
GH Yes
T2 Yes
T3 Yes
C Yes
DUNNETT Yes*

* Only C.I.’s for differences between test group means and control group means
are given.

DUNNETTL Yes*
DUNNETTR Yes*
SNK Yes
BTUKEY Yes
DUNCAN Yes
QREGW Yes
FREGW Yes
WALLER Yes†

† No significance for Waller test is given.

TUKEY Yes Yes
SCHEFFE Yes Yes
 GT2 Yes Yes
 GABRIEL Yes Yes

908 UNIANOVA

• For the DUNNETT, DUNNETTL, and DUNNETTR keywords, only individual factors can be
specified.

• The default reference category for DUNNETT, DUNNETTL, and DUNNETTR is the last
category. An integer greater than 0 within parentheses can be used to specify a different
reference category. For example, POSTHOC = A (DUNNETT(2)) requests a DUNNETT test for
factor A, using the second level of A as the reference category.

• The keywords DUNCAN, DUNNETT, DUNNETTL, and DUNNETTR must be spelled out in full;
using the first three characters alone is not sufficient.

• If the REGWT subcommand is specified, weighted means are used in performing post hoc
tests.

• Multiple POSTHOC subcommands are allowed. Each specification is executed indepen-
dently so that you can test different effects against different error terms.

SNK Student-Newman-Keuls procedure based on the Studentized range
test.

TUKEY Tukey’s honestly significant difference. This test uses the Studentized
range statistic to make all pairwise comparisons between groups.

BTUKEY Tukey’s b. Multiple comparison procedure based on the average of
Studentized range tests.

DUNCAN Duncan’s multiple comparison procedure based on the Studentized
range test.

SCHEFFE Scheffé’s multiple comparison t test.

DUNNETT(refcat) Dunnett’s two-tailed t test. Each level of the factor is compared to a ref-
erence category. A reference category can be specified in parentheses.
The default reference category is the last category. This keyword must
be spelled out in full.

DUNNETTL(refcat) Dunnett’s one-tailed t test. This test indicates whether the mean at any
level (except the reference category) of the factor is smaller than that
of the reference category. A reference category can be specified in
parentheses. The default reference category is the last category. This
keyword must be spelled out in full.

DUNNETTR(refcat) Dunnett’s one-tailed t test. This test indicates whether the mean at any
level (except the reference category) of the factor is larger than that of
the reference category. A reference category can be specified in paren-
theses. The default reference category is the last category. This key-
word must be spelled out in full.

BONFERRONI Bonferroni t test. This test is based on Student’s t statistic and adjusts
the observed significance level for the fact that multiple comparisons
are made.

LSD Least significant difference t test. Equivalent to multiple t tests between
all pairs of groups. This test does not control the overall probability of
rejecting the hypotheses that some pairs of means are different, while
in fact they are equal.

UNIANOVA 909

SIDAK Sidak t test. This test provides tighter bounds than the Bonferroni test.

GT2 Hochberg’s GT2. Pairwise comparisons test based on the Studentized
maximum modulus test. Unless the cell sizes are extremely unbal-
anced, this test is fairly robust even for unequal variances.

GABRIEL Gabriel’s pairwise comparisons test based on the Studentized maxi-
mum modulus test.

FREGW Ryan-Einot-Gabriel-Welsch’s multiple stepdown procedure based on an F
test.

QREGW Ryan-Einot-Gabriel-Welsch’s multiple stepdown procedure based on
the Studentized range test.

T2 Tamhane’s T2. Tamhane’s pairwise comparisons test based on a t test.
This test can be applied in situations where the variances are unequal.

T3 Dunnett’s T3. Pairwise comparisons test based on the Studentized
maximum modulus. This test is appropriate when the variances are un-
equal.

GH Games and Howell’s pairwise comparisons test based on the Studen-
tized range test. This test can be applied in situations where the vari-
ances are unequal.

C Dunnett’s C. Pairwise comparisons based on the weighted average of
Studentized ranges. This test can be applied in situations where the
variances are unequal.

WALLER(kratio) Waller-Duncan t test. This test uses a Bayesian approach. It is
restricted to cases with equal sample sizes. For cases with unequal
sample sizes, the harmonic mean of the sample size is used. The k-
ratio is the Type 1/Type 2 error seriousness ratio. The default value
is 100. You can specify an integer greater than 1 within parentheses.

EMMEANS Subcommand

EMMEANS displays estimated marginal means of the dependent variable in the cells (with
covariates held at their overall mean value) and their standard errors for the specified factors.
Note that these are predicted, not observed, means. The estimated marginal means are calcu-
lated using a modified definition by Searle, Speed, and Milliken (1980).

• TABLES, followed by an option in parentheses, is required. COMPARE is optional; if spec-
ified, it must follow TABLES.

• Multiple EMMEANS subcommands are allowed. Each is treated independently.

• If redundant EMMEANS subcommands are specified, only the last redundant subcom-
mand is in effect. EMMEANS subcommands are redundant if the option specified on
TABLES is the same (including redundant crossed factor combinations—for example,
A*B and B*A).

910 UNIANOVA

TABLES(option) Table specification. Valid options are the keyword OVERALL, factors
appearing on the factor list, and crossed factors constructed of factors
on the factor list. Crossed factors can be specified using an asterisk (*)
or the keyword BY. All factors in a crossed factor specification must
be unique.

If OVERALL is specified, the estimated marginal means of the depen-
dent variable are displayed, collapsing over between-subjects factors.

If a between-subjects factor, or a crossing of between-subjects factors,
is specified on the TABLES keyword, UNIANOVA collapses over any
other between-subjects factors before computing the estimated mar-
ginal means for the dependent variable.

COMPARE ADJ(method) Pairwise comparisons of the dependent variable. Each level of the
factor specified in the TABLES command is compared with each other
level for all combinations of other factors. Valid options for the con-
fidence interval adjustment method are the keywords LSD(none), BON-
FERRONI, and SIDAK. The confidence intervals and significance
values are adjusted to account for multiple comparisons.

If OVERALL is specified on TABLES, COMPARE is invalid.

Example
UNIANOVA DEP BY A B
 /EMMEANS = TABLES(A*B)COMPARE ADJ (LSD(none))
 /DESIGN.

• The output of this analysis includes a pairwise comparisons table for the dependent
variable DEP.

• Assume that A has three levels and B has two levels. The first level of A is compared with
the second and third levels, the second level with the first and third levels, and the third
level with the first and second levels. The pairwise comparison is repeated for the two
levels of B.

SAVE Subcommand

Use SAVE to add one or more residual or fit values to the working data file.

• Specify one or more temporary variables, each followed by an optional new name in
parentheses.

• WPRED and WRESID can be saved only if REGWGT has been specified.

• Specifying a temporary variable on this subcommand results in a variable being added to
the active data file for each dependent variable.

• You can specify variable names for the temporary variables. These names must be
unique, valid variable names.

• If new names are not specified, UNIANOVA generates a rootname using a shortened form
of the temporary variable name with a suffix.

• If more than one SAVE subcommand is specified, only the last one is in effect.

UNIANOVA 911

PRED Unstandardized predicted values.

WPRED Weighted unstandardized predicted values. Available only if REGWGT has
been specified.

RESID Unstandardized residuals.

WRESID Weighted unstandardized residuals. Available only if REGWGT has been
specified.

DRESID Deleted residuals.

ZRESID Standardized residuals.

SRESID Studentized residuals.

SEPRED Standard errors of predicted value.

COOK Cook’s distances.

LEVER Uncentered leverage values.

OUTFILE Subcommand

The OUTFILE subcommand writes an SPSS data file that can be used in other procedures.
• You must specify a keyword on OUTFILE. There is no default.

• You must specify a filename in parentheses after a keyword. A filename with a path must
be enclosed within quotation marks. The asterisk (*) is not allowed.

• If you specify more than one keyword, a different filename is required for each.

• If more than one OUTFILE subcommand is specified, only the last one is in effect.

• For COVB or CORB, the output will contain, in addition to the covariance or correlation
matrix, three rows for each dependent variable: a row of parameter estimates, a row of
residual degrees of freedom, and a row of significance values for the t statistics corre-
sponding to the parameter estimates. All statistics are displayed separately by split.

COVB (filename) Writes the parameter covariance matrix.

CORB (filename) Writes the parameter correlation matrix.

EFFECT (filename) Writes the statistics from the between-subjects ANOVA table.

DESIGN (filename) Writes the design matrix. The number of rows equals the number of
cases, and the number of columns equals the number of parameters.
The variable names are DES_1, DES_2, ..., DES_p, where p is the num-
ber of the parameters.

DESIGN Subcommand

DESIGN specifies the effects included in a specific model. The cells in a design are defined
by all of the possible combinations of levels of the factors in that design. The number of cells
equals the product of the number of levels of all the factors. A design is balanced if each cell

912 UNIANOVA

contains the same number of cases. UNIANOVA can analyze both balanced and unbalanced
designs.

• Specify a list of terms to be included in the model, separated by spaces or commas.

• The default design, if the DESIGN subcommand is omitted or is specified by itself, is a de-
sign consisting of the following terms in order: the intercept term (if INTERCEPT=INCLUDE
is specified), next the covariates given in the covariate list, and then the full factorial model
defined by all factors on the factor list and excluding the intercept.

• To include a term for the main effect of a factor, enter the name of the factor on the
DESIGN subcommand.

• To include the intercept term in the design, use the keyword INTERCEPT on the DESIGN
subcommand. If INTERCEPT is specified on the DESIGN subcommand, the subcommand
INTERCEPT=EXCLUDE is overridden.

• To include a term for an interaction between factors, use the keyword BY or the asterisk
(*) to join the factors involved in the interaction. For example, A*B means a two-way interac-
tion effect of A and B, where A and B are factors. A*A is not allowed because factors inside an
interaction effect must be distinct.

• To include a term for nesting one effect within another, use the keyword WITHIN or a pair
of parentheses on the DESIGN subcommand. For example, A(B) means that A is nested
within B. The expression A(B) is equivalent to the expression A WITHIN B. When more than
one pair of parentheses is present, each pair of parentheses must be enclosed or nested
within another pair of parentheses. Thus, A(B)(C) is not valid.

• Multiple nesting is allowed. For example, A(B(C)) means that B is nested within C, and A
is nested within B(C).

• Interactions between nested effects are not valid. For example, neither A(C)*B(C) nor
A(C)*B(D) is valid.

• To include a covariate term in the design, enter the name of the covariate on the DESIGN
subcommand.

• Covariates can be connected, but not nested, through the * operator to form another covariate
effect. Therefore, interactions among covariates such as X1*X1 and X1*X2 are valid, but not
X1(X2). Using covariate effects such as X1*X1, X1*X1*X1, X1*X2, and X1*X1*X2*X2 makes
fitting a polynomial regression model easy in UNIANOVA.

• Factor and covariate effects can be connected only by the * operator. Suppose A and B are
factors, and X1 and X2 are covariates. Examples of valid factor-by-covariate interaction effects
are A*X1, A*B*X1, X1*A(B), A*X1*X1, and B*X1*X2.

• If more than one DESIGN subcommand is specified, only the last one is in effect.

Example
UNIANOVA Y BY A B C WITH X
 /DESIGN A B(A) X*A.

• In this example, the design consists of a main effect A, a nested effect B within A, and an
interaction effect of a covariate X with a factor A.

913

UPDATE

UPDATE FILE={master file}
 {* }

 [/RENAME=(old varnames=new varnames)...]

 [/IN=varname]

 /FILE={transaction file1}
 {* }

 [/FILE=transaction file2]

 /BY key variables

 [/MAP]

 [/KEEP={ALL** }] [/DROP=varlist]
 {varlist}

**Default if the subcommand is omitted.

Example:
UPDATE FILE=MAILIST /FILE=NEWLIST /BY=ID.

Overview

UPDATE replaces values in a master file with updated values recorded in one or more files
called transaction files. Cases in the master file and transaction file are matched according
to a key variable.

The master file and the transaction files must be SPSS-format data files created with the
SAVE or XSAVE commands or the working data file. UPDATE replaces values and creates a
new working data file, which replaces the original working file. Use the SAVE or XSAVE
commands to save the updated file on disk as an SPSS-format data file.

UPDATE is designed to update values of existing variables for existing cases. Use MATCH
FILES to add new variables to an SPSS-format data file and ADD FILES to add new cases.

Options

Variable Selection. You can specify which variables from each input file are included in the
new working file using the DROP and KEEP subcommands.

Variable Names. You can rename variables in each input file before combining the files us-
ing the RENAME subcommand. This permits you to combine variables that are the same but
whose names differ in different input files, or to separate variables that are different but have
the same name.

914 UPDATE

Variable Flag. You can create a variable that indicates whether a case came from a particular
input file using IN. You can use the FIRST or LAST subcommand to create a variable that flags
the first or last case of a group of cases with the same value for the key variable.

Variable Map. You can request a map showing all variables in the new working file, their or-
der, and the input files from which they came using the MAP subcommand.

Basic Specification

The basic specification is two or more FILE subcommands and a BY subcommand.

• The first FILE subcommand must specify the master file. All other FILE subcommands
identify the transaction files.

• BY specifies the key variables.

• All files must be sorted in ascending order by the key variables.

• By default, all variables from all input files are included in the new working file.

Subcommand Order

• The master file must be specified first.
• RENAME and IN must immediately follow the FILE subcommand to which they apply.

• BY must follow the FILE subcommands and any associated RENAME and IN subcommands.

• MAP, DROP, and KEEP must be specified after all FILE and RENAME subcommands.

Syntax Rules

• BY can be specified only once. However, multiple variables can be specified on BY. All
files must be sorted in ascending order by the key variables named on BY.

• The master file cannot contain duplicate values for the key variables.

• RENAME can be repeated after each FILE subcommand and applies only to variables in the
file named on the immediately preceding FILE subcommand.

• MAP can be repeated as often as needed.

Operations

• UPDATE reads all input files named on FILE and builds a new working data file that re-
places any working file created earlier in the session. The new working data file is built
when the data are read by one of the procedure commands or the EXECUTE, SAVE, or
SORT CASES command.

• The new working data file contains complete dictionary information from the input files,
including variable names, labels, print and write formats, and missing-value indicators.
The new working data file also contains the documents from each input file, unless the
DROP DOCUMENTS command is used.

UPDATE 915

• UPDATE copies all variables in order from the master file, then all variables in order from
the first transaction file, then all variables in order from the second transaction file, and
so on.

• Cases are updated when they are matched on the BY variable(s). If the master and trans-
action files contain common variables for matched cases, the values for those variables
are taken from the transaction file, provided the values are not missing or blanks. Missing
or blank values in the transaction files are not used to update values in the master file.

• When UPDATE encounters duplicate keys within a transaction file, it applies each trans-
action sequentially to that case to produce one case per key value in the resulting file. If
more than one transaction file is specified, the value for a variable comes from the last
transaction file with a nonmissing value for that variable.

• Variables that are in the transaction files but not in the master file are added to the master
file. Cases that do not contain those variables are assigned the system-missing value (for
numerics) or blanks (for strings).

• Cases that are in the transaction files but not in the master file are added to the master file
and are interleaved according to their values for the key variables.

• If the working data file is named as an input file, any N and SAMPLE commands that have
been specified are applied to the working data file before files are combined.

• The TEMPORARY command cannot be in effect if the working data file is used as an input
file.

Limitations

• Maximum 1 BY subcommand. However, BY can specify multiple variables.

Example

UPDATE FILE=MAILIST /FILE=NEWLIST /BY=ID.

• MAILIST is specified as the master file. NEWLIST is the transaction file. ID is the key variable.

• Both MAILIST and NEWLIST must be sorted in ascending order of ID.

• If NEWLIST has cases or nonmissing variables that are not in MAILIST, the new cases or
variables are added to the resulting file.

Example

SORT CASES BY LOCATN DEPT.
UPDATE FILE=MASTER /FILE=* /BY LOCATN DEPT

/KEEP AVGHOUR AVGRAISE LOCATN DEPT SEX HOURLY RAISE /MAP.
SAVE OUTFILE=PRSNNL.

• SORT CASES sorts the working data file in ascending order of the variables to be named
as key variables on UPDATE.

• UPDATE specifies MASTER as the master file and the sorted working data file as the trans-
action file. File MASTER must also be sorted by LOCATN and DEPT.

916 UPDATE

• BY specifies the key variables LOCATN and DEPT.

• KEEP specifies the subset and order of variables to be retained in the resulting file.

• MAP provides a list of the variables in the resulting file and the two input files.

• SAVE saves the resulting file as an SPSS-format data file.

FILE Subcommand

FILE identifies each input file. At least two FILE subcommands are required on UPDATE: one
specifies the master file and the other a transaction file. A separate FILE subcommand must
be used to specify each transaction file.

• The first FILE subcommand must specify the master file.

• An asterisk on FILE refers to the working data file.

• All files must be sorted in ascending order according to the variables specified on BY.

• The master file cannot contain duplicate values for the key variables. However, transac-
tion files can and often do contain cases with duplicate keys (see “Operations” on p. 914).

Raw Data Files

To update the master file with cases from a raw data file, use DATA LIST first to define the
raw data file as the working data file. UPDATE can then use the working data file to update
the master file.

Example
DATA LIST FILE=RAWDATA
 ID 1-3 NAME 5-17 (A) ADDRESS 19-28 (A) ZIP 30-34.
SORT CASES BY ID.
UPDATE FILE=MAILIST1 /RENAME=(STREET=ADDRESS) /FILE=* /BY=ID /MAP.
SAVE OUTFILE=MAILIST2.

• DATA LIST defines the variables in the raw data file RAWDATA, which will be used to up-
date values in the master file.

• SORT CASES sorts the working data file in ascending order of the key variable ID. Cases
in the master file were previously sorted in this manner.

• The first FILE subcommand on UPDATE refers to the master file, MAILIST1. The RENAME
subcommand renames the variable STREET to ADDRESS in file MAILIST1.

• The second FILE subcommand refers to the working data file defined on DATA LIST.

• BY indicates that cases in MAILIST1 and the working data file are to be matched by the key
variable ID.

• MAP requests a map of the resulting file.
• SAVE saves the resulting file as an SPSS-format data file named MAILIST2.

UPDATE 917

BY Subcommand

BY specifies one or more identification, or key, variables that are used to match cases
between files.

• BY must follow the FILE subcommands and any associated RENAME and IN subcommands.

• BY specifies the names of one or more key variables. The key variables must exist in all
input files and have the same names in all the files. The key variables can be string vari-
ables (long strings are allowed).

• All input files must be sorted in ascending order of the key variables. If necessary, use
SORT CASES before UPDATE.

• Missing values for key variables are handled like any other values.

• The key variables in the master file must identify unique cases. If duplicate cases are
found, the program issues an error and UPDATE is not executed. The system-missing val-
ue is treated as one single value.

RENAME Subcommand

RENAME renames variables on the input files before they are processed by UPDATE.
RENAME must follow the FILE subcommand that contains the variables to be renamed.
• RENAME applies only to the immediately preceding FILE subcommand. To rename vari-

ables from more than one input file, specify a RENAME subcommand after each FILE sub-
command.

• Specifications for RENAME consist of a left parenthesis, a list of old variable names, an
equals sign, a list of new variable names, and a right parenthesis. The two variable lists
must name or imply the same number of variables. If only one variable is renamed, the
parentheses are optional.

• More than one rename specification can be specified on a single RENAME subcommand,
each enclosed in parentheses.

• The TO keyword can be used to refer to consecutive variables in the file and to generate
new variable names (see the TO keyword on p. 20).

• RENAME takes effect immediately. Any KEEP and DROP subcommands entered prior to
a RENAME must use the old names, while KEEP and DROP subcommands entered after a
RENAME must use the new names.

• All specifications within a single set of parentheses take effect simultaneously. For exam-
ple, the specification RENAME (A,B = B,A) swaps the names of the two variables.

• Variables cannot be renamed to scratch variables.

• Input SPSS-format data files are not changed on disk; only the copy of the file being com-
bined is affected.

918 UPDATE

Example
UPDATE FILE=MASTER /FILE=CLIENTS

/RENAME=(TEL_NO, ID_NO = PHONE, ID)
/BY ID.

• UPDATE updates the master phone list by using current information from file CLIENTS.

• Two variables on CLIENTS are renamed prior to the match. TEL_NO is renamed PHONE
to match the name used for phone numbers in the master file. ID_NO is renamed ID so that
it will have the same name as the identification variable in the master file and can be used
on the BY subcommand.

• The old variable names are listed before the equals sign, and the new variable names are
listed in the same order after the equals sign. The parentheses are required.

• The BY subcommand matches cases according to client ID numbers.

DROP and KEEP Subcommands

DROP and KEEP are used to include a subset of variables in the resulting file. DROP specifies
a set of variables to exclude, and KEEP specifies a set of variables to retain.

• DROP and KEEP do not affect the input files on disk.
• DROP and KEEP must follow all FILE and RENAME subcommands.

• DROP and KEEP must specify one or more variables. If RENAME is used to rename vari-
ables, specify the new names on DROP and KEEP.

• DROP cannot be used with variables created by the IN subcommand.

• Keyword ALL can be specified on KEEP. ALL must be the last specification on KEEP, and
it refers to all variables not previously named on KEEP.

• KEEP can be used to change the order of variables in the resulting file. With KEEP, vari-
ables are kept in the order they are listed on the subcommand. If a variable is named more
than once on KEEP, only the first mention of the variable is in effect; all subsequent ref-
erences to that variable name are ignored.

• Multiple DROP and KEEP subcommands are allowed. Specifying a variable that is not in
the working data file or that has been dropped because of a previous DROP or KEEP sub-
command results in an error and the UPDATE command is not executed.

Example
UPDATE FILE=MAILIST /FILE=NEWLIST /RENAME=(STREET=ADDRESS) /BY ID

/KEEP=NAME ADDRESS CITY STATE ZIP ID.

• KEEP specifies the variables to keep in the result file. The variables are stored in the order
specified on KEEP.

IN Subcommand

IN creates a new variable in the resulting file that indicates whether a case came from the in-
put file named on the preceding FILE subcommand. IN applies only to the file specified on
the immediately preceding FILE subcommand.

UPDATE 919

• IN has only one specification, the name of the flag variable.

• The variable created by IN has value 1 for every case that came from the associated input
file and value 0 if the case came from a different input file.

• Variables created by IN are automatically attached to the end of the resulting file and can-
not be dropped.

Example
UPDATE FILE=WEEK10 /FILE=WEEK11 /IN=INWEEK11 /BY=EMPID.

• IN creates the variable INWEEK11, which has the value 1 for all cases in the resulting file
that came from the input file WEEK11 and the value 0 for those cases that were not in file
WEEK11.

MAP Subcommand

MAP produces a list of the variables are in the new working file and the file or files from
which they came. Variables are listed in the order in which they appear in the resulting file.
MAP has no specifications and must be placed after all FILE, RENAME, and IN subcommands.

• Multiple MAP subcommands can be used. Each MAP shows the current status of the work-
ing data file and reflects only the subcommands that precede the MAP subcommand.

• To obtain a map of the resulting file in its final state, specify MAP last.

• If a variable is renamed, its original and new names are listed. Variables created by IN are
not included in the map, since they are automatically attached to the end of the file and
cannot be dropped.

• MAP can be used with the EDIT command to obtain a list of the variables in the resulting
file without actually reading the data and combining the files.

920

USE

USE [{start date }] [THRU [{end date }]]
 {start case number} {end case number}
 {FIRST } {LAST }

 [ALL]

Example:
USE Y 1960.

Overview

USE designates a range of observations to be used with time series procedures.

Basic Specification

The basic specification is either the start of the range, the end of the range, or both. You can
also simply specify keyword THRU or ALL.

• The default start is the first observation in the file, and the default end is the last observation.

• Keyword THRU is required if the end of the range is specified.

• Keyword ALL defines a USE range starting with the first observation and ending with the
last observation in the series. It can be specified to restore processing to the entire series.

• Keyword THRU by itself is the same as specifying keyword ALL.

Syntax Rules

• The start and end can be specified as either DATE specifications or case (observation)
numbers.

• DATE specifications and case numbers cannot be mixed on a USE command.

• Any observation within the file can be used as the start or end, as long as the starting
observation comes before the end observation.

DATE Specifications

• A DATE specification consists of DATE keywords and values (see DATE). These specifi-
cations must correspond to existing DATE variables.

• If more than one DATE variable exists, the highest-order one must be used in the
specification.

• Values on keyword YEAR must have the same format (2 or 4 digits) as the YEAR speci-
fications on the DATE command.

USE 921

Case Specifications

• The case number specification is the sequence number of the case (observation) as it is
read by the program.

Keywords FIRST and LAST

• The start can also be specified with keyword FIRST, and the end with keyword LAST.
These keywords designate the first and last cases in the file, respectively.

• Keywords FIRST and LAST can be used along with either DATE or case specifications.

Operations

• USE is ignored by the utility procedures CREATE and RMV. These procedures process all
the available data.

• The DATE command turns off all existing USE and PREDICT specifications.

• USE remains in effect in a session until it is changed by another USE command or until a
new DATE command is issued.

• Any data selection specified on USE is in effect until the next USE command, the next
DATE command, or the end of the session. SPSS-format data files are not affected by the
USE command.

Limitations

• Maximum 1 range (one start and/or one end) can be specified.

Examples

USE ALL.

• This command includes all observations in the file in the USE range.

• This specification is the same as USE THRU or USE FIRST THRU LAST.

USE Y 1960.

• This command selects observations starting with YEAR_ value 1960 through the last ob-
servation in the file. It is equivalent to USE Y 1960 THRU LAST.

USE THRU D 5.

• This command selects all cases from the first case in the file to the last one with a DAY_
value of 5. It is equivalent to USE FIRST THRU D 5.

922 USE

USE THRU 5.

• This command selects cases starting with the first case and ending with the fifth case.

USE Y 1955 M 6 THRU Y 1960 M 6.

• This selects cases from June 1955 through June 1960.

USE W 16 D 3 THRU W 48 D 3.

• This example selects cases from day 3 of week 16 through day 3 of week 48.

USE CYCLE 2 OBS 4 THRU CYCLE 2 OBS 17.

• This example selects observations 4 through 17 of the second cycle.

923

VALUE LABELS

VALUE LABELS varlist value ’label’ value ’label’... [/varlist...]

Example:
VALUE LABELS JOBGRADE ’P’ ’Parttime Employee’ ’C’ ’Customer Support’.

Overview

VALUE LABELS deletes all existing value labels for the specified variable(s) and assigns new
value labels. ADD VALUE LABELS can be used to add new labels or alter labels for specified
values without deleting other existing labels.

Basic Specification

The basic specification is a variable name and the individual values with their assigned labels.

Syntax Rules

• Labels can be assigned to any previously defined variables except long string variables.

• It is not necessary to enter value labels for all values for a variable.

• Each value label must be enclosed in apostrophes or quotation marks. For short string
variables, the values themselves must also be enclosed in apostrophes or quotation
marks.

• Value labels can contain any characters, including blanks. To enter an apostrophe as part
of a label, enclose the label in quotation marks or enter a double apostrophe.

• Each value label can be up to 60 characters long, although most procedures display only
20 characters. The TABLES procedure will display all 60 characters of a label.

• The same labels can be assigned to the values of different variables by specifying a list
of variable names. For string variables, the variables specified must be of equal length.

• Multiple sets of variable names and value labels can be specified on one VALUE LABELS
command as long as the sets are separated by slashes.

• To continue a label from one command line to the next, specify a plus (+) sign before
the continuation of the label. Each string segment of the label must be enclosed in apos-
trophes or quotes. To insert a blank between the strings, the blank must be included in
the label specification.

924 VALUE LABELS

Operations

• Unlike most transformations, VALUE LABELS takes effect as soon as it is encountered in
the command sequence. Thus, special attention should be paid to its position among com-
mands (see “Command Order” on p. 6).

• VALUE LABELS deletes all previously assigned value labels for the specified variables.

• The value labels assigned are stored in the dictionary of the working file and are automat-
ically displayed on the output from many procedures.

• If a specified value is longer than the format of the variable, the program will be unable
to read the full value and may not be able to assign the value label correctly.

• If the value specified for a string variable is shorter than the format of the variable, the
value specification is right-padded without warning.

Example

VALUE LABELS V1 TO V3 1 ’Officials & Managers’
6 ’Service Workers’

/V4 ’N’ ’New Employee’.

• Labels are assigned to the values 1 and 6 for the variables between and including V1 and
V3 in the working data file.

• Following the required slash, a label for value N of V4 is specified. N is a string value and
must be enclosed in apostrophes or quotes.

• If labels exist for values 1 and 6 on V1 to V3 and value N on V4, they are changed in the
dictionary of the working file. If labels do not exist for these values, new labels are added
to the dictionary.

• Existing labels for values other than 1 and 6 on V1 to V3 and value N on V4 are deleted.

Example

VALUE LABELS OFFICE88 1 "EMPLOYEE’S OFFICE ASSIGNMENT PRIOR"
+ " TO 1988".

• The label for OFFICE88 is created by combining two strings with the plus sign. The blank
between PRIOR and TO must be included in the first or second string to be included in the
label.

Example

VALUE LABELS=STATE REGION ’U’ "UNKNOWN".

• Label UNKNOWN is assigned to value U for both STATE and REGION.

• STATE and REGION must be string variables of equal length. If STATE and REGION have
unequal lengths, a separate specification must be made for each, as in

VALUE LABELS STATE ’U’ "UNKNOWN" / REGION ’U’ "UNKNOWN".

VALUE LABELS 925

Example

DATA LIST / CITY 1-8(A) STATE 10-12(A).
VALUE LABELS STATE ’TEX’ "TEXAS" ’TEN’ "TENNESSEE"

’MIN’ "MINNESOTA".
BEGIN DATA
AUSTIN TEX
MEMPHIS TEN
ST. PAUL MIN
END DATA.
FREQUENCIES VARIABLES=STATE.

• The DATA LIST command defines two variables. CITY is eight characters wide and
STATE is three characters. The values are included between the BEGIN DATA and END
DATA commands.

• The VALUE LABELS command assigns labels to three values of variable STATE. Each
value and each label is specified in either apostrophes or quotation marks.

• The format for variable STATE must be at least three characters wide, because the speci-
fied values, TEX, TEN, and MIN, are three characters. If the format for STATE were two
characters, the program would issue a warning. This would occur even though the values
named on VALUE LABELS and the values after BEGIN DATA agree.

926

VARIABLE LABELS

VARIABLE LABELS varname ’label’ [/varname...]

Example:
VARIABLE LABELS YRHIRED ’YEAR OF FIRST HIRING’.

Overview

VARIABLE LABELS assigns descriptive labels to variables in the working data file.

Basic Specification

The basic specification is a variable name and the associated label in apostrophes or quotes.

Syntax Rules

• Labels can be added to any previously defined variable. It is not necessary to enter labels
for all variables in the working data file.

• Each variable label must be enclosed in apostrophes or quotation marks.

• Variable labels can contain any characters, including blanks. To enter an apostrophe as
part of a label, enclose the label in quotation marks or enter a double apostrophe.

• Each variable label can be up to 120 characters long, although most procedures print
fewer than the 120 characters. All statistical procedures display at least 40 characters.

• Multiple variables can be assigned labels on a single VARIABLE LABELS command. Only
one label can be assigned to each variable, and each label can apply to only one variable.

• To continue a label from one command line to the next, specify a plus (+) sign before
the continuation of the label. Each string segment of the label must be enclosed in apos-
trophes or quotes. To insert a blank between the strings, the blank must be included in
the label specification.

Operations

• Unlike most transformations, VARIABLE LABELS takes effect as soon as it is encountered
in the command sequence. Thus, special attention should be paid to its position among
commands (see “Command Order” on p. 6).

• Variable labels are automatically displayed in the output from many procedures and are
stored in the dictionary of the working data file.

• VARIABLE LABELS can be used for variables that have no previously assigned variable
labels. If a variable has a previously assigned variable label, the new label replaces the
old label.

VARIABLE LABELS 927

Example

VARIABLE LABELS YRHIRED ’YEAR OF FIRST HIRING’
DEPT88 ’DEPARTMENT OF EMPLOYMENT IN 1988’
SALARY88 ’YEARLY SALARY IN 1988’
JOBCAT ’JOB CATEGORIES’.

• Variable labels are assigned to the variables YRHIRED, DEPT88, SALARY88, and JOBCAT.

Example

VARIABLE LABELS OLDSAL "EMPLOYEE’S GROSS SALARY PRIOR"
+ " TO 1988".

• The label for OLDSAL is created by combining two strings with the plus sign. The blank
between PRIOR and TO must be included in the first or second string to be included in the
label.

928

VARIABLE LEVEL

VARIABLE LEVEL varlist ({SCALE** }) ... [/varlist...]
 {ORDINAL}
 {NOMINAL}

**Default.

Example:
VARIABLE LEVEL sales95 sales96 SCALE
 /region division NOMINAL
 /expense ORDINAL.

Overview

VARIABLE LEVEL specifies the level of measurement for variables. Measurement specifica-
tion is only relevant for:
• Charts created by the IGRAPH command. Nominal and ordinal are both treated as cate-

gorical.

• SPSS-format data files used with AnswerTree.

Basic Specification

The basic specification is a variable name and the measurement level.

929

VECTOR

VECTOR {vector name=varlist } [/vector name...]
 {vector name(n [format])}

Example:
VECTOR V=V1 TO V6.

STRING SELECT(A1).
COMPUTE SELECT=’V’.

LOOP #I=1 TO 6.
IF MISSING(V(#I)) SELECT=’M’.
END LOOP.

Overview

VECTOR associates a vector name with a set of existing variables or defines a vector of new
variables. A vector is a set of variables that can be referred to using an index. The vector can
refer to either string or numeric variables, and the variables can be permanent or temporary.

For each variable in the reference list, VECTOR generates an element. Element names are
formed by adding a subscript in parentheses to the end of the vector name. For example, if
vector AGES has three elements, the element names are AGES(1), AGES(2), and AGES(3).
Although the VECTOR command has other uses within the transformation language, it is
most often used with LOOP structures because the indexing variable on LOOP can be used
to refer to successive vector elements.

Options

File Structures. VECTOR can be used with the END CASE command to restructure data files.
You can build a single case from several cases or, conversely, you can build several cases
from a single case (see pp. 293 and 295 for examples).

Short-Form Vectors. VECTOR can be used to create a list of new variables and the vector that
refers to them simultaneously. VECTOR in the short form can be used to establish the dic-
tionary order of a group of variables before they are defined on a DATA LIST command. (See
“VECTOR: Short Form” on p. 931.)

Basic Specification

• The basic specification is VECTOR, a vector name, a required equals sign, and the list of
variables that the vector refers to. The TO keyword must be used to specify the variable list.

• For the short form of VECTOR, the basic specification is VECTOR, an alphabetical prefix,
and, in parentheses, the number of variables to be created.

930 VECTOR

Syntax Rules

• Multiple vectors can be created on the same command by using a slash to separate each
set of specifications.

• Variables specified on VECTOR must already be defined unless the short form of VECTOR
is used to create variables (see “VECTOR: Short Form” on p. 931).

• The TO convention must be used to specify the variable list. Thus, variables specified
must be consecutive and must be from the same dictionary, permanent or scratch.

• A single vector must comprise all numeric variables or all string variables. The string
variables must have the same length.

• A scalar (a variable named on NUMERIC), a function, and a vector can all have the same
name, for example MINI. The scalar can be identified by the lack of a left parenthesis fol-
lowing the name. Where a vector has the same name as a function (or the abbreviation of
a function), the vector name takes precedence. (See p. 933 for an example.)

• Vector element names must always be specified with a subscript in parentheses.

Operations

• VECTOR takes effect as soon as it is encountered in the command sequence, unlike most
transformations, which do not take effect until the data are read. Thus, special attention
should be paid to its position among commands (see “Command Order” on p. 6).

• VECTOR is in effect only until the first procedure that follows it. The vector must be re-
declared to be reused.

• Vectors can be used in transformations but not in procedures.

Examples

* Replace a case’s missing values with the mean of all
 nonmissing values for that case.

DATA LIST FREE /V1 V2 V3 V4 V5 V6 V7 V8.
MISSING VALUES V1 TO V8 (99).
COMPUTE MEANSUB=MEAN(V1 TO V8).

VECTOR V=V1 TO V8.
LOOP #I=1 TO 8.
+ DO IF MISSING (V(#I)).
+ COMPUTE V(#I)=MEANSUB.
+ END IF.
END LOOP.

BEGIN DATA
1 99 2 3 5 6 7 8
2 3 4 5 6 7 8 9
2 3 5 5 6 7 8 99
END DATA.
LIST.

VECTOR 931

• The first COMPUTE command calculates variable MEANSUB as the mean of all nonmiss-
ing values for each case.

• VECTOR defines vector V with the original variables as its elements.

• For each case, the loop is executed once for each variable. The COMPUTE command with-
in the loop is executed only when the variable has a missing value for that case. COMPUTE
replaces the missing value with the value of MEANSUB.

• For the first case, the missing value for variable V2 is changed to the value of MEANSUB
for that case. The missing value for variable V8 for the third case is changed to the value
of MEANSUB for that case.

More Examples

For additional examples of VECTOR, see pp. 293, 295, and 458.

VECTOR: Short Form

VECTOR can be used to create a list of new variables and the vector that refers to them simul-
taneously. The short form of VECTOR specifies a prefix of alphanumeric characters followed,
in parentheses, by the length of the vector (the number of variables to be created).

• The new variable names must not conflict with existing variables. If the prefix starts with
the # character, the new variables are created according to the rules for scratch variables.

• More than one vector of the same length can be created by naming two or more prefixes
before the length specification.

• By default, variables created with VECTOR receive F8.2 formats. Alternative formats for
the variables can be specified by including a format specification with the length specifi-
cation within the parentheses. The format and length can be specified in either order and
must be separated by at least one space or comma. If multiple vectors are created, the as-
signed format applies to all of them unless you specify otherwise.

Example
VECTOR #WORK(10).

• The program creates vector #WORK, which refers to 10 scratch variables: #WORK1,
#WORK2, and so on, through #WORK10. Thus, element #WORK(5) of the vector is variable
#WORK5.

Example
VECTOR X,Y(5).

• VECTOR creates vectors X and Y, which refer to the new variables X1 through X5 and Y1
through Y5, respectively.

Example
VECTOR X(6,A5).

932 VECTOR

• VECTOR assigns an A5 format to variables X1 through X6.

Example
VECTOR X,Y(A5,6) Z(3,F2).

• VECTOR assigns A5 formats to variables X1 to X6 and Y1 to Y6, and F2 formats to variables
Z1 to Z3. It doesn’t matter whether the format or the length is specified first within the
parentheses.

Example
* Predetermine variable order with the short form of VECTOR.

INPUT PROGRAM.
VECTOR X Y (4,F8.2).
DATA LIST / X4 Y4 X3 Y3 X2 Y2 X1 Y1 1-8.
END INPUT PROGRAM.

PRINT /X1 TO X4 Y1 TO Y4.
BEGIN DATA
49382716
49382716
49382716
END DATA.

• The short form of VECTOR is used to establish the dictionary order of a group of variables
before they are defined on a DATA LIST command. To predetermine variable order, both
VECTOR and DATA LIST must be enclosed within the INPUT PROGRAM and END INPUT
PROGRAM commands.

• The order of the variables in the working data file will be X1, X2, X3, and X4, and Y1, Y2,
Y3, and Y4, even though they are defined in a different order on DATA LIST.

• The program reads the variables with the F1 format specified on DATA LIST. It writes the
variables with the output format assigned on VECTOR (F8.2).

• Another method for predetermining variable order is to use NUMERIC (or STRING if the
variables are string variables) before the DATA LIST command (see p. 598 for an example).
The advantage of using NUMERIC or STRING is that you can assign mnemonic names to
the variables.

VECTOR 933

Example
* Name conflicts.

INPUT PROGRAM.
NUMERIC MIN MINI_A MINI_B MINIM(F2).
COMPUTE MINI_A = MINI(2). /*MINI is function MINIMUM.
VECTOR MINI(3,F2).
DO REPEAT I = 1 TO 3.
+ COMPUT MINI(I) = -I.
END REPEAT.
COMPUTE MIN = MIN(1). /*The second MIN is function MINIMUM.
COMPUTE MINI_B = MINI(2). /*MINI now references vector MINI
COMPUTE MINIM = MINIM(3). /*The second MINIM is function MINIMUM.
END CASE.
END FILE.
END INPUT PROGRAM.

• In this example, there are potential name conflicts between the scalars (the variables
named on NUMERIC), the vectors (named on VECTOR), and the statistical function
MINIMUM.

• A name that is not followed by a left parenthesis is treated as a scalar.

• When a name followed by a left parenthesis may refer to a vector element or a function,
precedence is given to the vector.

VECTOR outside a Loop Structure

VECTOR is most commonly associated with the loop structure, since the index variable for
LOOP can be used as the subscript. However, the subscript can come from elsewhere, includ-
ing from the data.

934 VECTOR

Example
* Create a single case for each of students 1, 2, and 3.

DATA LIST /STUDENT 1 SCORE 3-4 TESTNUM 6.
BEGIN DATA
1 10 1
1 20 2
1 30 3
1 40 4
2 15 2
2 25 3
3 40 1
3 55 3
3 60 4
END DATA.

VECTOR RESULT(4).
COMPUTE RESULT(TESTNUM)=SCORE.

AGGREGATE OUTFILE=*/BREAK=STUDENT
/RESULT1 TO RESULT4=MAX(RESULT1 TO RESULT4).

PRINT FORMATS RESULT1 TO RESULT4 (F2.0).
PRINT /STUDENT RESULT1 TO RESULT4.
EXECUTE.

• Data are scores on tests recorded in separate cases along with a student identification
number and a test number. In this example, there are four possible tests for three students.
Not all students took every test.

• Vector RESULT creates variables RESULT1 through RESULT4.

• For each case, COMPUTE assigns the SCORE value to one of the four vector variables,
depending on the value of TESTNUM. The other three vector variables for each case keep
the system-missing value they were initialized to.

• Aggregating by variable STUDENT creates new cases, as shown by the output from the
PRINT command (see Figure 1). The MAX function in AGGREGATE returns the maxi-
mum value across cases with the same value for STUDENT. If a student has taken a par-
ticular test, the one valid value is returned as the value for variable RESULT1, RESULT2,
RESULT3, or RESULT4.

Figure 1 PRINT output after aggregating
1 10 20 30 40
2 . 15 25 .
3 40 . 55 60

935

VERIFY

VERIFY [VARIABLES=series name]

Example:
VERIFY VARIABLE=STOCK.

Overview

VERIFY produces a report on the status of the most current DATE, USE, and PREDICT
specifications. The report lists the first and last observations in the working data file,
the current USE and PREDICT ranges, and any anomalies in the DATE variables. The
number of missing values and the values of the first and last observations in the file and
in the USE and PREDICT ranges can also be displayed for a specified series.

VERIFY should be used before a time series procedure whenever there is a possibility that
DATE variables or USE and PREDICT ranges have been invalidated. In particular, the work-
ing data file should be verified after you have modified the file structure with commands
such as SELECT IF, SORT CASES, and AGGREGATE.

Options

If a series is specified after VERIFY, the values of the first and last observations in the file
and in the USE and PREDICT periods are reported for that series. In addition, the number of
observations in the working data file that have missing values for that series is displayed.
This can be useful for determining the USE ranges that do not include any missing values.

Basic Specification

The basic specification is the command keyword VERIFY.
• VERIFY displays the first and last observations in the working data file and in the USE

and PREDICT ranges. This information is presented by case number and by the values of
the DATE variables.

• For DATE variables, VERIFY reports the number of missing or invalid values. In addition,
DATE variables that are not properly nested within the next higher-level DATE variable,
that have start or end values other than those expected at the beginning or end of a cycle,
or that increment by more than the expected increment are flagged with an asterisk next
to the problem. An explanation of the problem is given.

936 VERIFY

Operations

• VERIFY reports on cases remaining after any preceding SELECT IF commands.

• The USE and PREDICT ranges are defined by the last USE and PREDICT commands spec-
ified before the VERIFY command. If USE and PREDICT have not been specified, the USE
range is the entire series, and the PREDICT range does not exist.

Limitations

• Maximum 1 VARIABLES subcommand. Only 1 series can be specified on VARIABLES.

VARIABLES Subcommand

VARIABLES names a series to include in the report and is optional. The actual keyword
VARIABLES can be omitted.
• The series named on VARIABLES must be numeric. The DATE_ series is non-numeric and

cannot be specified.

• Only one VARIABLES subcommand can be specified, and it can name only one series.

Examples

VERIFY.

• This command produces a report on the status of the most recent DATE, USE, and
PREDICT specifications, as well as the first and last valid cases in the file.

VERIFY VARIABLE=STOCK.

• In addition to the default VERIFY information, this command displays information on
series STOCK, including the values of the first and last cases and how many values in that
series are missing.

937

WEIGHT

WEIGHT {BY varname}
 {OFF }

Example:
WEIGHT BY V1.
FREQUENCIES VAR=V2.

Overview

WEIGHT weights cases differentially for analysis. WEIGHT can be used to obtain population
estimates when you have a sample from a population for which some subgroup has been
over- or undersampled. WEIGHT can also be used to weight a sample up to population size
for reporting purposes or to replicate an example from a table or other aggregated data (see
p. 190 for an example). With WEIGHT, you can arithmetically alter the sample size or its dis-
tribution.

Basic Specification

The basic specification is keyword BY followed by the name of the weight variable. Cases
are weighted according to the values of the specified variable.

Syntax Rules

• Only one numeric variable can be specified. The variable can be a precoded weighting
variable or it can be computed with the transformation language.

• WEIGHT cannot be placed within a FILE TYPE—END FILE TYPE or INPUT PROGRAM—
END INPUT PROGRAM structure. It can be placed nearly anywhere following these com-
mands in a transformation program. See Appendix A for a discussion of the program
states and the placement of commands.

Operations

• Unlike most transformations, WEIGHT takes effect as soon as it is encountered in the
command sequence. Thus, special attention should be paid to its position among com-
mands (see “Command Order” on p. 6).

• Weighting is permanent during a session unless it is preceded by a TEMPORARY com-
mand, changed by another WEIGHT command, or turned off with the WEIGHT OFF
specification.

938 WEIGHT

• Each WEIGHT command overrides the previous one.

• WEIGHT uses the value of the specified variable to arithmetically replicate cases for sub-
sequent procedures. Cases are not physically replicated. For example, if you use a weight-
ed file with CROSSTABS, the counts in the cells are actually the sums of the case weights.
CROSSTABS then rounds cell counts when displaying the tables.

• Weight values do not need to be integer.

• Cases with missing or nonpositive values for the weighting variable are treated as having
a weight of 0 and are thus invisible to statistical procedures. They are not used in calcu-
lations even where unweighted counts are specified. These cases do remain in the file,
however, and are included in case listings and saved when the file is saved.

• A file saved when weighting is in effect maintains the weighting.

• If the weighted number of cases exceeds the sample size, tests of significance are inflated;
if it is smaller, they are deflated.

Example

WEIGHT BY V1.
FREQ VAR=V2.

• The frequency counts for the values of variable V2 will be weighted by the values of
variable V1.

Example

COMPUTE WVAR=1.
IF (GROUP EQ 1) WVAR=.5.
WEIGHT BY WVAR.

• Variable WVAR is initialized to 1 with the COMPUTE command. The IF command changes
the value of WVAR to 0.5 for cases where GROUP equals 1.

• Subsequent procedures will use a case base in which cases from group 1 count only half
as much as other cases.

939

WRITE

WRITE [OUTFILE=file] [RECORDS={1}] [{NOTABLE}]
 {n} {TABLE }

 /{1 } varlist [{col location [(format)]}] [varlist...]
 {rec #} {(format list) }
 {* }

 [/{2 }...]
 {rec #}

Example:
WRITE OUTFILE=PRSNNL / MOHIRED YRHIRED DEPT SALARY NAME.
EXECUTE.

Overview

WRITE writes files in a machine-readable format that can be used by other software appli-
cations. When used for this purpose, the OUTFILE subcommand is required. If OUTFILE is
not specified, the output from WRITE that can be displayed is included with the output from
your session in a format similar to that used by the PRINT command.

Options

Formats. You can specify formats for the variables. (See “Formats” on p. 941.)

Strings. You can include strings within the variable specifications. The strings can be used
to label values or to add extra space between values. (See “Strings” on p. 942.)

Multiple Lines per Case. You can write variables on more than one line for each case. See the
RECORDS subcommand on p. 942.

Output File. You can direct the output to a specified file using the OUTFILE subcommand.

Summary Table. You can display a table that summarizes the variable formats with the TABLE
subcommand.

Subcommand Order

Subcommands can be specified in any order. However, all subcommands must be used
before the slash that precedes the first variable list.

940 WRITE

Basic Specification

The basic specification is a slash followed by a variable list. The values for all the variables
specified on the list are included with the rest of the output from your session.

Syntax Rules

• A slash must precede the variable specifications. The first slash begins the definition of
the first (and possibly only) line per case of the WRITE output.

• Specified variables must already exist, but they can be numeric, string, scratch, tempo-
rary, or system variables. Subscripted variable names, such as X(1) for the first element in
vector X, cannot be used.

• Keyword ALL can be used to write the values of all user-defined variables in the working
data file.

Operations

• WRITE is executed once for each case constructed from the data file.

• Values are written to the file as the data are read.

• PRINT is a transformation and will not be executed unless it is followed by a procedure or
the EXECUTE command.

• Lines longer than 132 columns can be written. However, if the record width of the lines
to be written exceeds the default output width or the width specified with SET WIDTH, the
program issues an error message and terminates processing.

• There are no carriage control characters in the output file generated by WRITE.

• User-missing values are written just like valid values. System-missing values are repre-
sented by blanks.

• If you are writing a file to be used on another system, you should take into account that
some data types cannot be read all computers.

• If long records are less convenient than short records with multiple records per case, you
can write out a case identifier and insert a string as a record identification number. The
receiving system can then check for missing record numbers (see “Strings” on p. 942 for
an example).

WRITE 941

Example

WRITE OUTFILE=PRSNNL / MOHIRED YRHIRED DEPT SALARY NAME.
FREQUENCIES VARIABLES=DEPT.

• WRITE writes values for each variable on the variable list to file PRSNNL. The FREQUENCIES
procedure reads the data and causes WRITE to be executed.

• All variables are written with their dictionary formats.

Example

WRITE OUTFILE=PRSNNL /ALL.
EXECUTE.

• WRITE writes values for all user-defined variables in the working data file to file PRSNNL.
The EXECUTE command executes WRITE.

Formats

By default, WRITE uses the dictionary write formats. You can specify formats for some or all
variables specified on WRITE. For a string variable, the specified format must have the same
width as that of the dictionary format.

• Format specifications can be either column-style or FORTRAN-like (see DATA LIST). The
column location specified with column-style formats or implied with FORTRAN-like
formats refers to the column in which the variable will be written.

• A format specification following a list of variables applies to all the variables in the list.
Use an asterisk to prevent the specified format from applying to variables preceding the
asterisk. The specification of column locations implies a default print format, and that for-
mat will apply to all previous variables if no asterisk is used.

• All available formats can be specified on WRITE. Note that hex and binary formats use
different widths. For example, the AHEX format must have a width twice that of the cor-
responding A format. For more information on specifying formats and on the formats
available, see DATA LIST and “Variable Formats” on p. 22.

• Format specifications are in effect only for the WRITE command. They do not change the
dictionary write formats.

• To specify a blank between variables in the output, use a string (see “Strings” on p. 942),
specify blank columns in the format, or use an X or T format element in the WRITE spec-
ifications (see DATA LIST for information on X and T).

Example
WRITE OUTFILE=PRSNNL / TENURE (F2.0) ’ ’ MOHIRED YRHIRED DEPT *

SALARY85 TO SALARY88 (4(DOLLAR8,1X)) NAME.
EXECUTE.

• Format F2.0 is specified for TENURE. A blank between apostrophes is specified as a string
after TENURE to separate values of TENURE from those of MOHIRED.

942 WRITE

• MOHIRED, YRHIRED, and DEPT are written with default formats because the asterisk pre-
vents them from receiving the DOLLAR8 format specified for SALARY85 to SALARY88.
The 1X format element is specified with DOLLAR8 to add one blank after each value of
SALARY85 to SALARY88.

• NAME uses the default dictionary format.

Strings

You can specify strings within the variable list. Strings must be enclosed in apostrophes or
quotation marks.
• If a format is specified for a variable list, the application of the format is interrupted by a

specified string. Thus, the string has the same effect within a variable list as an asterisk.

Example
WRITE OUTFILE=PRSNNL

/EMPLOYID ’1’ MOHIRED YRHIRED SEX AGE JOBCAT NAME
/EMPLOYID ’2’ DEPT86 TO DEPT88 SALARY86 TO SALARY88.

EXECUTE.

• Strings are used to assign the constant 1 to record 1 of each case, and 2 to record 2 to pro-
vide record identifiers in addition to the case identifier EMPLOYID.

RECORDS Subcommand

RECORDS indicates the total number of lines written per case. The number specified on
RECORDS is informational only. The actual specification that causes variables to be written
on a new line is a slash within the variable specifications. Each new line is requested by an-
other slash.

• RECORDS must be specified before the slash that precedes the start of the variable
specifications.

• The only specification on RECORDS is an integer to indicate the number of records for
the output. If the number does not agree with the actual number of records indicated by
slashes, the program issues a warning and ignores the specification on RECORDS.

• Specifications for each line of output must begin with a slash. An integer can follow the
slash, indicating the line on which values are to be written. The integer is informational
only. It cannot be used to rearrange the order of records in the output. If the integer does
not agree with the actual record number indicated by the number of slashes in the variable
specifications, the integer is ignored.

• A slash that is not followed by a variable list generates a blank line in the output.

Examples
WRITE OUTFILE=PRSNNL RECORDS=2

/EMPLOYID NAME DEPT
/EMPLOYID TENURE SALARY.

EXECUTE.

• WRITE writes the values of an individual’s name and department on one line, tenure and
salary on the next line, and the employee identification number on both lines.

WRITE 943

Example
WRITE OUTFILE=PRSNNL RECORDS=2

/1 EMPLOYID NAME DEPT
/2 EMPLOYID TENURE SALARY.

EXECUTE.

• This command is equivalent to the command in the preceding example.

Example
WRITE OUTFILE=PRSNNL / EMPLOYID NAME DEPT / EMPLOYID TENURE SALARY.
EXECUTE.

• This command is equivalent to the commands in both preceding examples.

OUTFILE Subcommand

OUTFILE specifies the target file for the output from the WRITE command. By default, the
output is included with the rest of the output from the session.

• OUTFILE must be specified before the slash that precedes the start of the variable
specifications.

• The output from WRITE can exceed 132 characters.

Example
WRITE OUTFILE=WRITEOUT

/1 EMPLOYID DEPT SALARY /2 NAME.
EXECUTE.

• OUTFILE specifies WRITEOUT as the file that receives the WRITE output.

TABLE Subcommand

TABLE requests a table showing how the variable information is formatted. NOTABLE is the
default.

• TABLE must be specified before the slash that precedes the start of the variable specifications.

Example
WRITE OUTFILE=PRSNNL TABLE /1 EMPLOYID DEPT SALARY /2 NAME.
EXECUTE.

• TABLE requests a summary table describing the WRITE specifications.

944

WRITE FORMATS

WRITE FORMATS varlist (format) [varlist...]

Example:
WRITE FORMATS SALARY (DOLLAR8)

/ HOURLY (DOLLAR7.2)
/ RAISE BONUS (PCT2).

Overview

WRITE FORMATS changes variable write formats. Write formats are output formats and con-
trol the form in which values are written by the WRITE command.

WRITE FORMATS changes only write formats. To change print formats, use the PRINT
FORMATS command. To change both the print and write formats with a single specification,
use the FORMATS command. For information on assigning input formats during data defi-
nition, see DATA LIST. For a more detailed discussion of input and output formats, see “Vari-
able Formats” on p. 22.

Basic Specification

The basic specification is a variable list followed by the new format specification in paren-
theses. All specified variables receive the new format.

Syntax Rules

• You can specify more than one variable or variable list, followed by a format in paren-
theses. Only one format can be specified after each variable list. For clarity, each set of
specifications can be separated by a slash.

• You can use keyword TO to refer to consecutive variables in the working data file.

• The specified width of a format must include enough positions to accommodate any
punctuation characters such as decimal points, commas, dollar signs, or date and time
delimiters. (This differs from assigning an input format on DATA LIST, where the pro-
gram automatically expands the input format to accommodate punctuation characters in
output.)

• Custom currency formats (CCw, CCw.d) must first be defined on the SET command
before they can be used on WRITE FORMATS.

• WRITE FORMATS cannot be used with string variables. To change the length of a string
variable, declare a new variable of the desired length with the STRING command and
then use COMPUTE to copy values from the existing string into the new string.

WRITE FORMATS 945

Operations

• Unlike most transformations, WRITE FORMATS takes effect as soon as it is encountered
in the command sequence. Special attention should be paid to its position among com-
mands. For more information, see “Command Order” on p. 6.

• Variables not specified on WRITE FORMATS retain their current formats in the working
data file. To see the current formats, use the DISPLAY command.

• The new write formats are changed only in the working file and are in effect for the du-
ration of the session or until changed again with a WRITE FORMATS or FORMATS com-
mand. Write formats in the original data file (if one exists) are not changed, unless the file
is resaved with the SAVE or XSAVE command.

• New numeric variables created with transformation commands are assigned default print
and write formats of F8.2 (or the format specified on the FORMAT subcommand of SET).
The WRITE FORMATS command can be used to change the new variable’s write formats.

• New string variables created with transformation commands are assigned the format
specified on the STRING command that declares the variable. WRITE FORMATS cannot be
used to change the format of a new string variable.

• Date and time formats are effective only with the LIST and TABLES procedures and the
PRINT and WRITE transformation commands. All other procedures use F format regard-
less of the date and time formats specified. See “Date and Time Formats” on p. 51.

• If a numeric data value exceeds its width specification, the prograam attempts to write
some value nevertheless. First the program rounds decimal values, then removes punctu-
ation characters, then tries scientific notation, and finally, if there is still not enough
space, produces asterisks indicating that a value is present but cannot be written in the as-
signed width.

Example

WRITE FORMATS SALARY (DOLLAR8)
/ HOURLY (DOLLAR7.2)
/ RAISE BONUS (PCT2).

• The write format for SALARY is changed to DOLLAR with eight positions, including the dol-
lar sign and comma when appropriate. An eight-digit number would require a DOLLAR11
format specification: eight characters for the digits, two characters for commas, and one
character for the dollar sign.

• The write format for HOURLY is changed to DOLLAR with seven positions, including the
dollar sign, decimal point, and two decimal places.

• The write format for both RAISE and BONUS is changed to PCT with two positions: one
for the percentage and one for the percent sign.

Example

COMPUTE V3=V1 + V2.
WRITE FORMATS V3 (F3.1).

• COMPUTE creates the new numeric variable V3. By default, V3 is assigned an F8.2 format.

946 WRITE FORMATS

• WRITE FORMATS changes the write format for V3 to F3.1.

Example

SET CCA=’-/-.Dfl ..-’.
WRITE FORMATS COST (CCA14.2).

• SET defines a European currency format for the custom currency format type CCA.

• WRITE FORMATS assigns the write format CCA to variable COST. See the SET command
for more information on custom currency formats.

947

XSAVE

XSAVE OUTFILE=file

 [/KEEP={ALL** }] [/DROP=varlist]
 {varlist}

 [/RENAME=(old varlist=new varlist)...]

 [/MAP] [/{COMPRESSED }]
 {UNCOMPRESSED}

**Default if the subcommand is omitted.

Example:
XSAVE OUTFILE=EMPL /RENAME=(AGE=AGE88) (JOBCAT=JOBCAT88).
MEANS RAISE88 BY DEPT88.

Overview

XSAVE produces an SPSS-format data file. An SPSS-format data file contains data plus a
dictionary. The dictionary contains a name for each variable in the data file plus any as-
signed variable and value labels, missing-value flags, and variable print and write formats.
The dictionary also contains document text created with the DOCUMENTS command.

SAVE also creates SPSS-format data files. The principal difference is that XSAVE is not
executed until data are read for the next procedure, while SAVE is executed by itself. Thus,
XSAVE can reduce processing time by consolidating two data passes into one.

See SAVE TRANSLATE and SAVE SCSS for information on saving data files that can be
used by other programs.

Options

Variable Subsets and Order. You can save a subset of variables and reorder the variables that
are saved using the DROP and KEEP subcommands.

Variable Names. You can rename variables as they are copied into the SPSS-format data file
using the RENAME subcommand.

Variable Map. To confirm the names and order of the variables saved in the SPSS-format
data file, use the MAP subcommand. MAP displays the variables saved in the SPSS-format
data file next to their corresponding names in the working data file.

Data Compression. You can write the data file in compressed or uncompressed form using
the COMPRESSED or UNCOMPRESSED subcommand.

948 XSAVE

Basic Specification

The basic specification is the OUTFILE subcommand, which specifies a name for the SPSS-
format data file to be saved.

Subcommand Order

• Subcommands can be specified in any order.

Syntax Rules

• OUTFILE is required and can be specified only once. If OUTFILE is specified more than
once, only the last OUTFILE specification is in effect.

• KEEP, DROP, RENAME, and MAP can be used as many times as needed.

• Only one of the subcommands COMPRESSED or UNCOMPRESSED can be specified per
XSAVE command.

• Documentary text can be dropped from the working data file with the DROP DOCUMENTS
command.

• XSAVE cannot appear within a DO REPEAT—END REPEAT structure.

• Multiple XSAVE commands writing to the same file are not permitted.

Operations

• Unlike the SAVE command, XSAVE is a transformation command and is executed when
the data are read for the next procedure.

• The new SPSS-format data file dictionary is arranged in the same order as the working file
dictionary unless variables are reordered with the KEEP subcommand. Documentary text
from the working file dictionary is always saved unless it is dropped with the DROP DOC-
UMENTS command before XSAVE.

• New variables created by transformations and procedures previous to the XSAVE com-
mand are included in the new SPSS-format data file, and variables altered by transfor-
mations are saved in their modified form. Results of any temporary transformations
immediately preceding the XSAVE command are included in the file; scratch variables
are not.

• SPSS-format data files are binary files designed to be read and written by SPSS only.
SPSS-format data files can be edited only with the UPDATE command. Use the MATCH
FILES and ADD FILES commands to merge SPSS-format data files.

• The working data file is still available for transformations and procedures after XSAVE is
executed.

• XSAVE processes the dictionary first and displays a message that indicates how many vari-
ables will be saved. Once the data are written, XSAVE indicates how many cases were
saved. If the second message does not appear, the file was probably not completely written.

XSAVE 949

Limitations

• Maximum 10 XSAVE commands are allowed in a session.

Example

GET FILE=HUBEMPL.
XSAVE OUTFILE=EMPL88 /RENAME=(AGE=AGE88) (JOBCAT=JOBCAT88).
MEANS RAISE88 BY DEPT88.

• The GET command retrieves the SPSS-format data file HUBEMPL.

• The RENAME subcommand renames variable AGE to AGE88 and variable JOBCAT to
JOBCAT88.

• XSAVE is not executed until the program reads the data for procedure MEANS. The pro-
gram saves file EMPL88 and generates a MEANS table in a single data pass.

• After MEANS is executed, the HUBEMPL file is still the working data file. Variables AGE
and JOBCAT retain their original names in the working file.

Example

GET FILE=HUBEMPL.
TEMPORARY.
RECODE DEPT85 TO DEPT88 (1,2=1) (3,4=2) (ELSE=9).
VALUE LABELS DEPT85 TO DEPT88 1 ’MANAGEMENT’ 2 ’OPERATIONS’ 3 ’UNKNOWN’.
XSAVE OUTFILE=HUBTEMP.
CROSSTABS DEPT85 TO DEPT88 BY JOBCAT.

• Both the saved data file and the CROSSTABS output will reflect the temporary recoding
and labeling of the department variables.

• If SAVE were specified instead of XSAVE, the data would be read twice instead of once
and the CROSSTABS output would not reflect the recoding.

OUTFILE Subcommand

OUTFILE specifies the SPSS-format data file to be saved. OUTFILE is required and can be
specified only once. If OUTFILE is specified more than once, only the last OUTFILE is in
effect.

DROP and KEEP Subcommands

DROP and KEEP are used to save a subset of variables. DROP specifies the variables not to
save in the new data file; KEEP specifies the variables to save in the new data file; variables
not named on KEEP are dropped.

• Variables can be specified in any order. The order of variables on KEEP determines the
order of variables in the SPSS-format data file. The order on DROP does not affect the
order of variables in the SPSS-format data file.

950 XSAVE

• Keyword ALL on KEEP refers to all remaining variables not previously specified on KEEP.
ALL must be the last specification on KEEP.

• If a variable is specified twice on the same subcommand, only the first mention is recognized.

• Multiple DROP and KEEP subcommands are allowed. Specifying a variable that is not in
the working data file or that has been dropped because of a previous DROP or KEEP sub-
command results in an error, and the XSAVE command is not executed.

• Keyword TO can be used to specify a group of consecutive variables in the SPSS-format
data file.

Example
XSAVE OUTFILE=HUBTEMP /DROP=DEPT79 TO DEPT84 SALARY79.
CROSSTABS DEPT85 TO DEPT88 BY JOBCAT.

• The SPSS-format data file is saved as HUBTEMP. All variables between and including
DEPT79 and DEPT84, as well as SALARY79, are excluded from the SPSS-format data file.
All other variables are saved.

Example
GET FILE=PRSNL.
COMPUTE TENURE=(12-CMONTH +(12*(88-CYEAR)))/12.
COMPUTE JTENURE=(12-JMONTH +(12*(88-JYEAR)))/12.
VARIABLE LABELS TENURE ’Tenure in Company’

JTENURE ’Tenure in Grade’.
XSAVE OUTFILE=PRSNL88 /DROP=GRADE STORE
/KEEP=LNAME NAME TENURE JTENURE ALL.
REPORT FORMAT=AUTO /VARS=AGE TENURE JTENURE SALARY
/BREAK=DIVISION /SUMMARY=MEAN.

• Variables TENURE and JTENURE are created by COMPUTE commands and assigned
variable labels by the VARIABLE LABELS command. TENURE and JTENURE are added to
the end of the working data file.

• DROP excludes variables GRADE and STORE from file PRSNL88. KEEP specifies that
LNAME, NAME, TENURE, and JTENURE are the first four variables in file PRSNL88, fol-
lowed by all remaining variables not specified on DROP. These remaining variables are
saved in the same sequence as they appear in the original file.

RENAME Subcommand

RENAME changes the names of variables as they are copied into the new SPSS-format data
file.

• The specification on RENAME is a list of old variable names followed by an equals sign
and a list of new variable names. The same number of variables must be specified on both
lists. Keyword TO can be used on the first list to refer to consecutive variables in the work-
ing data file and on the second list to generate new variable names (see the TO keyword
on p. 20). The entire specification must be enclosed in parentheses.

• Alternatively, you can specify each old variable name individually, followed by an equals
sign and the new variable name. Multiple sets of variable specifications are allowed. The
parentheses around each set of specifications are optional.

XSAVE 951

• RENAME does not affect the working data file. However, if RENAME precedes DROP or
KEEP, variables must be referred to by their new names on DROP or KEEP.

• Old variable names do not need to be specified according to their order in the working
data file.

• Name changes take place in one operation. Therefore, variable names can be exchanged
between two variables.

• Multiple RENAME subcommands are allowed.

Example
XSAVE OUTFILE=EMPL88 /RENAME AGE=AGE88 JOBCAT=JOBCAT88.
CROSSTABS DEPT85 TO DEPT88 BY JOBCAT.

• RENAME specifies two name changes for file EMPL88: AGE is renamed to AGE88 and
JOBCAT is renamed to JOBCAT88.

Example
XSAVE OUTFILE=EMPL88 /RENAME (AGE JOBCAT=AGE88 JOBCAT88).
CROSSTABS DEPT85 TO DEPT88 BY JOBCAT.

• The name changes are identical to those in the previous example: AGE is renamed to
AGE88 and JOBCAT is renamed to JOBCAT88. The parentheses are required with this
method.

MAP Subcommand

MAP displays a list of the variables in the SPSS-format data file and their corresponding
names in the working data file.

• The only specification is keyword MAP. There are no additional specifications.
• Multiple MAP subcommands are allowed. Each MAP subcommand maps the results of

subcommands that precede it, but not results of subcommands that follow it.

Example
GET FILE=HUBEMPL.
XSAVE OUTFILE=EMPL88 /RENAME=(AGE=AGE88) (JOBCAT=JOBCAT88)
/KEEP=LNAME NAME JOBCAT88 ALL /MAP.
MEANS RAISE88 BY DEPT88.

• MAP is used to confirm the new names for AGE and JOBCAT and the order of variables in
the EMPL88 file (LNAME, NAME, and JOBCAT88, followed by all remaining variables from
the working data file).

COMPRESSED and UNCOMPRESSED Subcommands

COMPRESSED saves the file in compressed form. UNCOMPRESSED saves the file in uncom-
pressed form. In a compressed file, small integers (from −99 to 155) are stored in one byte
instead of the eight bytes used in an uncompressed file.

952 XSAVE

• The only specification is the keyword COMPRESSED or UNCOMPRESSED. There are no
additional specifications.

• Compressed data files occupy less disk space than do uncompressed data files.

• Compressed data files take longer to read than do uncompressed data files.
• The GET command, which reads SPSS-format data files, does not need to specify whether

the files it reads are compressed or uncompressed.

Only one COMPRESSED or UNCOMPRESSED subcommand can be specified per XSAVE
command. COMPRESSED is usually the default, though UNCOMPRESSED may be the
default on some systems.

953

Appendix A
Commands and Program States

Command order is determined only by the system’s need to know and do certain things
in logical sequence. You cannot label a variable before the variable exists in the file.
Similarly, you cannot transform or analyze data before a working data file is defined.
This appendix briefly describes how the program handles various tasks in a logical se-
quence. It is not necessary to understand the program states in order to construct a com-
mand file, but some knowledge of how the program works will help you considerably
when you encounter a problem or try to determine why the program doesn’t seem to
want to accept your commands or seems to be carrying out your instructions incorrectly.

Program States
To run a program session, you need to define your working data file, transform the data
and then analyze it. This order conforms very closely to the order the program must fol-
low as it processes your commands. Specifically, the program checks command order
according to the program state through which it passes. The program state is a char-
acteristic of the program before and after a command is encountered. There are four
program states. Each session starts in the initial state, followed by the input program
state, the transformation state, and the procedure state. The four program states in
turn enable the program to set up the environment, read data, modify data, and execute
a procedure. Figure A.1 shows how the program moves through these states. The pro-
gram determines the current state from the commands that it has already encountered
and then identifies which commands are allowed in that state.

Figure A.1 Program states

Initial
Setup

Input
Program

Transformation
Program Procedure Finish

954 Appendix A

A session must go through initial, input program, and procedure states to be a complete
session. Since all sessions start in the initial state, you need to be concerned primarily
with what commands you need to define your working data file and to analyze the data.
The following commands define a very minimal session:

GET FILE=DATAIN.
FREQUENCIES VARIABLES=ALL.

The GET command defines the working data file and the FREQUENCIES command
reads the data file and analyzes it. Thus, the program goes through the required three
states: initial, input, and procedure.

Typically, a session also goes through the transformation state, but it can be skipped
as shown in the example above and in the diagram in Figure A.1. Consider the following
example:

TITLE ’PLOT FOR COLLEGE SURVEY’.

DATA LIST FILE=TESTDATA
 /AGE 1-3 ITEM1 TO ITEM3 5-10.

VARIABLE LABELS ITEM1 ’Opinion on level of defense spending’
 ITEM2 ’Opinion on level of welfare spending’
 ITEM3 ’Opinion on level of health spending’.
VALUE LABELS ITEM1 TO ITEM3 -1 ’Disagree’ 0 ’No opinion’ 1
’Agree’.
MISSING VALUES AGE(-99,-98) ITEM1 TO ITEM3 (9).
RECODE ITEM1 TO ITEM3 (0=1) (1=0) (2=-1) (9=9) (ELSE=SYSMIS).
RECODE AGE (MISSING=9) (18 THRU HI=1) (LO THRU 18=0) INTO VOTER.
PRINT /$CASENUM 1-2 AGE 4-6 VOTER 8-10.
VALUE LABELS VOTER 0 ’Under 18’ 1 ’18 or over’.
MISSING VALUES VOTER (9).
PRINT FORMATS VOTER (F1.0).

FREQUENCIES VARIABLES=VOTER, ITEM1 TO ITEM3.

The program starts in the initial state, where it processes the TITLE command. It then
moves into the input state upon encountering the DATA LIST command. The program
can then move into either the transformation or procedure state once the DATA LIST
command has been processed.

In this example, the program remains in the transformation state after processing
each of the commands from VARIABLE LABELS through PRINT FORMATS. The pro-
gram then moves into the procedure state to process the FREQUENCIES command. As
shown in Figure A.1, the program can repeat the procedure state if it encounters a sec-
ond procedure. The program can return to the transformation state if it encounters addi-
tional transformation commands following the first procedure. Finally, in some sessions
the program can return to the input program state when it encounters commands such as
FILE TYPE or MATCH FILES.

Commands and Program States 955

Determining Command Order
Table A.1 shows where specific commands can be placed in the command file in terms
of program states and what happens when the program encounters a command in each
of the four program states. If a column contains a dash, the command is accepted in that
program state and it leaves the program in that state. If one of the words INIT, INPUT,
TRANS, or PROC appears in the column, the command is accepted in the program state
indicated by the column heading, but it moves the program into the state indicated by
INIT, INPUT, TRANS, or PROC. Asterisks in a column indicate errors when the program
encounters the command in that program state. Commands marked with the dagger (†)
in the column for the procedure state clear the working data file.

The table shows six groups of commands: utility, file definition, input program, data
transformation, restricted transformation, and procedure commands. These groups are
discussed in the following sections.

To read the table, first locate the command. If you simply want to know where in the
command stream it can go, look for columns without asterisks. For example, the COM-
PUTE command can be used when the program is in the input program state, the trans-
formation state, or the procedure state, but it will cause an error if you try to use it in the
initial state. If you want to know what can follow a command, look at each of the four
columns next to the command. If the column is dashed, any commands not showing as-
terisks in the column for that program state can follow the command. If the column con-
tains one of the words INIT, INPUT, TRANS, or PROC, any command not showing
asterisks in the column for the program state indicated by that word can follow the com-
mand.

For example, if you want to know what commands can follow the INPUT PROGRAM
command, note first that it is allowed only in the initial or procedure states. Then note
that INPUT PROGRAM puts the program into the input program state wherever it occurs
legally. This means that commands with dashes or words in the INPUT column can fol-
low the INPUT PROGRAM command. This includes all the utility commands, the DATA
LIST command, input program commands, and transformation commands like COM-
PUTE. Commands that are not allowed after the INPUT PROGRAM command are most
of the file definition commands that are their own input program (such as GET), restrict-
ed transformations (such as SELECT IF), and procedures.

956 Appendix A

Table A.1 Commands and program states

INIT INPUT TRANS PROC

Utility commands

CLEAR TRANSFORMATIONS ** PROC PROC —
COMMENT — — — —
DISPLAY ** — — —
DOCUMENT ** — — —
DROP DOCUMENTS ** — — —
EDIT — — — —
END DATA — — — —
ERASE — — — —
FILE HANDLE — — — —
FILE LABEL — — — —
FINISH — — — —
HELP — — — —
INCLUDE — — — —
INFO — — — —
DEFINE—!ENDDEFINE — — — —
N OF CASES — — — TRANS
NEW FILE — INIT INIT INIT†
PROCEDURE OUTPUT — — — —
SET, SHOW — — — —
TITLE, SUBTITLE — — — —

File definition commands

ADD FILES TRANS ** — TRANS
DATA LIST TRANS — INPUT TRANS†
FILE TYPE INPUT ** INPUT INPUT†
GET TRANS ** — TRANS†
GET BMDP TRANS ** — TRANS†
GET CAPTURE TRANS ** — TRANS†
GET OSIRIS TRANS ** — TRANS†
GET SAS TRANS ** — TRANS†
GET SCSS TRANS ** — TRANS†
GET TRANSLATE TRANS ** — TRANS†
HOST — — — —
IMPORT TRANS ** — TRANS†
INPUT PROGRAM TRANS ** — TRANS†
KEYED DATA LIST TRANS — — TRANS
MATCH FILES TRANS ** — TRANS
MATRIX DATA TRANS ** — TRANS†

Commands and Program States 957

RENAME VARIABLES ** — — TRANS
UPDATE TRANS ** — TRANS

Input program commands

END CASE ** — ** **
END FILE ** — ** **
END FILE TYPE ** TRANS ** **
END INPUT PROGRAM ** TRANS ** **
POINT ** — ** **
RECORD TYPE ** — ** **
REPEATING DATA ** — ** **
REREAD ** — ** **

Transformation commands

ADD VALUE LABELS ** — — TRANS
APPLY DICTIONARY ** — — TRANS
COMPUTE ** — — TRANS
COUNT ** — — TRANS
DO IF—END IF ** — — TRANS
DO REPEAT—END REPEAT ** — — TRANS
ELSE ** — — TRANS
ELSE IF ** — — TRANS
FORMATS ** — — TRANS
IF ** — — TRANS
LEAVE ** — — TRANS
LOOP—END LOOP, BREAK ** — — TRANS
MISSING VALUES ** — — TRANS
NUMERIC ** — — TRANS
PRINT ** — — TRANS
PRINT EJECT ** — — TRANS
PRINT FORMATS ** — — TRANS
PRINT SPACE ** — — TRANS
RECODE ** — — TRANS
SPLIT FILE ** — — TRANS
STRING ** — — TRANS
VALUE LABELS ** — — TRANS
VARIABLE LABELS ** — — TRANS
VECTOR ** — — TRANS
WEIGHT ** — — TRANS
WRITE ** — — TRANS

Table A.1 Commands and program states (Continued)

INIT INPUT TRANS PROC

958 Appendix A

Unrestricted Utility Commands
Most utility commands can appear in any state. Table A.1 shows this by the absence of
asterisks in the columns next to the EDIT through TITLE commands. For example, the
EDIT command can appear at any point in the command file.

The dashed lines indicate that after a utility command is processed, the program re-
mains in the same state it was in before the command execution. INIT, TRANS, or PROC
indicates that the command moves the program to that state. For example, if the program
is in the procedure state, N OF CASES moves the program to the transformation state.
The FINISH command terminates command processing wherever it appears. Any com-
mands appearing after FINISH will not be read and therefore will not cause an error.

File Definition Commands
You can use most of the file definition commands in the initial state, the transformation
state, and the procedure state. Most of these commands cause errors if you try to use
them in the input program state. However, DATA LIST and KEYED DATA LIST can be and
often are used in input programs.

WRITE FPR,ATS ** — — TRANS
XSAVE ** — — TRANS

Restricted transformations

FILTER ** ** — TRANS
REFORMAT ** ** — TRANS
SAMPLE ** ** — TRANS
SELECT IF ** ** — TRANS
TEMPORARY ** ** — TRANS

Procedures

BEGIN DATA ** ** PROC —
EXECUTE ** ** PROC —
EXPORT ** ** PROC —
GRAPH ** ** PROC —
LIST ** ** PROC —
SAVE ** ** PROC —
SAVE SCSS ** ** PROC —
SAVE TRANSLATE ** ** PROC —
SORT CASES ** ** PROC —
other procedures ** ** PROC —

Table A.1 Commands and program states (Continued)

INIT INPUT TRANS PROC

Commands and Program States 959

After they are used in the initial state, most file definition commands move the pro-
gram directly to the transformation state, since these commands are the entire input pro-
gram. FILE TYPE and INPUT PROGRAM move the program into the input program state
and require input program commands to complete the input program. Commands in Ta-
ble A.1 marked with a dagger (†) clear the working data file.

Input Program Commands
The commands associated with the complex file facility (FILE TYPE, RECORD TYPE,
and REPEATING DATA) and commands associated with the INPUT PROGRAM com-
mand are allowed only in the input program state.

The END CASE, END FILE, POINT, RECORD TYPE, REPEATING DATA, and REREAD
leave the program in the input program state. The two that move the program on to the
transformation state are END FILE TYPE for input programs initiated with FILE TYPE and
END INPUT PROGRAM for those initiated with INPUT PROGRAM.

Transformation Commands
The entire set of transformation commands from ADD VALUE LABELS to XSAVE can ap-
pear in the input program state as part of an input program, in the transformation state,
or in the procedure state. When you use transformation commands in the input program
state or the transformation state, the program remains in the same state it was in before
the command. When the program is in the procedure state, these commands move the
program back to the transformation state.

Transformation commands and some file definition and input program commands
can be categorized according to whether they are declarative, status-switching, or ex-
ecutable. Declarative commands alter the working data file dictionary but do not affect
the data. Status-switching commands change the program state but do not affect the da-
ta. Executable commands alter the data. Table A.2 lists these commands and indicates
which of the three categories applies.

* This command is also declarative.
**This command is also executable and declarative.
†This command does not fit into these categories; however, it is neither executable nor status-switching,
so it is classified as declarative.

960 Appendix A

Restricted Transformations
Commands REFORMAT, SAMPLE, SELECT IF, and TEMPORARY are restricted trans-
formation commands because they are allowed in either the transformation state or the
procedure state but cannot be used in the input program state.

If you use restricted transformation commands in the transformation state, the pro-
gram remains in the transformation state. If you use them in the procedure state, they
move the program back to the transformation state.

Table A.2 Taxonomy of transformation commands

Command Type Command Type

ADD FILES Exec* LEAVE Decl
ADD VALUE LABELS Decl LOOP Exec
APPLY DICTIONARY Decl MATCH FILES Exec*
BREAK Exec MISSING VALUES Decl
COMPUTE Exec N OF CASES Decl
COUNT Exec NUMERIC Decl
DATA LIST Exec* POINT Exec
DO IF Exec PRINT, PRINT EJECT Exec
DO REPEAT Decl† PRINT FORMATS Decl
ELSE Exec PRINT SPACE Exec
ELSE IF Exec RECODE Exec
END CASE Exec RECORD TYPE Exec
END FILE Exec REFORMAT Exec
END FILE TYPE Stat REPEATING DATA Exec*
END IF Exec REREAD Exec
END INPUT PROGRAM Stat SAMPLE Exec
END LOOP Exec SELECT IF Exec
END REPEAT Decl† SPLIT FILE Decl
FILE TYPE Stat** STRING Decl
FILTER Exec TEMPORARY Stat
FORMATS Decl VALUE LABELS Decl
GET Exec* VARIABLE LABELS Decl
GET CAPTURE Exec* VECTOR Decl
GET OSIRIS Exec* WEIGHT Decl
IF Exec WRITE Exec
INPUT PROGRAM Stat WRITE FORMATS Decl
KEYED DATA LIST Exec* XSAVE Exec

Commands and Program States 961

Procedures
The procedures and the BEGIN DATA, EXECUTE, EXPORT, LIST, SAVE, SAVE SCSS,
SAVE TRANSLATE, and SORT CASES commands cause the data to be read. These com-
mands are allowed in either the transformation state or the procedure state.

When the program is in the transformation state, these commands move the program
to the procedure state. When you use these commands in the procedure state, the pro-
gram remains in that state.

963

Appendix B
IMPORT/EXPORT Character Sets

Communication-formatted portable files do not use positions 1–63 in the following table.
Tape-formatted portable files use the complete table. (See the EXPORT command for a
description of the two types of files.)

Positio
n

Graphic Macintosh
Microsoft

Code Page 850
ANSI/ISO

Latin 1
IBM

EBCDIC
ASCII
7-BIT

0 NUL 0 0 0 0 0
1 SOH 1 1 1 1 1
2 STX 2 2 2 2 2
3 ETX 3 3 3 3 3
4 SEL 156 4
5 HT 9 9 9 5 9
6 RNL 134 6
7 DEL 127 127 127 7 127
8 GE 151 8
9 SPS 141 9

10 RPT 142 10
11 VT 11 11 11 11 11
12 FF 12 12 12 12 12
13 CR 13 13 13 13 13
14 SO 14 14 14 14 14
15 SI 15 15 15 15 15
16 DLE 16 16 16 16 16
17 DC1 17 17 17 17 17
18 DC2 18 18 18 18 18
19 DC3 19 19 19 19 19
20 DC4 20 20 20 60 20
21 NL 133 21
22 BS 8 8 8 22 8
23 DOC 135 23
24 CAN 24 24 24 24 24

964 Appendix B

25 EM 25 25 25 25 25
26 UBS 146 26
27 CU1 143 27
28 (I)FS1 28 28 28 28 28
29 (I)GS 29 29 29 29 29
30 (I)RS 30 30 30 30 30
31 SM,SW 138 42
32 DS 128 32
33 SOS 129 33
34 FS2 130 34
35 WUS 131 35
36 CSP 139 43
37 LF 10 10 10 37 10
38 ETB 23 23 23 38 23
39 ESC 27 27 27 39 27
40 (I)US 31 31 31 31 31
41 BYP 132 36
42 RES 157 20
43 ENQ 5 5 5 45 5
44 ACK 6 6 6 46 6
45 BEL 7 7 7 47 7
46 SYN 22 22 22 50 22
47 IR 147 51
48 PP 148 52
49 TRN 149 53
50 NBS 150 54
51 EOT 4 4 4 55 4
52 SBS 152 56
53 IT 153 57
54 RFF 154 58
55 CU3 155 59
56 NAK 21 21 21 61 21
57 SUB 26 26 26 63 26
58 SA 136 40
59 SFE 137 41
60 MFA 140 44
61 reserved
62 reserved
63 reserved

Positio
n

Graphic Macintosh
Microsoft

Code Page 850
ANSI/ISO

Latin 1
IBM

EBCDIC
ASCII
7-BIT

IMPORT/EXPORT Character Sets 965

64 0 48 48 48 240 48
65 1 49 49 49 241 49
66 2 50 50 50 242 50
67 3 51 51 51 243 51
68 4 52 52 52 244 52
69 5 53 53 53 245 53
70 6 54 54 54 246 54
71 7 55 55 55 247 55
72 8 56 56 56 248 56
73 9 57 57 57 249 57
74 A 65 65 65 193 65
75 B 66 66 66 194 66
76 C 67 67 67 195 67
77 D 68 68 68 196 68
78 E 69 69 69 197 69
79 F 98 98 70 198 98
80 G 71 71 71 199 71
81 H 72 72 72 200 72
82 I 73 73 73 201 73
83 J 74 74 74 209 74
84 K 75 75 75 210 75
85 L 76 76 76 211 76
86 M 77 77 77 212 77
87 N 78 78 78 213 78
88 O 79 79 79 214 79
89 P 80 80 80 215 80
90 Q 81 81 81 216 81
91 R 82 82 82 217 82
92 S 83 83 83 226 83
93 T 84 84 84 227 84
94 U 85 85 85 228 85
95 V 86 86 86 229 86
96 W 87 87 87 230 87
97 X 88 88 88 231 88
98 Y 89 89 89 232 89
99 Z 90 90 90 233 90

100 a 97 97 97 129 97
101 b 98 98 98 130 98
102 c 99 99 99 131 99

Positio
n

Graphic Macintosh
Microsoft

Code Page 850
ANSI/ISO

Latin 1
IBM

EBCDIC
ASCII
7-BIT

966 Appendix B

103 d 100 100 100 132 100
104 e 101 101 101 133 101
105 f 102 102 102 134 102
106 g 103 103 103 135 103
107 h 104 104 104 136 104
108 i 105 105 105 137 105
109 j 106 106 106 145 106
110 k 107 107 107 146 107
111 l 108 108 108 147 108
112 m 109 109 109 148 109
113 n 110 110 110 149 110
114 o 111 111 111 150 111
115 p 112 112 112 151 112
116 q 113 113 113 152 113
117 r 114 114 114 153 114
118 s 115 115 115 162 115
119 t 116 116 116 163 116
120 u 117 117 117 164 117
121 v 118 118 118 165 118
122 w 119 119 119 166 119
123 x 120 120 120 167 120
124 y 121 121 121 168 121
125 z 122 122 122 169 122
126 space 32 32 32 64 32
127 . 46 46 46 75 46
128 < 60 60 60 76 60
129 (40 40 40 77 40
130 + 43 43 43 78 43
131 | 79
132 & 38 38 38 80 38
133 [91 91 91 173 91
134] 93 93 93 189 93
135 ! 33 33 33 90 33
136 $ 36 36 36 91 36
137 * 42 42 42 92 42
138) 41 41 41 93 41
139 ; 59 59 59 94 59
140 ¬ or ∧ or ↑ 94 94 94 95 94
141 - 45 45 45 96 45

Positio
n

Graphic Macintosh
Microsoft

Code Page 850
ANSI/ISO

Latin 1
IBM

EBCDIC
ASCII
7-BIT

IMPORT/EXPORT Character Sets 967

142 / 47 47 47 97 47
143 = 124 124 124 106 124
144 , 44 44 44 107 44
145 % 37 37 37 108 37
146 __ 95 95 95 109 95
147 > 62 62 62 110 62
148 ? 63 63 63 111 63
149 ‘ 96 96 96 121 96
150 : 58 58 58 122 58
151 # 35 35 35 123 35
152 @ 64 64 64 124 64
153 ´ 39 39 39 125 39
154 = 61 61 61 126 61
155 “ 34 34 34 127 34
156 ≤ 178 140

157 255 156
158 ± 177 241 177 158

159 n 159

160 Â 251 248 176
161 † 143
162 ˜ 126 126 126 161 126
163 _ 209 196 160
164 192 171

165 218 172
166 ≥ 179 174

167 0 176
168 1 251 185 177
169 2 253 178 178
170 3 252 179 179
171 4 180
172 5 181
173 6 182
174 7 183
175 8 184
176 9 185
177 217 187
178 191 188
179 ≠ 173 190

Positio
n

Graphic Macintosh
Microsoft

Code Page 850
ANSI/ISO

Latin 1
IBM

EBCDIC
ASCII
7-BIT

968 Appendix B

180 — 191
181 (141
182) 157
183 +3 142
184 { 123 123 123 192 123
185 } 125 125 125 208 125
186 \ 92 92 92 224 92
187 ¢ 162 189 162 74
188 • 165 183 175
189 À 203 183 192
190 Á 231 181 193
191 Â 229 182 194
192 Ã 204 199 195
193 Ä 128 142 196
194 Å 129 143 197
195 Æ 174 198
196 Ç 130 128 199
197 È 233 212 200
198 É 131 144 201
199 Ê 230 210 202
200 Ë 232 211 203
201 Ì 237 222 204
202 Í 234 214 205
203 Î 235 215 206
204 Ï 236 216 207
205 209 208
206 Ñ 132 165 209
207 Ò 241 227 210
208 Ó 238 224 211
209 Ô 239 226 212
210 Õ 205 229 213
211 Ö 133 153 214
212 Ø 175 157 216
213 Ù 244 235 217
214 Ú 242 233 218
215 Û 243 234 219
216 Ü 134 154 220
217 237 221
218 232 222

Positio
n

Graphic Macintosh
Microsoft

Code Page 850
ANSI/ISO

Latin 1
IBM

EBCDIC
ASCII
7-BIT

IMPORT/EXPORT Character Sets 969

1 file separator

219 ß 167 225 223
220 à 136 133 224
221 á 135 160 225
222 â 137 131 226
223 ã 139 198 227
224 ä 138 132 228
225 å 140 134 229
226 190 145 230
227 ç 141 135 231
228 è 143 138 232
229 é 142 130 233
230 ê 144 136 234
231 ë 145 137 235
232 ì 147 141 236
233 í 146 161 237
234 î 148 140 238
235 ï 149 139 239
236 208 240
237 ñ 150 164 241
238 ò 152 149 242
239 ó 151 162 243
240 ô 153 147 244
241 õ 155 228 245
242 ö 154 148 246
243 ø 191 155 248
244 ù 157 151 249
245 ú 156 163 250
246 û 158 150 251
247 ü 159 129 252
248 236 253
249 ÿ 216 152 255
250 231 254
251 ¡ 193 173 161
252 ¿ 192 168 191
253 199 174 171
254 200 175 187
255 reserved

Positio
n

Graphic Macintosh
Microsoft

Code Page 850
ANSI/ISO

Latin 1
IBM

EBCDIC
ASCII
7-BIT

2 field separator
3 not the plus sign

971

Appendix C
Defining Complex Files

Most data files have a rectangular, case-ordered structure and can be read with the
DATA LIST command. This chapter illustrates the use of commands for defining com-
plex, nonrectangular files.

• Nested files contain several types of records with a hierarchical relationship
among the record types. You can define nested files with the FILE TYPE NESTED
command.

• Grouped files have several records per case, and a case’s records are grouped to-
gether in a file. You can use DATA LIST and FILE TYPE GROUPED to define
grouped files.

• In a mixed file, different types of cases have different kinds of records. You can de-
fine mixed files with the FILE TYPE MIXED command.

• A record in a repeating data file contains information for several cases. You can
use the REPEATING DATA command to define files with repeating data.

It is a good idea to read the descriptions of the FILE TYPE and REPEATING DATA com-
mands before proceeding.

A Rectangular File
Figure C.1 shows contents of data file RECTANG.DAT, which contains 1988 sales data
for salespeople working in different territories. Year, region, and unit sales are recorded
for each salesperson. Like most data files, the sales data file has a rectangular format,
since information on a record applies only to one case.

Figure C.1 File RECTANG.DAT

1988 CHICAGO JONES 900
1988 CHICAGO GREGORY 400
1988 BATON ROUGE RODRIGUEZ 300
1988 BATON ROUGE SMITH 333
1988 BATON ROUGE GRAU 100

972 Appendix C

Since the sales data are rectangular, you can use the DATA LIST command to define these
data:

DATA LIST FILE=’RECTANG.DAT’
 / YEAR 1-4
 REGION 6-16(A)
 SALESPER 18-26(A)
 SALES 29-31.

• DATA LIST defines the variable YEAR in columns 1 through 4 and string variable
REGION in columns 6 through 16 in file RECTANG.DAT. The program also reads
variables SALESPER and SALES on each record.

• The LIST output in Figure C.2 shows the contents of each variable.

Nested Files
In a nested file, information on some records applies to several cases. The 1988 sales
data are arranged in nested format in Figure C.3. The data contain three kinds of records.
A code in the first column indicates whether a record is a year (Y), region (R), or person
record (P).

The record types are related to each other hierarchically. Year records represent the high-
est level in the hierarchy, since the year value 1988 applies to each salesperson in the
file (only one year record is used in this example). Region records are intermediate- lev-
el records; region names apply to salesperson records that occur before the next region
record in the file. For example, Chicago applies to salespersons Jones and Gregory. Ba-
ton Rouge applies to Rodriguez, Smith, and Grau. Person records represent the lowest

Figure C.2 LIST output for RECTANG.DAT
YEAR REGION SALESPER SALES

1988 CHICAGO JONES 900
1988 CHICAGO GREGORY 400
1988 BATON ROUGE RODRIGUEZ 300
1988 BATON ROUGE SMITH 333
1988 BATON ROUGE GRAU 100

Figure C.3 File NESTED.DAT

Y 1988
R CHICAGO
P JONES 900
P GREGORY 400
R BATON ROUGE
P RODRIGUEZ 300
P SMITH 333
P GRAU 100

Defining Complex Files 973

level in the hierarchy. The information they contain—salesperson and unit sales—de-
fines a case. Nested file structures minimize redundant information in a data file. For ex-
ample, 1988 and Baton Rouge appear several times in Figure C.1, but only once in
Figure C.3.

Since each record in the nested file has a code that indicates record type, you can use
the FILE TYPE and RECORD TYPE commands to define the nested sales data:

FILE TYPE NESTED FILE=’NESTED.DAT’ RECORD=#TYPE 1 (A)

RECORD TYPE ’Y’.
DATA LIST / YEAR 5-8.

RECORD TYPE ’R’.
DATA LIST / REGION 5-15 (A).

RECORD TYPE ’P’.
DATA LIST / SALESPER 5-15 (A) SALES 20-23

END FILE TYPE.

• FILE TYPE indicates that data are in nested form in file NESTED.DAT.

• RECORD defines the record type variable as string variable #TYPE in column 1.
#TYPE is defined as scratch variable so it won’t be saved in the working data file.

• One pair of RECORD TYPE and DATA LIST statements is specified for each record
type in the file. The first pair of RECORD TYPE and DATA LIST statements defines the
variable YEAR in columns 5 through 8 on every year record. The second pair defines
the string variable REGION on region records. The final pair defines SALESPER and
SALES on person records.

• The order of RECORD TYPE statements defines the hierarchical relationship among
the records. The first RECORD TYPE defines the highest-level record type. The next
RECORD TYPE defines the next highest level, and so forth. The last RECORD TYPE
defines a case in the working data file.

• END FILE TYPE signals the end of file definition.

• In processing nested data, the program reads each record type you define. Information
on the highest and intermediate-level records is spread to cases to which the informa-
tion applies. The output from the LIST command is identical to that in Figure C.2.

Nested Files with Missing Records
In a nested file, some cases may be missing one or more record types defined in
RECORD TYPE commands. For example, in Figure C.4 the region record for salesper-
sons Jones and Gregory is missing.

974 Appendix C

The program assigns missing values to variables that are not present for a case. Using
the modified NESTED.DAT file in Figure C.4, the commands in the previous example
produce the output shown in Figure C.5. You can see that the program assigned missing
values to REGION for Jones and Gregory.

You may want to examine cases with missing records, since these cases may indicate
data errors. If you add the MISSING=WARN subcommand to your FILE TYPE command,
the program prints a warning message when a case is missing a defined record type. For
example, the program would print two warnings when processing data in Figure C.4.
When MISSING is set to WARN, cases are built in the same way as when the default set-
ting (NOWARN) is in effect.

Grouped Data
In a grouped file, a case has several records that are grouped together in the file. You can
use DATA LIST to define a grouped file if each case has the same number of records and
records appear in the same order for each case. You can use FILE TYPE GROUPED
whether the number of records per case and record order are fixed or vary. However,
FILE TYPE GROUPED requires that each record have a case identifier and a record code.

Using DATA LIST
Table C.1 shows the organization of a grouped data file containing school subject scores
for three students. Each student has three data records, and each record contains a score.
The first record for each student also contains a case identifier. Records for each case

Figure C.4 NESTED.DAT file with missing records

Y 1988
P JONES 900
P GREGORY 400
R BATON ROUGE
P RODRIGUEZ 300
P SMITH 333
P GRAU 100

Figure C.5 LIST output for nested data with missing records
YEAR REGION SALESPER SALES

1988 JONES 900
1988 GREGORY 400
1988 BATON ROUGE RODRIGUEZ 300
1988 BATON ROUGE SMITH 333
1988 BATON ROUGE GRAU 100

Defining Complex Files 975

are grouped together. Student 1 records appear first, followed by records for student 2
and student 3.

Record order determines whether a score is a reading, math, or science score. The
reading score appears on the first record for a case, the math score appears on the second
record, and the science score appears on the third record.

Since each case has the same number of records and record order is fixed across cases,
you can use DATA LIST to define the student data:

DATA LIST FILE=’GROUPED.DAT’ RECORDS=3
 /STUDENT 1 READING 5-6
 /MATH 5-6
 /SCIENCE 5-6.

LIST.

• DATA LIST indicates that data are in file GROUPED.DAT.

• RECORDS defines three records per case. The program reads student ID number (STU-
DENT) and reading score (READING) in the first record for a case. Math and science
scores are read in the second and third records.

• The output from the LIST command is shown in Figure C.6.

Using FILE TYPE GROUPED
To use FILE TYPE GROUPED to define a grouped file, each record must have a case
identifier and a record code. In the following commands, each data record contains a

Table C.1 Data for GROUPED.DAT

Student Score

1 58
59
97

2 43
88
45

3 67
75
90

Figure C.6 LIST output for GROUPED.DAT
STUDENT READING MATH SCIENCE

 1 58 59 97
 2 43 88 45
 3 67 75 90

976 Appendix C

student ID number coded 1, 2, or 3 and a code indicating whether the score on that
record is a reading (R), math (M), or science (S) score:

FILE TYPE GROUPED RECORD=#REC 3(A) CASE=STUDENT 1.

RECORD TYPE ’R’.
DATA LIST / READING 5-6.

RECORD TYPE ’M’.
DATA LIST / MATH 5-6.

RECORD TYPE ’S’.
DATA LIST / SCIENCE 5-6.

END FILE TYPE.

BEGIN DATA
1 R 58
1 M 59
1 S 97
2 R 43
2 M 88
2 S 45
3 R 67
3 M 75
3 S 90
END DATA.

LIST.

• FILE TYPE indicates that data are in grouped format. RECORD defines the variable
containing record codes as string variable #REC in column 3. CASE defines the case
identifier variable STUDENT in the first column of each record.

• One pair of RECORD TYPE and DATA LIST statements appears for each record type
in the file. The program reads reading score in every R record, math score in M
records, and science score in S records.

• END FILE TYPE signals the end of file definition.

• BEGIN DATA and END DATA indicate that data are inline.

• The output from LIST is identical to the output in Figure C.6.

FILE TYPE GROUPED is most useful when record order varies across cases and when
cases have missing or duplicate records. In the modified data shown in Table C.2, only
case 1 has all three record types. Also, record order varies across cases. For example,
the first record for case 1 is a science record, whereas the first record for cases 2 and 3
is a reading record.

Defining Complex Files 977

You can use the same FILE TYPE commands as above to read the modified file. As
shown in the output from LIST in Figure C.7, the program assigns missing values to vari-
ables that are missing for a case.

By default, the program generates a warning message when a case is missing a defined
record type in a grouped file or when a record is not in the same order as in RECORD
TYPE commands. Thus, four warnings are generated when the commands for the previ-
ous example are used to read the modified GROUPED.DAT file. You can suppress these
warnings if you add the optional specifications MISSING=NOWARN and ORDERED=NO
on your FILE TYPE command.

In the modified GROUPED.DAT file, the case identifier STUDENT appears in the
same column position in each record. When the location of the case identifier varies for
different types of records, you can use the CASE option of the RECORD TYPE command
to specify different column positions for different records. For example, suppose the
case identifier appears in first column position on reading and science records and in col-
umn 2 in math records. You could use the following commands to define the data:

FILE TYPE GROUPED RECORD=#REC 3(A) CASE=STUDENT 1.

RECORD TYPE ’R’.
DATA LIST / READING 5-6.

RECORD TYPE ’M’ CASE=2.
DATA LIST / MATH 5-6.

RECORD TYPE ’S’.
DATA LIST / SCIENCE 5-6.

END FILE TYPE.

Table C.2 Modified grouped data file

Student Subject Score

1 S 97
1 R 58
1 M 59
2 R 43
3 R 67
3 M 75

Figure C.7 LIST output for modified GROUPED.DAT file
STUDENT READING MATH SCIENCE

 1 58 59 97
 2 43 . .
 3 67 75 .

978 Appendix C

BEGIN DATA
1 S 97
1 R 58
 1M 59
2 R 43
3 R 67
 3M 75
END DATA.

LIST.

• FILE TYPE indicates that the data are in grouped format. RECORD defines the vari-
able containing record codes as string variable #REC. CASE defines the case identi-
fier variable as STUDENT in the first column of each record.

• One pair of RECORD TYPE and DATA LIST statements is coded for each record type
in the file.

• The CASE specification on the RECORD TYPE statement for math records overrides
the CASE value defined on FILE TYPE. Thus, the program reads STUDENT in col-
umn 2 in math records and column 1 in other records.

• END FILE TYPE signals the end of file definition.

• BEGIN DATA and END DATA indicate that data are inline.

• The output from LIST is identical to that in Figure C.7.

Mixed Files
In a mixed file, different types of cases have different kinds of records. You can use FILE
TYPE MIXED to read each record or a subset of records in a mixed file.

Reading Each Record in a Mixed File
Table C.3 shows test data for two hypothetical elementary school students referred to a
remedial education teacher. Student 1, who was thought to need special reading atten-
tion, took reading tests (word identification and comprehension tests). The second stu-
dent completed writing tests (handwriting, spelling, vocabulary, and grammar tests).
Test code (READING or WRITING) indicates whether the record contains reading or
writing scores.

Defining Complex Files 979

The following commands define the test data:

FILE TYPE MIXED RECORD=TEST 1-7(A).

RECORD TYPE ’READING’.
DATA LIST / ID 9-10 GRADE 12-13 WORD 15-16 COMPRE 18-19.

RECORD TYPE ’WRITING’.
DATA LIST / ID 9-10 GRADE 12-13 HANDWRIT 15-16 SPELLING 18-19
 VOCAB 21-22 GRAMMAR 24-25.
END FILE TYPE.

BEGIN DATA
READING 1 04 65 35
WRITING 2 03 50 55 30 25
END DATA.

LIST.

• FILE TYPE specifies that the data contain mixed record types. RECORD reads the
record identifier (variable TEST) in columns 1 through 7.

• One pair of RECORD TYPE and DATA LIST statements is coded for each record type in
the file. The program reads variables ID, GRADE, WORD, and COMPRE in the record
in which the value of TEST is READING, and ID, GRADE, HANDWRIT, SPELLING,
VOCAB, and GRAMMAR in the WRITING record.

• END FILE TYPE signals the end of file definition.

• BEGIN DATA and END DATA indicate that data are inline. Data are mixed, since some
column positions contain different variables for the two cases. For example, word
identification score is recorded in columns 15 and 16 for student 1. For student 2,
handwriting score is recorded in these columns.

• Figure C.8 shows the output from LIST. Missing values are assigned for variables that
are not recorded for a case.

Table C.3 Academic test data for two students

Student 1

Test ID Grade Word Compre

READING 1 04 65 35

Student 2

Test ID Grade Handwrit Spelling Vocab Grammar

WRITING 2 03 50 55 30 25

980 Appendix C

Reading a Subset of Records in a Mixed File
You may want to process a subset of records in a mixed file. The following commands
read only the data for the student who took reading tests:

FILE TYPE MIXED RECORD=TEST 1-7(A).

RECORD TYPE ’READING’.
DATA LIST / ID 9-10
 GRADE 12-13
 WORD 15-16
 COMPRE 18-19.

RECORD TYPE ’WRITING’.
DATA LIST / ID 9-10
 GRADE 12-13
 HANDWRIT 15-16
 SPELLING 18-19
 VOCAB 21-22
 GRAMMAR 24-25.

END FILE TYPE.

BEGIN DATA
READING 1 04 65 35
WRITING 2 03 50 55 30 25
END DATA.

LIST.

• FILE TYPE specifies that data contain mixed record types. RECORD defines the
record identification variable as TEST in columns 1 through 7.

• RECORD TYPE defines variables on reading records. Since the program skips all
record types that are not defined by default, the case with writing scores is not read.

• END FILE TYPE signals the end of file definition.

• BEGIN DATA and END DATA indicate that data are inline. Data are identical to those
in the previous example.

• Figure C.9 shows the output from LIST.

Figure C.8 LIST output for mixed file
TEST ID GRADE WORD COMPRE HANDWRIT SPELLING VOCAB GRAMMAR

READING 1 4 65 35
WRITING 2 3 . . 50 55 30 25

Defining Complex Files 981

Repeating Data
You can use the REPEATING DATA command to read files in which each record contains
repeating groups of variables that define several cases. Command syntax depends on
whether the number of repeating groups is fixed across records.

Fixed Number of Repeating Groups
Table C.4 shows test score data for students in three classrooms. Each record contains a
classroom number and two pairs of student ID and test score variables. For example, in
class 101, student 182 has a score of 12 and student 134 has a score of 53. In class 103,
student 15 has a score of 87 and student 203 has a score of 69. Each pair of ID and score
variables is a repeating group, since these variables appear twice on each record.

The following commands generate a working data file in which one case is built for each
occurrence of SCORE and ID, and classroom number is spread to each case on a record.

INPUT PROGRAM.
DATA LIST / CLASS 3-5.
REPEATING DATA STARTS=6 / OCCURS=2
 /DATA STUDENT 1-4 SCORE 5-8.
END INPUT PROGRAM.

BEGIN DATA
 101 182 12 134 53
 102 99 112 200 150
 103 15 87 203 69
END DATA.

LIST.

• INPUT PROGRAM signals the beginning of data definition.

• DATA LIST defines variable CLASS, which is spread to each student on a classroom
record.

Table C.4 Data in REPEAT.DAT file

Class ID Score ID Score

101 182 12 134 53
102 99 112 200 150
103 15 87 203 69

Figure C.9 LIST output for reading record
TEST ID GRADE WORD COMPRE

READING 1 4 65 35

982 Appendix C

• REPEATING DATA specifies that the input file contains repeating data. STARTS indi-
cates that repeating data begin in column 6. OCCURS specifies that the repeating data
group occurs twice in each record.

• DATA defines variables that are repeated (STUDENT and SCORE). The program be-
gins reading the first repeating data group in column 6 (the value of STARTS). Since
the value of OCCURS is 2, the program reads the repeating variables a second time,
beginning in the next available column (column 14).

• END INPUT PROGRAM signals the end of data definition.

• BEGIN DATA and END DATA specify that data are inline.

• The output from LIST is shown in Figure C.10. Each student is a separate case.

Varying Number of Repeating Groups
To use REPEATING DATA to define a file in which the number of repeating data groups
varies across records, your data must contain a variable indicating the number of repeat-
ing data groups on a record. The following commands define such a file:

INPUT PROGRAM.
DATA LIST / #NUM 1 CLASS 3-5.
REPEATING DATA STARTS=6 / OCCURS=#NUM
 /DATA STUDENT 1-4 SCORE 5-8.
END INPUT PROGRAM.

BEGIN DATA
3 101 182 12 134 53 199 30
2 102 99 112 200 150
1 103 15 87
END DATA.

LIST.

• INPUT PROGRAM signals the beginning of data definition.

• DATA LIST defines variables CLASS in columns 3 through 5 and #NUM, a scratch
variable in column 1 that contains the number of repeating data groups in a record.

• REPEATING DATA specifies that the input file contains repeating data. STARTS indi-
cates that repeating data begin in column 6. OCCURS sets the number of repeating
groups on a record equal to the value of #NUM.

Figure C.10 LIST output for repeating data
CLASS STUDENT SCORE

 101 182 12
 101 134 53
 102 99 112
 102 200 150
 103 15 87
 103 203 69

Defining Complex Files 983

• DATA defines variables that are repeated. Since #NUM is 3 in the first and third
records, the program reads three sets of STUDENT and SCORE variables in these
records. STUDENT and SCORE are read twice in record 2.

• END INPUT PROGRAM signals the end of data definition.

• Data appear between BEGIN DATA and END DATA.

• Figure C.11 shows the output from LIST.

If your data file does not have a variable indicating the number of repeating data groups
per record, you can use the LOOP and REREAD commands to read the data, as in:

INPUT PROGRAM.
DATA LIST / CLASS 3-5 #ALL 6-29 (A).
LEAVE CLASS.

LOOP #I = 1 TO 17 BY 8 IF SUBSTR(#ALL, #I, 8) NE ’’.
- REREAD COLUMN = #I + 5.
- DATA LIST / STUDENT 1-4 SCORE 5-8.
- END CASE.
END LOOP.
END INPUT PROGRAM.

BEGIN DATA
 101 182 12 134 53 199 30
 102 99 112 200 150
 103 15 87
END DATA.

LIST.

• INPUT PROGRAM signals the beginning of data definition.

• DATA LIST reads CLASS and #ALL, a temporary string variable that contains all of
the repeating data groups for a classroom record. The column specifications for #ALL
(6 through 29) are wide enough to accommodate the classroom record with the most
repeating data groups (record 1).

• LOOP and END LOOP define an index loop. As the loop iterates, the program suc-
cessively reads eight-character segments of #ALL, each of which contains a repeat-
ing data group or an empty field. The program reads the first eight characters of
#ALL in the first iteration, the second eight characters in the second iteration, and so

Figure C.11 LIST output
CLASS STUDENT SCORE

 101 182 12
 101 134 53
 101 199 30
 102 99 112
 103 15 87

984 Appendix C

forth. The loop terminates when the program encounters an empty segment, which
means that there are no more repeating data groups on a record.

• In each iteration of the loop in which an #ALL segment is not empty, DATA LIST reads
STUDENT and SCORE in a classroom record. The program begins reading these
variables in the first record, in the starting column specified by REREAD COLUMN.
For example, in the first iteration, the program reads STUDENT and SCORE begin-
ning in column 6. In the second iteration, the program reads STUDENT and SCORE
starting in column 14 of the same record. When all repeating groups have been read
for a record, loop processing begins on the following record.

• END CASE creates a new case for each repeating group.

• REREAD causes DATA LIST to read repeating data groups in the same record in which
it last read CLASS. Without REREAD, each execution of DATA LIST would begin on
a different record.

• LEAVE preserves the value of CLASS across the repeating data groups on a record.
Thus, the same class number is read for each student on a classroom record.

• INPUT PROGRAM signals the beginning of data definition.

• BEGIN DATA and END DATA indicate that the data are inline. The data are identical
to those in the previous example except that they do not contain a variable indicating
the number of repeating groups per record.

• These commands generate the same output as shown in Figure C.11.

985

Appendix D
Using the Macro Facility

A macro is a set of commands that generates customized command syntax. Using mac-
ros can reduce the time and effort needed to perform complex and repetitive data anal-
ysis tasks.

Macros have two parts: a macro definition, which indicates the beginning and end
of the macro and gives a name to the macro, and a macro body, which contains regular
commands or macro commands that build command syntax. When a macro is invoked
by the macro call, syntax is generated in a process called macro expansion. Then the
generated syntax is executed as part of the normal command sequence.

This chapter shows how to construct macros that perform three data analysis tasks. In
the first example, macros facilitate a file-matching task. In Example 2, macros automate
a specialized statistical operation (testing a sample correlation coefficient against a non-
zero population correlation coefficient). Macros in Example 3 generate random data. As
shown in Table D.1, each example demonstrates various features of the macro facility.
For information on specific macro commands, see the DEFINE command.

Table D.1 Macro features

Example 1 Example 2 Example 3

Macro argument

 Keyword x x x

 Default values x x

 None x x

String manipulation x x

Looping

 Index x x

 List processing x

Direct assignment x x

986 Appendix D

Example 1: Automating a File-Matching Task
Figure D.1 shows a listing of 1988 sales data for salespeople working in different re-
gions. The listing shows that salesperson Jones sold 900 units in the Chicago sales ter-
ritory, while Rodriguez sold 300 units in Baton Rouge.

You can use command syntax shown in Figure D.2 to obtain each salesperson’s percent-
age of total sales for their region.

• The GET command opens SALES88.SAV, an SPSS-format data file. This file be-
comes the working data file.

• SORT CASES sorts the working data file in ascending alphabetical order by REGION.

• The AGGREGATE command saves total sales (variable TOTAL@) for each region in
file TOTALS.SAV.

• MATCH FILES appends the regional totals to each salesperson’s record in the working
data file. (See the MATCH FILES command for more information on matching files.)

• COMPUTE obtains the percentage of regional sales (PCT) for each salesperson.

Figure D.1 Listing of data file SALES88.SAV
YEAR REGION SALESPER SALES

1988 CHICAGO JONES 900
1988 CHICAGO GREGORY 400
1988 BATON ROUGE RODRIGUEZ 300
1988 BATON ROUGE SMITH 333
1988 BATON ROUGE GRAU 100

Figure D.2 Commands for obtaining sales percentages

GET FILE = ’SALES88.SAV’.

SORT CASES BY REGION.

AGGREGATE OUTFILE = ’TOTALS.SAV’
 /PRESORTED
 /BREAK = REGION
 /TOTAL@ = SUM(SALES).

MATCH FILES FILE=*
 /TABLE = ’TOTALS.SAV’
 /BY REGION.

COMPUTE PCT = SALES / TOTAL@.

TITLE 1988 DATA.
LIST.

Using the Macro Facility 987

• The LIST command output displayed in Figure D.3 shows that Rodriguez sold 41%
of the products sold in Baton Rouge. Gregory accounted for 31% of sales in the Chi-
cago area.

Figure D.4 shows a macro that issues the commands in Figure D.2. The macro consists
of the commands that produce sales percentages imbedded between macro definition
commands DEFINE and !ENDDEFINE.

• In Figure D.4, macro definition commands DEFINE and !ENDDEFINE signal the be-
ginning and end of macro processing. DEFINE also assigns the name !TOTMAC to the
macro (the parentheses following the name of the macro are required). The macro
name begins with an exclamation point so that the macro does not conflict with that
of an existing variable or command. Otherwise, if the macro name matched a variable
name, the variable name would invoke the macro whenever the variable name ap-
peared in the command stream.

Figure D.3 Regional sales percentages for 1988
YEAR REGION SALESPER SALES TOTAL@ PCT

1988 BATON ROUGE RODRIGUEZ 300 733.00 .41
1988 BATON ROUGE SMITH 333 733.00 .45
1988 BATON ROUGE GRAU 100 733.00 .14
1988 CHICAGO JONES 900 1300.00 .69
1988 CHICAGO GREGORY 400 1300.00 .31

Figure D.4 !TOTMAC macro

DEFINE !TOTMAC ().

GET FILE = ’SALES88.SAV’.

SORT CASES BY REGION.

AGGREGATE OUTFILE = ’TOTALS.SAV’
 /PRESORTED
 /BREAK = REGION
 /TOTAL@ = SUM(SALES).

MATCH FILES FILE = *
 /TABLE = ’TOTALS.SAV’
 /BY REGION.

COMPUTE PCT = SALES / TOTAL@.

TITLE 1988 DATA.
LIST.

!ENDDEFINE.

!TOTMAC.

988 Appendix D

• Commands between DEFINE and !ENDEFINE constitute the macro body. These com-
mands, which produce sales percentages, are identical to the commands in Figure D.2.

• The final statement in Figure D.4 (!TOTMAC) is the macro call, which invokes the
macro. When the program reads the macro call, it issues the commands in the macro
body. Then these commands are executed, generating output that is identical to that
in Figure D.3.

While the macro in Figure D.4 shows you how to construct a simple macro, it doesn’t
reduce the number of commands needed to calculate regional percentages. However,
you can use macro features such as looping to minimize coding in more complicated
tasks. For example, let’s say that in addition to the 1988 data, you have sales data for
1989 (SALES89.SAV), and each file contains the variables REGION, SALESPER, and
SALES. The modified !TOTMAC macro in Figure D.5 calculates regional sales percent-
ages for each salesperson for 1988 and 1989.

• In Figure D.5, DEFINE and !ENDDEFINE signal the beginning and end of macro
processing.

• Commands !DO and !DOEND define an index loop. Commands between !DO and
!DOEND are issued once in each iteration of the loop. The value of index variable !I,
which changes in each iteration, is 88 in the first iteration and 89 in the second (final)
iteration.

Figure D.5 !TOTMAC macro with index loop

DEFINE !TOTMAC ().

!DO !I = 88 !TO 89.

- GET FILE = !CONCAT(’SALES’, !I, ’.SAV’).
- SORT CASES BY REGION.
- AGGREGATE OUTFILE = ’TOTALS.SAV’
 /PRESORTED
 /BREAK = REGION
 /TOTAL@ = SUM(SALES).
- MATCH FILES FILE = *
 /TABLE = ’TOTALS.SAV’
 /BY REGION.
- COMPUTE PCT= SALES / TOTAL@.

- !LET !YEAR = !CONCAT(’19’,!I).
- TITLE !YEAR DATA.
- LIST.
!DOEND.

!ENDDEFINE.

!TOTMAC.

Using the Macro Facility 989

• In each iteration of the loop, the GET command opens an SPSS-format data file. The
name of the file is constructed using the string manipulation function !CONCAT,
which creates a string that is the concatenation of SALES, the value of the index vari-
able, and .SAV. Thus the file SALES88.SAV is opened in the first iteration.

• Commands between AGGREGATE and COMPUTE calculate percentages on the
working data file. These commands are identical to those in Figure D.4.

• Next, a customized title is created. In the first iteration, the direct assignment com-
mand !LET assigns a value of 1988 to the macro variable !YEAR. This variable is used
in the TITLE command on the following line to specify a title of 1988 DATA.

• The LIST command displays the contents of each variable.

• In the second iteration of the loop, commands display percentages for the 1989 data
file. The output from the !TOTMAC macro is shown in Figure D.6. Note that the list-
ing for 1988 data is the same as in Figure D.3.

Let’s look at another application of the !TOTMAC macro, one that uses keyword arguments
to make the application more flexible. Figure D.7 shows the number of absences for students
in two classrooms. Let’s say you want to calculate deviation scores indicating how many
more (or fewer) times a student was absent than the average student in his or her classroom.
The first step in obtaining deviation scores is to compute the average number of absences per
classroom. We can use the !TOTMAC macro to compute classroom means by modifying the
macro so that it computes means and uses the absences data file (SCHOOL.SAV) as input.

Figure D.6 Regional sales percentages for 1988 and 1989
1988 DATA

YEAR REGION SALESPER SALES TOTAL@ PCT

1988 BATON ROUGE RODRIGUEZ 300 733.00 .41
1988 BATON ROUGE SMITH 333 733.00 .45
1988 BATON ROUGE GRAU 100 733.00 .14
1988 CHICAGO JONES 900 1300.00 .69
1988 CHICAGO GREGORY 400 1300.00 .31

1989 DATA

YEAR REGION SALESPER SALES TOTAL@ PCT
1989 BATON ROUGE GRAU 320 1459.00 .22
1989 BATON ROUGE SMITH 800 1459.00 .55
1989 BATON ROUGE RODRIGUEZ 339 1459.00 .23
1989 CHICAGO JONES 300 1439.00 .21
1989 CHICAGO STEEL 899 1439.00 .62
1989 CHICAGO GREGORY 240 1439.00 .17

990 Appendix D

The !TOTMAC macro in Figure D.8 can produce a variety of group summary statistics
such as sum, mean, and standard deviation for any SPSS-format data file. In the macro
call you specify values of keyword arguments indicating the data file (FILE), the break
(grouping) variable (BREAKVR), the summary function (FUNC), and the variable to be
used as input to the summary function (INVAR). For example, to obtain mean absences
for each classroom, we specify SCHOOL.SAV as the data file, CLASS as the break vari-
able, MEAN as the summary function, and ABSENT as the variable whose values are to
be averaged.

Figure D.7 Listing of file SCHOOL.SAV
CLASS STUDENT ABSENT

 101 BARRY G 3
 101 JENNI W 1
 101 ED F 2
 101 JOHN 0 8
 102 PAUL Y 2
 102 AMY G 3
 102 JOHN D 12
 102 RICH H 4

Figure D.8 !TOTMAC macro with keyword arguments

DEFINE !TOTMAC (BREAKVR = !TOKENS(1)
 /FUNC = !TOKENS(1)
 /INVAR = !TOKENS(1)
 /TEMP = !TOKENS(1) !DEFAULT(TOTALS.SAV)
 /FILE = !CMDEND).
GET FILE = !FILE.
SORT CASES BY !BREAKVR.
AGGREGATE OUTFILE = ’!TEMP’
 /PRESORTED
 /BREAK = !BREAKVR
 /!CONCAT(!FUNC,’@’) = !FUNC(!INVAR).

MATCH FILES FILE = *
 /TABLE = ’!TEMP’
 /BY !BREAKVR.

!ENDDEFINE.

!TOTMAC BREAKVR=CLASS FUNC=MEAN INVAR=ABSENT FILE=SCHOOL.SAV.

COMPUTE DIFF = ABSENT-MEAN@.

LIST.

!TOTMAC BREAKVR=REGION FUNC=SUM INVAR=SALES FILE=SALES89.SAV.

COMPUTE PCT = SALES / SUM@.

LIST.

Using the Macro Facility 991

• In Figure D.8, syntax for declaring keyword arguments follows the name of the mac-
ro in DEFINE.

• !TOKENS(1) specifies that the value of an argument is a string following the name of
the argument in the macro call. Thus the first macro call specifies CLASS as the val-
ue of BREAKVR, MEAN as the value of FUNC, and ABSENT as the value of INVAR.

• !CMDEND indicates that the value for FILE is the remaining text in the macro call
(SCHOOL.SAV).

• TEMP is an optional argument that names an intermediate file to contain the summary
statistics. Since TEMP is not assigned a value in the macro call, summary statistics
are written to the default intermediate file (TOTALS.SAV).

• In the body of the macro, GET FILE opens SCHOOL.SAV.

• SORT CASES sorts the file by CLASS.

• AGGREGATE computes the mean number of absences for each class. The name of
the variable containing the means (MEAN@) is constructed using the !CONCAT func-
tion, which concatenates the value of FUNC and the @ symbol.

• MATCH FILES appends the means to student records.

• COMPUTE calculates the deviation from the classroom mean for each student (vari-
able DIFF).

• LIST displays the deviation scores, as shown in Figure D.9. For example, John D.,
who was absent 12 times, had 6.75 more absences than the average student in class-
room 102. Rich H., who was absent 4 times, had 1.25 fewer absences than the aver-
age student in classroom 102.

• The second macro call and remaining commands in Figure D.8 generate regional
sales percentages for the 1989 sales data. As shown in Figure D.9, percentages are
identical to those displayed in the bottom half of Figure D.6.

Figure D.9 Student absences and 1989 sales percentages
CLASS STUDENT ABSENT MEAN@ DIFF

 101 BARRY G 3 3.50 -.50
 101 JENNI W 1 3.50 -2.50
 101 ED F 2 3.50 -1.50
 101 JOHN 0 8 3.50 4.50
 102 PAUL Y 2 5.25 -3.25
 102 AMY G 3 5.25 -2.25
 102 JOHN D 12 5.25 6.75
 102 RICH H 4 5.25 -1.25

 YEAR REGION SALESPER SALES SUM@ PCT

 1989 BATON ROUGE GRAU 320 1459.00 .22
 1989 BATON ROUGE SMITH 800 1459.00 .55
 1989 BATON ROUGE RODRIGUEZ 339 1459.00 .23
 1989 CHICAGO JONES 300 1439.00 .21
 1989 CHICAGO STEEL 899 1439.00 .62
 1989 CHICAGO GREGORY 240 1439.00 .17

992 Appendix D

You can modify the macro call in Figure D.8 to specify a different data file, input vari-
able, break variable, or summary statistic. To get a different summary statistic (such as
standard deviation), change the value of FUNC (see the AGGREGATE command for
more information on summary functions available in the AGGREGATE procedure).

Example 2: Testing Correlation Coefficients
While the program provides a large variety of statistical procedures, some specialized
operations require the use of COMPUTE statements. For example, you may want to test
a sample correlation coefficient against a population correlation coefficient. When the
population coefficient is nonzero, you can compute a Z statistic to test the hypothesis
that the sample and population values are equal (Morrison, 1976). The formula for Z is

where r is the sample correlation coefficient, p0 is the population coefficient, n is the size
of the sample from which r is obtained, and ln signifies the natural logarithm function.
Z has approximately the standard normal distribution.

Let’s say you want to test an r of 0.66 obtained from a sample of 30 cases against a
population coefficient of 0.85. Figure D.10 shows commands for displaying Z and its
two-tailed probability.

• DATA LIST defines variables containing the sample correlation coefficient (R), sam-
ple size (N), and population correlation coefficient (P).

• BEGIN DATA and END DATA indicate that data are inline.

Z

0.5 1 r+()
1 r–()----------------ln 0.5

1 p0+()
1 p0–()-------------------ln–

1 n 3–()⁄
---=

Figure D.10 Commands for computing Z statistic

DATA LIST FREE / R N P.

BEGIN DATA
.66 30 .85
END DATA.

COMPUTE #ZR = .5* (LN ((1 + R) / (1 - R))).
COMPUTE #ZP = .5* (LN ((1 + P) / (1 - P))).

COMPUTE Z = (#ZR-#ZP)/(1/(SQRT(N-3))).
COMPUTE PROB = 2*(1-CDFNORM(ABS(Z))).

FORMAT PROB (F8.3).
LIST.

Using the Macro Facility 993

• COMPUTE statements calculate Z and its probability. Variables #ZR and #ZP are
scratch variables used in the intermediate steps of the calculation.

• The LIST command output is shown in Figure D.11. Since the absolute value of Z is
large and the probability is small, we reject the hypothesis that the sample was drawn
from a population having a correlation coefficient of 0.85.

If you use the Z test frequently, you may want to construct a macro like that shown in
Figure D.12. The !CORRTST macro computes Z and probability values for a sample cor-
relation coefficient, sample size, and population coefficient specified as values of key-
word arguments.

• DEFINE names the macro as !CORRTST and declares arguments for the sample corre-
lation coefficient (R), the sample size (N), and the population correlation coefficient (P).

Figure D.11 Z statistic and its probability
 R N P Z PROB

 .66 30.00 .85 -2.41 .016

Figure D.12 !CORRTST macro

DEFINE !CORRTST (R = !TOKENS(1)
 /N = !TOKENS(1)
 /P = !TOKENS(1)).

INPUT PROGRAM.
- END CASE.
- END FILE.
END INPUT PROGRAM.

COMPUTE #ZR = .5* (LN ((1 + !R) / (1 - !R))).
COMPUTE #ZP = .5* (LN ((1 + !P) / (1 - !P))).

COMPUTE Z = (#ZR-#ZP) / (1/(SQRT(!N-3))).
COMPUTE PROB = 2*(1-CDFNORM(ABS(Z))).
FORMAT PROB(F8.3).

TITLE SAMPLE R=!R, N=!N, POPULATION COEFFICIENT=!P.

LIST.

!ENDDEFINE.

!CORRTST R=.66 N=30 P=.85.
!CORRTST R=.50 N=50 P=.85.

994 Appendix D

• !TOKENS(1) specifies that the value of an argument is a string that follows the name
of the argument in the macro call. Thus the first macro call specifies values of 0.66,
30, and 0.85 for R, N, and P.

• Commands between INPUT PROGRAM and END INPUT PROGRAM create a work-
ing data file with one case. COMPUTE statements calculate the Z statistic and its
probability using the values of macro arguments R, N, and P. (INPUT PROGRAM
commands would not be needed if COMPUTE statements operated on values in an
existing file or inline data, rather than macro arguments.)

• A customized TITLE shows displays the values of macro arguments used in comput-
ing Z.

• The LIST command displays Z and its probability.

• The !CORRTST macro is called twice in Figure D.12. The first invocation tests an r
of 0.66 from a sample of 30 cases against a population coefficient of 0.85 (this gen-
erates the same Z value and probability as in Figure D.11). The second macro call
tests an r of 0.50 from a sample of 50 cases against the same population correlation
coefficient. The output from these macro calls is shown in Figure D.13.

Figure D.14 shows a modified !CORRTST macro that you can use to test a sample r
against each coefficient in a list of population coefficients.

Figure D.13 Output from !CORRTST
SAMPLE R= .66 , N= 30 , POPULATION COEFFICIENT= .85

 Z PROB

 -2.41 .016

SAMPLE R= .50 , N= 50 , POPULATION COEFFICIENT= .85

 Z PROB

 -4.85 .000

Using the Macro Facility 995

• As in Figure D.12, DEFINE names the macro as !CORRTST and declares arguments
for the sample correlation coefficient (R), the sample size (N), and the population cor-
relation coefficient (P).

• !TOKENS(1) specifies that the value of an argument is a string that follows the name
of the argument in the macro call. Thus, the macro call specifies the value of R as
0.66 and N as 0.30.

• !CMDEND indicates that the value for P is the remaining text in the macro call. Thus
the value of P is a list containing the elements 0.20, 0.40, 0.60, 0.80, 0.85, and 0.90.

• Commands !DO !IN and !DOEND define a list-processing loop. Commands in the
loop compute one Z statistic for each element in the list of population coefficients.
For example, in the first iteration Z is computed using0.20 as the population coeffi-
cient. In the second iteration 0.40 is used. The same sample size (30) and r value
(0.66) are used for each Z statistic.

• The output from the macro call is shown in Figure D.15. One Z statistic is displayed
for each population coefficient.

Figure D.14 !CORRTST macro with list-processing loop

DEFINE !CORRTST (R = !TOKENS(1)
 /N = !TOKENS(1)
 /P = !CMDEND).
- INPUT PROGRAM.
- END CASE.
- END FILE.
- END INPUT PROGRAM.

!DO !I !IN (!P).
- COMPUTE #ZR = .5* (LN ((1 + !R) / (1 - !R))).
- COMPUTE #ZP = .5* (LN ((1 + !I) / (1 - !I))).

- COMPUTE Z = (#ZR-#ZP)/(1/(SQRT(!N-3))).

- COMPUTE PROB=2*(1-CDFNORM(ABS(Z))).
- FORMAT PROB(F8.3).
- TITLE SAMPLE R=!R, N=!N, POPULATION COEFFICIENT=!I.
- LIST.
!DOEND.

!ENDDEFINE.

!CORRTST R=.66 N=30 P=.20 .40 .60 .80 .85 .90.

996 Appendix D

Example 3: Generating Random Data
You can use command syntax to generate variables that have approximately a normal
distribution. Commands for generating five standard normal variables (X1 through X5)
for 1000 cases are shown in Figure D.16. As shown in the output in Figure D.17, each
variable has a mean of approximately 0 and a standard deviation of approximately 1.

Figure D.15 Output from modified !CORRTST macro
SAMPLE R= .66 , N= 30 , POPULATION COEFFICIENT= .20

 Z PROB
 3.07 .002

SAMPLE R= .66 , N= 30 , POPULATION COEFFICIENT= .40

 Z PROB
 1.92 .055

SAMPLE R= .66 , N= 30 , POPULATION COEFFICIENT= .60

 Z PROB
 .52 .605

SAMPLE R= .66 , N= 30 , POPULATION COEFFICIENT= .80

 Z PROB
 -1.59 .112

SAMPLE R= .66 , N= 30 , POPULATION COEFFICIENT= .85

 Z PROB
 -2.41 .016

SAMPLE R= .66 , N= 30 , POPULATION COEFFICIENT= .90

 Z PROB
 -3.53 .000

Figure D.16 Data-generating commands

INPUT PROGRAM.
- VECTOR X(5).
- LOOP #I = 1 TO 1000.
- LOOP #J = 1 TO 5.
- COMPUTE X(#J) = NORMAL(1).
- END LOOP.
- END CASE.
- END LOOP.
- END FILE.
END INPUT PROGRAM.

DESCRIPTIVES VARIABLES X1 TO X5.

Using the Macro Facility 997

The !DATAGEN macro in Figure D.18 issues the data-generating commands shown in
Figure D.16.

In Figure D.18, data-generating commands are imbedded between macro definition
commands. The macro produces the same data and descriptive statistics as shown in
Figure D.17.

You can tailor the generation of normally distributed variables if you modify the
!DATAGEN macro so it will accept keyword arguments, as in Figure D.19. The macro
allows you to specify the number of variables and cases to be generated and the approx-
imate standard deviation.

Figure D.17 Descriptive statistics for generated data
 Valid
Variable Mean Std Dev Minimum Maximum N Label

X1 -.01 1.02 -3.11 4.15 1000
X2 .08 1.03 -3.19 3.22 1000
X3 .02 1.00 -3.01 3.51 1000
X4 .03 1.00 -3.35 3.19 1000
X5 -.01 .96 -3.34 2.91 1000

Figure D.18 !DATAGEN macro

DEFINE !DATAGEN ().

INPUT PROGRAM.
- VECTOR X(5).
- LOOP #I = 1 TO 1000.
- LOOP #J = 1 TO 5.
- COMPUTE X(#J) = NORMAL(1).
- END LOOP.
- END CASE.
- END LOOP.
- END FILE.
END INPUT PROGRAM.

DESCRIPTIVES VARIABLES X1 TO X5.

!ENDDEFINE.

!DATAGEN.

998 Appendix D

• The DEFINE statement in Figure D.19 declares arguments that specify the number of
cases (OBS), variables (VARS), and standard deviation (SD). By default, the macro
creates 1000 cases with 5 variables that have a standard deviation of 1.

• Commands between INPUT PROGRAM and END INPUT PROGRAM generate the
new data using values of the macro arguments.

• Commands !LET and !DO/!DOEND construct a variable list (!LIST) that is used in
DESCRIPTIVES. The first !LET command initializes the list to a null (blank) string
value. For each new variable, the index loop adds to the list a string of the form X1,
X2, X3, and so forth. Thus, DESCRIPTIVES requests means and standard deviations
for each new variable.

• The first macro call generates 500 cases with two standard normal variables. The sec-
ond call requests the default number of variables, cases, and standard deviation. De-
scriptive statistics (not shown) are also computed for each variable.

As shown in Figure D.20, you can declare additional keyword arguments that allow you
to specify the distribution (normal or uniform) of the generated data and a parameter val-
ue that is used as the standard deviation (for normally distributed data) or a range (for
uniformly distributed data).

Figure D.19 !DATAGEN macro with keyword arguments

DEFINE !DATAGEN (OBS =!TOKENS(1) !DEFAULT(1000)
 /VARS =!TOKENS(1) !DEFAULT(5)
 /SD =!CMDEND !DEFAULT(1)).
INPUT PROGRAM.
- VECTOR X(!VARS).
- LOOP #I = 1 TO !OBS.
- LOOP #J = 1 TO !VARS.
- COMPUTE X(#J) = NORMAL(!SD).
- END LOOP.
- END CASE.
- END LOOP.
- END FILE.
END INPUT PROGRAM.

!LET !LIST = !NULL.
!DO !I = 1 !TO !VARS.
- !LET !LIST = !CONCAT(!LIST, ‘ ‘, X, !I).
!DOEND.

DESCRIPTIVES VARIABLES !LIST.

!ENDDEFINE.

!DATAGEN OBS=500 VARS=2 SD=1.
!DATAGEN.

Using the Macro Facility 999

• The DEFINE statement in Figure D.20 declares arguments OBS, VARS, DIST, and
PARAM. As in Figure D.19, OBS and VARS represent the number of observations and
cases to be generated. Arguments DIST and PARAM specify the shape and parameter
of the distribution of generated data. By default, the macro generates 1000 observa-
tions with 5 standard normal variables.

• Statements between INPUT PROGRAM and END INPUT PROGRAM generate the new
data using values of macro arguments.

• Remaining commands in the body of the macro obtain descriptive statistics for gen-
erated variables, as in Figure D.19.

• The macro call in Figure D.20 creates two approximately uniformly distributed vari-
ables with a range of 2. The output from the macro call is shown in Figure D.21.

Figure D.20 !DATAGEN macro with additional keyword arguments

DEFINE !DATAGEN (OBS =!TOKENS(1) !DEFAULT(1000)
 /VARS =!TOKENS(1) !DEFAULT(5)
 /DIST =!TOKENS(1) !DEFAULT(NORMAL)
 /PARAM =!TOKENS(1) !DEFAULT(1)).
INPUT PROGRAM.
- VECTOR X(!VARS).
- LOOP #I = 1 TO !OBS.
- LOOP #J = 1 TO !VARS.
- COMPUTE X(#J) = !DIST(!PARAM).
- END LOOP.
- END CASE.
- END LOOP.
- END FILE.
END INPUT PROGRAM.

!LET !LIST = !NULL.
!DO !I = 1 !TO !VARS.
- !LET !LIST = !CONCAT(!LIST, ’ ’, X, !I).
!DOEND.

DESCRIPTIVES VARIABLES !LIST.
!ENDDEFINE.

!DATAGEN OBS=500 VARS=2 DIST=UNIFORM PARAM=2.

Figure D.21 Descriptive statistics for uniform variables
 Valid
Variable Mean Std Dev Minimum Maximum N Label

X1 .99 .57 .00 2.00 500
X2 1.00 .57 .00 2.00 500

1001

Subject Index

active system file, 11
Add Cases procedure, 74

case source variable, 79
dictionary information, 76
key variables, 78
limitations, 76
removing variables, 78
renaming variables, 77
selecting variables, 78
unpaired variables, 76
variables in the new file, 80

Add Variables procedure, 516
case source variable, 522
dictionary information, 518
duplicate cases, 520
excluded variables, 521
file sort order, 518, 519
key variables, 519
keyed tables, 520
limitations, 518
renaming variables, 521
variables in the new file, 523

agglomeration schedule
in Hierarchical Cluster Analysis procedure, 142

aggregating data, 84
aggregate functions, 89
aggregate variables, 90
break variables, 84, 87
saving files, 87
variable labels, 89
variable names, 88

Akaike information criterion
in Linear Regression procedure, 722

alpha factoring
in Factor Analysis procedure, 330

alpha level, 899
alpha value

for post hoc tests, 906
alternative hypothesis, 899
Ameniya’s prediction criterion

in Linear Regression procedure, 722
analysis of variance, 94, 599

in Curve Estimation procedure, 196
in Discriminant Analysis procedure, 262
in K-Means Cluster procedure, 689
in Linear Regression procedure, 722
in Means procedure, 550
in Summarize procedure, 866
See also One-Way ANOVA procedure
See also Simple Factorial ANOVA procedure

Anderberg’s D
in Distances procedure, 677
in Hierarchical Cluster Analysis procedure, 138

Anderson-Rubin factor scores
in Factor Analysis procedure, 332

ANOVA
See UNIANOVA, 893

ANOVA. See analysis of variance
anti-image matrix

in Factor Analysis procedure, 327
arcsine function, 36
arctangent function, 36
area charts

sequence, 119, 884
arguments

complex, 35
defined, 35

arithmetic functions, 158
arithmetic operators, 34, 157
arrays. See vectors
ASCII text data files

See also raw data files
assignment expression

computing values, 155
autocorrelation, 67

partial, 609
Autocorrelations procedure, 67, 609

partial autocorrelation, 72, 609
periodic lags, 71, 612
specifying periodicity, 70, 612

1002 Subject Index

standard error method, 72
transforming values, 69, 611
using a previously defined model, 72, 613

average linkage between groups
in Hierarchical Cluster Analysis procedure, 140

average linkage within groups
in Hierarchical Cluster Analysis procedure, 140

backward elimination
in Linear Regression procedure, 720

balanced designs
in GLM General Factorial, 911

bar charts, 426
in Crosstabs procedure, 188
in Frequencies procedure, 374
in Interactive Charts procedure, 469
interval width, 374
scale, 374

Bartlett factor scores
in Factor Analysis procedure, 332

Bartlett’s approximation
in Autocorrelations procedure, 72

Bartlett’s test of sphericity
in Factor Analysis procedure, 327

Bernoulli distribution function, 39
beta distribution function, 37
binary Euclidean distance

in Distances procedure, 678
in Hierarchical Cluster Analysis procedure, 139

binary shape difference
in Distances procedure, 678
in Hierarchical Cluster Analysis procedure, 140

binary squared Euclidean distance
in Distances procedure, 678
in Hierarchical Cluster Analysis procedure, 139

binary variance measure
in Distances procedure, 679
in Hierarchical Cluster Analysis procedure, 140

binomial distribution function, 39
binomial test

in Binomial Test procedure, 577
Binomial Test procedure, 577

expected proportions, 577
observed proportions, 577

Bivariate Correlation procedure, 162, 568, 615

case count, 570
control variables, 617
correlation coefficients, 162
format, 619
limitations, 163, 569, 616
matrix input, 620
matrix output, 165, 568, 571, 620
missing values, 165, 571, 619, 621
order values, 617
random sampling, 568, 570
rank-order coefficients, 568
significance levels, 164, 568, 570, 618
statistics, 164, 570, 618

blank
delimiter, 6

blank data fields
treatment of, 829

blank lines
displaying, 662
See also printing cases

Blom’s transformation, 696
in normal probability plots, 639

BMDP files
conversion to SPSS, 385, 713
format specification, 713
numeric variables, 713
reading, 384
string variables, 713

Bonferroni test, 603, 907, 908
Box’s M test

in Discriminant Analysis procedure, 262
box-and-whiskers plots

see boxplots
Box-Ljung statistic

in Autocorrelations procedure, 68
boxplots

comparing factor levels, 306
comparing variables, 306
identifying outliers, 307
in Explore procedure, 308
in Interactive Charts procedure, 472

c charts, 850
data organization, 851
sigma, 852
subgroup identifier, 851

Subject Index 1003

case identification variable, 709
case selection, 565
cases

limiting, 565
listing, 503
sampling, 797
selecting, 565, 816
sorting, 838
weighting, 937

Cauchy distribution function, 37
centered moving average function, 175
centered running median function, 176
centroid method

in Hierarchical Cluster Analysis procedure, 141
character sets, 963
charts, 421

bar, 426
control, 840
count functions, 423
difference line, 432
drop-line, 432
error bar, 442
high-low, 440
histograms, 447
line, 432
normal probability, 635
Pareto, 448
pie, 438
P-P normal probability, 640
Q-Q normal probability, 639
range bar, 427
resolution, 831
scatterplots, 444
sequence, 115, 878
summary functions, 423
templates, 450

Chebychev distance
in Distances procedure, 672
in Hierarchical Cluster Analysis procedure, 134

chi-square
distance measure, 134, 672
in Chi-Square Test procedure, 578
in Crosstabs procedure, 185

chi-square distribution function, 37
Chi-Square Test procedure, 578

expected proportions, 578
observed proportions, 578

city-block distance
in Distances procedure, 672
in Hierarchical Cluster Analysis procedure, 134

classification table
in Discriminant Analysis procedure, 263

cluster membership
in Hierarchical Cluster Analysis procedure, 142

Cochran’s Q
in Tests for Several Related Samples procedure,

579
coefficient of variation, 36
Cohen’s kappa. See kappa
column headings, 656

See also page ejection
column percentages

in Crosstabs procedure, 184
column-style format specifications, 212
comma

delimiter, 6
command

order, 6
syntax, 3

command files, 9, 485
command order, 953
commands

processed through your operating system, 4
run interactively, 3
that read data, 7
that take effect immediately, 7

comments
in commands, 149

communality
in Factor Analysis procedure, 326

complex data files, 704
case identification variable, 709
defining, 704
duplicate records, 711
grouped files, 704
missing records, 710
mixed files, 704
nested files, 704
repeating groups, 704
skipping records, 708
spreading values across cases, 711
undefined records, 707

complex files
defining, 282, 293, 297

1004 Subject Index

complex raw data files, 971
defining, 340
grouped, 346
mixed, 345
nested, 346

compound model
in Curve Estimation procedure, 193, 194

computing values, 150
arithmetic functions, 158
arithmetic operators, 157
assignment expression, 155
conditional expressions, 276, 454
cross-case functions, 159
date and time functions, 160
formats of new variables, 156
functions, 150
if case satisfies condition, 275, 454
logical expressions, 276, 454
logical functions, 159
logical operators, 275, 454
loop structures, 507
missing values, 156
missing-value functions, 158
random-number functions, 160
relational operators, 275, 454
statistical functions, 158
string data, 155, 157
string functions, 161
syntax rules, 155
target variable, 155

condition index
in Linear Regression procedure, 722

conditional expressions
See also logical expressions

conditional probability
in Distances procedure, 676
in Hierarchical Cluster Analysis procedure, 137

conditional transformations, 275, 454
conditional expressions, 276, 454
formats of new variables, 277, 456
logical expressions, 276, 454
logical operators, 275, 454
missing values, 278, 456
nested, 282
relational operators, 275, 454
string data, 276, 277, 455, 456

confidence intervals, 899
in Curve Estimation procedure, 196
in Explore procedure, 310

in Interactive Charts procedure, 475
in Linear Regression procedure, 722, 724, 733

confusion matrix
in Discriminant Analysis procedure, 263

consecutive integers
converting numeric data, 107
converting string data, 107

constants, 34
contained effects

in GLM General Factorial, 897
contingency coefficient

in Crosstabs procedure, 185
contrast coefficients

in GLM General Factorial, 900
contrast coefficients matrix

See also L matrix
contrast results matrix

See also K matrix
contrasts

analysis of variance, 601
deviation, 905
difference, 905
Helmert, 905
in GLM General Factorial, 904
orthogonal, 906
polynomial, 905
repeated, 906
reverse Helmert, 905
simple, 905
special, 906

control charts, 840
c charts, 850
individuals charts, 846
missing values, 853
moving range charts, 846
np charts, 847
p charts, 847
R charts, 843
s charts, 843
sigma, 852
u charts, 850
X-bar charts, 843

control variables
in Crosstabs procedure, 182

convergence criterion
in Factor Analysis procedure, 329
in K-Means Cluster procedure, 688

Subject Index 1005

converting data files. See data files
Cook’s distance

in GLM General Factorial, 911
in Linear Regression procedure, 733

correlation, 162
in Linear Regression procedure, 722, 727
See also Bivariate Correlation procedure

correlation matrix
pooled within-groups, 262

cosine
in Distances procedure, 672
in Hierarchical Cluster Analysis procedure, 133

counting occurrences, 168
defining values, 168
missing values, 169

counts
in Report Summaries in Rows procedure, 776, 777

covariance
in Linear Regression procedure, 722, 727

covariance matrix
pooled within-groups, 262, 264
separate-groups, 262, 264
total, 262

covariance ratio
in Linear Regression procedure, 733

Cp. See Mallow’s Cp
Cramér’s V

in Crosstabs procedure, 185
cross-case functions, 159
cross-correlation, 123
Cross-correlations procedure, 123

periodic lags, 127
specifiying periodicity, 126
transforming values, 125
using a previously defined model, 128

cross-product deviation
in Linear Regression procedure, 727

Crosstabs procedure, 179
column percentages, 184
control variables, 182
expected count, 184
general mode, 183
integer mode, 183
layers, 183
missing values, 187
observed count, 184
reproducing tables, 190

residuals, 184
row order, 187
row percentages, 184
statistics, 185
suppressing tables, 188
table format, 187
total percentage, 184
writing tables, 188

crosstabulation, 179
multiple response, 560
See also Crosstabs procedure
writing to a file, 665

cubic model
in Curve Estimation procedure, 193, 194

cumulative sum function, 172
curve estimation, 191
Curve Estimation procedure, 191

analysis of variance, 196
confidence intervals, 196
forecasting, 192, 193
including constant, 195
models, 194
saving predicted values, 196
saving prediction intervals, 196
saving residuals, 196
using a previously defined model, 197

curve fitting. See curve estimation
custom currency formats

creating, 832
customized distance measures

in Distances procedure, 672
in Hierarchical Cluster Analysis procedure, 134

d. See Somers’ d, 185
data

inline, 112, 200, 202
invalid, 829

data compression
scratch files, 830

data files
aggregating, 84
applying data dictionary, 103
BMDP, 384, 713
complex, 293, 340, 704, 971
converting, 806
dBASE, 415, 806

1006 Subject Index

default file extension, 830
direct access, 495
documents, 273, 289
Excel, 413, 806
file information, 270, 867
grouped, 704
in GLM General Factorial, 911
keyed, 495, 631
labels, 339
Lotus 1-2-3, 413, 806
master files, 913
merging, 74, 516
mixed, 704
Multiplan, 413
nested, 704
opening, 380
OSIRIS, 394
raw, 198
reading, 199, 380, 481, 495
repeating data groups, 704
SAS, 400
saving, 800, 947
SCSS, 408,
split-file processing, 854
spreadsheet, 413, 808
SPSS, 380
SPSS portable, 314, 481
SPSS/PC+, 481
subsets of cases, 355, 816, 920
SYLK, 413, 806
tab-delimited, 415, 809
transaction files, 913
updating, 913

data formats. See data types; display formats; input
formats; output formats

data records
defining, 205, 704

data transformations
arithmetic functions, 158
arithmetic operators, 157
clearing, 129
computing values, 150
conditional, 275, 454
conditional expressions, 276, 454
consecutive integers, 107
converting strings to numeric, 107, 702
counting occurrences, 168
counting the same value across variables, 168
cross-case functions, 159
date and time functions, 160

functions, 150
if case satisfies condition, 275, 454
logical expressions, 276, 454
logical functions, 159
logical operators, 275, 454
loop structures, 507
missing-value functions, 158
random-number functions, 160
recoding values, 107, 698
relational operators, 275, 454
repeating, 284
statistical functions, 158
string functions, 161
time series, 170, 217, 793

data types, 198
custom currency, 832

database files, 808
date and time functions, 160
date functions, 51
date variables

creating, 217
current status, 935

dates, 51
dBASE files

reading, 412
saving, 811

decimal places
implied, 213

Define Multiple Response Sets procedure, 557
categories, 557
dichotomies, 557
set labels, 557
set names, 557

deleted residuals
in GLM General Factorial, 911

delimiter, 6
blank, 6
comma, 6
special, 6

dendrograms
in Hierarchical Cluster Analysis procedure, 143

descriptive statistics, 244
for residuals, 359
in Explore procedure, 310
See also Descriptives procedure

Descriptives procedure, 244
display order, 248

Subject Index 1007

missing values, 249
saving Z scores, 246
statistics, 247

determinant
in Factor Analysis procedure, 327

detrended normal plots, 640
in Explore procedure, 309

deviation contrasts, 905
dfBeta

in Linear Regression procedure, 733
dfFit

in Linear Regression procedure, 733
diagonal values

in Factor Analysis procedure, 328
Dice measure

in Distances procedure, 675
in Hierarchical Cluster Analysis procedure, 137

difference contrasts, 905
difference function, 172
difference line charts, 432
difference transformation

in Autocorrelations procedure, 69, 611
in Cross-correlations procedure, 125
in normal probability plots, 641
in sequence charts, 117, 881

direct-access files
reading, 495

Discriminant Analysis procedure, 250
casewise results, 260
classification phase, 263
classification summary, 263
cross-validation, 263
defining categories of grouping variable, 253
function coefficients, 263, 264
grouping variable, 253
inclusion levels, 255
limitations, 252
matrices, 262
matrix input, 265
matrix output, 265
maximum number of steps, 258
missing values, 265, 267
multiple analyses, 254
number of functions, 258
plots, 264
predictor variables, 253
prior probabilities, 259

rotation of matrices, 263
saving classification variables, 260
selecting a subset of cases, 253
statistics, 262
stepwise methods, 254
stepwise output, 263
tolerance, 257
variable selection methods, 256

discriminant function coefficients
standardized, 262
unstandardized, 263

discriminant scores
in Discriminant Analysis procedure, 260, 264

dispersion
in Distances procedure, 678
in Hierarchical Cluster Analysis procedure, 140

display formats, 367, 659
dissimilarity measures, 667

See also Distances procedure
distance matrix

in Hierarchical Cluster Analysis procedure, 142
Distances procedure, 667

computing distances between cases, 670
computing distances between variables, 670
displaying distance matrix, 679
labeling cases, 680
limitations, 669
matrix input, 680
matrix output, 680
measures for binary data, 673
measures for frequency-count data, 672
measures for interval data, 671
missing values, 680
standardization, 669
transforming measures, 670
transforming values, 669
variable list, 669

distribution functions, 36
Bernoulli, 39
beta, 37
binomial, 39
Cauchy, 37
chi-square, 37
exponential, 38
F, 38
gamma, 38
geometric, 40
hypergeometric, 40

1008 Subject Index

Laplace, 38
logisitic, 38
lognormal, 38
negative binomial, 40
normal, 38
Pareto, 39
Poisson, 40
t, 39
uniform, 39
Weibull, 39

documentation
online, 487

documents
dropping, 289
for SPSS data files, 273
retaining in aggregated files, 88

domain errors
defined, 41
numeric expressions, 41

dot charts
in Interactive Charts procedure, 473

drop-line charts, 432
Duncan’s multiple range test, 603, 907, 908
Dunnett’s C, 604, 907, 909
Dunnett’s one-tailed t test, 603, 907, 908
Dunnett’s t test

one-tailed, 907
Durbin-Watson statistic

in Linear Regression procedure, 735

EBCDIC data, 338
effects

random, 896
eigenvalues

in Discriminant Analysis procedure, 262
in Factor Analysis procedure, 326, 328, 329
in Linear Regression procedure, 722

end-of-file control
in input programs, 206

equality of variance
See homogeneity of variance

equamax rotation
in Factor Analysis procedure, 331

erasing files, 303
error bar charts, 442

error bars
in Interactive Charts procedure, 475

errors
displaying, 827
maximum number, 829

estimable functions
in GLM General Factorial, 900
intercept, 904

estimated marginal means
in GLM General Factorial, 909

estimated means plots, 901
eta

in Crosstabs procedure, 185
in Means procedure, 550
in Summarize procedure, 866

eta-squared
partial, 900

Euclidean distance
in Distances procedure, 671
in Hierarchical Cluster Analysis procedure, 133

exact-size sample, 797
examining data, 304

See also Explore procedure
Excel files

read range, 418
read variable names, 417
reading, 412
saving, 811

expected count
in Crosstabs procedure, 184

Explore procedure, 304
factor variable, 306
limitations, 305
missing values, 311
plots, 308
statistics, 307, 310

exploring data, 304
See also Explore procedure

exponential distribution function, 38
exponential model

in Curve Estimation procedure, 193, 194
extreme values

in Explore procedure, 310

F distribution function, 38

Subject Index 1009

F ratio
in Linear Regression procedure, 722, 723
in Means procedure, 551
in Summarize procedure, 866

factor analysis, 320
See also Factor Analysis procedure

Factor Analysis procedure, 320
analysis variables, 325
coefficient display format, 325
convergence, 329
correlation matrices, 326
covariance matrices, 326
descriptive statistics, 326
diagonal values, 328
extraction criteria, 329
extraction methods, 330
factor score computation, 332
initial solution, 326
iterations, 329
matrix input, 333
matrix output, 333
missing values, 323
plots, 327
rotated solution, 326
rotation criteria, 329
rotation methods, 331
saving factor scores, 332
selecting a subset of cases, 324
statistics, 326
unrotated solution, 326
variable list, 323

factor loading plots
in Factor Analysis procedure, 328

factor pattern matrix
in Factor Analysis procedure, 326

factor score coefficient matrix
in Factor Analysis procedure, 327

factor structure matrix
in Factor Analysis procedure, 326

factor transformation matrix
in Factor Analysis procedure, 326

file, 9
file definition, 9
file handle, 337
file information

SPSS data files, 867
working data file, 270

file specifications, 337

file transformations, 913
aggregating, 84
applying data dictionary, 103
merging files, 74, 516
subsets of cases, 816

final cluster centers
in K-Means Cluster procedure, 690

Fisher’s classification function coefficients
in Discriminant Analysis procedure, 263

Fisher’s exact test
in Crosstabs procedure, 185

fixed format, 200, 201, 202, 209
forced entry

in Discriminant Analysis procedure, 256
in Linear Regression procedure, 720

forced removal
in Linear Regression procedure, 720

forecasting
current forecast period, 935
in Curve Estimation procedure, 192, 193

formats, 22
of new variables, 156, 277, 456
See also data types; display formats; input formats;

output formats
FORTRAN-like format specifications, 212
forward entry

in Linear Regression procedure, 720
Fourier transformation function, 173

inverse, 173
freefield format, 200, 201, 202, 211
FREQUENCIES (command)

ORDER subcommand, 379
Frequencies procedure, 371

charts, 188, 374
display order, 373
limitations, 372
missing values, 379
statistics, 378
suppressing tables, 373

frequency tables, 372
format, 373
writing to a file, 665

Friedman test
in Tests for Several Related Samples procedure,

579
F-to-enter

in Discriminant Analysis procedure, 257

1010 Subject Index

in Linear Regression procedure, 724
F-to-remove

in Discriminant Analysis procedure, 257
in Linear Regression procedure, 724

functions, 150
distribution, 36
examples, 157
missing values in, 156
numeric variables, 35
string variables, 41
time series, 172

furthest neighbor method
in Hierarchical Cluster Analysis procedure, 140

Gabriel test, 907
Gabriel’s pairwise comparisons test, 604, 909
Games-Howell test, 604, 907, 909
gamma

in Crosstabs procedure, 185
gamma distribution function, 38
general estimable function, 900
general mode

Crosstabs procedure, 183
Means procedure, 547

geometric distribution function, 40
GLM General Factorial, 893

alpha level, 899
alternative hypothesis, 899
balanced designs, 911
confidence interval, 899
contained effects, 897
contrast coefficients, 900
contrasts, 904
Cook’s distances, 911
data files, 911
deleted residuals, 911
estimable functions, 900
estimated marginal means, 909
estimated means plots, 901
homogeneity of variance, 900
interactions, 912
K matrix, 904
L matrix, 900, 902
lack of fit, 900
Levene’s test, 900
multiple comparisons, 906

nested designs, 912
parameter estimates, 900
post hoc tests, 906
power, 899
profile plots, 901
residual plots, 901
spread vs. level plots, 901
standard errors of predicted value, 911
standardized residuals, 911
Studentized residuals, 911
Type I sum of squares method, 897
Type II sum of squares method, 897
Type III sum of squares method, 898
Type IV sum of squares method, 898
uncentered leverage values, 911
unstandardized predicted residuals, 911
unstandardized residuals, 911
weighted unstandardized predicted values, 911
weighted unstandardized residuals, 911

Goodman and Kruskal’s gamma. See gamma
Goodman and Kruskal’s lambda. See lambda
Goodman and Kruskal’s tau

in Crosstabs procedure, 185
goodness of fit, 359
group membership

predicted, 260
probabilities, 259

grouped files, 346, 704
growth model

in Curve Estimation procedure, 193, 194

H. See Kruskal-Wallis H
Hamann measure

in Distances procedure, 676
in Hierarchical Cluster Analysis procedure, 138

Helmert contrasts, 905
Hierarchical Cluster Analysis procedure, 130

algorithm, 132
distance measures, 133
labeling cases, 142
limitations, 132
matrix input, 144
matrix output, 144
measures for binary data, 135
measures for frequency-count data, 134
measures for interval data, 133

Subject Index 1011

methods, 140
missing values, 144, 146
plots, 143
saving cluster memberships, 141
statistics, 142
variable list, 132

hierarchical files. See nested file
high-low-close charts

clustered, 440
simple, 440

histograms, 447
in Explore procedure, 309
in Frequencies procedure, 375
in Interactive Charts procedure, 476
in Linear Regression procedure, 734
interval width, 375
scale, 375
with normal curve, 375

Hochberg’s GT2, 604, 907, 909
homogeneity of variance

in GLM General Factorial, 900
hypergeometric distribution function, 40

icicle plots
in Hierarchical Cluster Analysis procedure, 143

image factoring
in Factor Analysis procedure, 330

implied decimal format, 213
independence model

in Autocorrelations procedure, 72
Independent-Samples T Test procedure, 888

dependent variables, 890
grouping variables, 890
limitations, 889
missing values, 891

independent-samples t test. See t test
indexing clause

in loop structures, 509
indexing strings, 44
individuals charts, 846

control limits, 853
sigma, 852
span, 852
subgroup labels, 847

initial cluster centers

in K-Means Cluster procedure, 688
initialization

suppressing, 501
initializing variables, 597, 857

formats, 597, 598, 857
numeric variables, 597
scratch variables, 597
string variables, 857

inline data, 112, 200, 202
input data, 10

file, 10
input formats, 198, 211

column-style specifications, 212
FORTRAN-like specifications, 212
numeric, 213
string, 215

input programs, 491
end-case control, 292
end-of-file control, 206, 301
examples, 207, 283, 286, 293, 302, 493, 511, 514,

515, 598, 632, 932
input state, 492
integer mode

Crosstabs procedure, 183
interaction effects

analysis of variance, 97
interaction plots

See profile plots
interactions

in GLM General Factorial, 912
Interactive Charts procedure, 460–480

bar charts, 469
boxplots, 472
confidence intervals, 475
dot charts, 473
error bars, 475
histograms, 476
legends, 465
line charts, 473
pie charts, 471
prediction intervals, 477
regression lines, 477
ribbon charts, 473
scatterplots, 469
smoothers, 477

intercept
in estimable function, 904
include or exclude, 898

1012 Subject Index

invalid data
treatment of, 829

inverse correlation matrix
in Factor Analysis procedure, 327

inverse Fourier transformation function, 173
inverse model

in Curve Estimation procedure, 194

Jaccard measure
in Distances procedure, 675
in Hierarchical Cluster Analysis procedure, 136

Jonckheere-Terpstra test
in Tests for Several Independent Samples

procedure, 580
journal file, 9, 10, 828

K matrix
GLM General Factorial, 904

Kaiser normalization
in Factor Analysis procedure, 329

Kaiser-Meyer-Olkin measure
in Factor Analysis procedure, 327

kappa
in Crosstabs procedure, 185

Kendall’s tau-b
in Bivariate Correlation procedure, 570
in Crosstabs procedure, 185

Kendall’s tau-c
in Crosstabs procedure, 185

Kendall’s W
in Tests for Several Related Samples procedure,

583
key variables, 913
keyed data files, 631

defining, 631
file handle, 633
file key, 631, 632, 633

keyed files
reading, 495

keyed tables, 520
keywords

reserved, 20
syntax, 5

k-means cluster analysis
See also K-Means Cluster procedure

k-means cluster analysis, 685
K-Means Cluster procedure, 685

cluster distances, 689, 690
cluster membership, 689, 690
clustering method, 686, 688
convergence criteria, 688
iterations, 688
labeling cases, 689
missing values, 691
reading initial centers, 688, 689
saving cluster information, 690
specifying number of clusters, 687
statistics, 689
variable list, 687
writing final centers, 690

Kolmogorov-Smirnov Z
in One-Sample Kolmogorov-Smirnov Test

procedure, 581
in Two-Independent-Samples Tests procedure, 582

Kruskal-Wallis H
in Tests for Several Independent Samples

procedure, 583
Kulczynski measures

in Distances procedure, 676
in Hierarchical Cluster Analysis procedure, 137

kurtosis
in Descriptives procedure, 247
in Explore procedure, 310
in Frequencies procedure, 378
in Report Summaries in Rows procedure, 776

L matrix, 902
in GLM General Factorial, 900

lack of fit
in GLM General Factorial, 900

lag function, 174
lambda

Goodman and Kruskal’s, 138, 676
in Crosstabs procedure, 185
Wilks’ , 256

Lance-and-Williams measure
in Distances procedure, 679
in Hierarchical Cluster Analysis procedure, 140

Laplace distribution function, 38

Subject Index 1013

lead function, 174
least significant difference test, 603, 907, 908
least-squares method

generalized, 330
unweighted, 330

legends
in Interactive Charts procedure, 465

level of measurement
specifying, 928

Levene test
in Explore procedure, 309

Levene’s test
in GLM General Factorial, 900

leverage values
in Linear Regression procedure, 733

likelihood-ratio chi-square
in Crosstabs procedure, 185

Lilliefors test
in Explore procedure, 309

limitations. See individual procedures
line charts, 432

in Interactive Charts procedure, 473
sequence, 119, 884

line numbering, 596
on IBM systems, 596

linear model
in Curve Estimation procedure, 194

linear regression, 715
See also Linear Regression procedure

Linear Regression procedure, 715, 731
case selection, 727
casewise plots, 735
constant term, 724
dependent variables, 719
histograms, 734
matrix input, 728
matrix output, 728
missing values, 729
model criteria, 723
normal probability plots, 734
partial residual plots, 736
residuals, 731
saving files, 737
saving new variables, 738
scatterplots, 736
statistics, 721, 726
tolerance, 722, 723, 724

variable selection methods, 719
weights, 725

linearity test
in Means procedure, 551
in Summarize procedure, 866

List Cases procedure, 503
listing cases, 503
local documentation, 487, 489
local linear regression

in Interactive Charts procedure, 477
logarithmic model

in Curve Estimation procedure, 194
logical expressions, 44, 276, 454

defined, 44
in END LOOP, 45
in LOOP, 45
in loop structures, 509
in SELECT IF, 45
missing values, 48, 49
order of evaluation, 48
selecting cases, 816
string variables, 41

logical functions, 45, 159
logical operators, 47, 275, 454, 816

defined, 47
missing values, 48, 278, 456

logical variables
defined, 44

logistic distribution function, 38
logistic model

in Curve Estimation procedure, 194
lognormal distribution function, 38
long string variables, 30
loop structures, 507

increment value, 513
indexing variable, 509
initial value, 510
logical expression, 509
macro facility, 241
terminal value, 510

looping structures
terminating, 114

loops
maximum number, 830

Lotus 1-2-3 files, 811
read range, 418

1014 Subject Index

read variable names, 417
reading, 412

macro facility, 226
assigning defaults, 236
conditional processing, 241
display macro commands, 828
examples, 985
keyword arguments, 231
loop structures, 241
macro call, 228
macro definition, 227
macro expansion, 828
positional arguments, 232
SET command, 239
string functions, 237
tokens, 233

Mahalanobis distance
in Discriminant Analysis procedure, 256
in Linear Regression procedure, 733

Mallow’s Cp
in Linear Regression procedure, 722

Mann-Whitney U
in Two-Independent-Samples Tests procedure, 584

Mantel-Haenszel chi-square
in Crosstabs procedure, 185

marginal homogeneity test
in Two-Related-Samples Tests procedure, 587

master files, 913
matching coefficients

in Distances procedure, 674
in Hierarchical Cluster Analysis procedure, 135

matrices
correlation, 162, 568, 615
covariance, 164
K, 904
L, 900, 902
split-file processing, 855

matrix data files
converting correlation to covariance, 544
converting covariance to correlation, 544
raw, 525
See also raw matrix data files

matrix input
in Discriminant Analysis procedure, 265
in Distances procedure, 680

in Factor Analysis procedure, 333
in Hierarchical Cluster Analysis procedure, 144

matrix output
in Discriminant Analysis procedure, 265
in Distances procedure, 680
in Factor Analysis procedure, 333
in Hierarchical Cluster Analysis procedure, 144

matrix system files, 13, 17
format, 17
matrix input, 13

maximum
in Descriptives procedure, 248
in Explore procedure, 310
in Frequencies procedure, 378
in Report Summaries in Rows procedure, 776

maximum-likelihood estimation
in Factor Analysis procedure, 330

MCA. See multiple classification analysis
McNemar test

in Corsstabs procedure, 186
in Two-Related-Samples Tests procedure, 585

mean
in Descriptives procedure, 247
in Discriminant Analysis procedure, 262
in Explore procedure, 310
in Factor Analysis procedure, 326
in Frequencies procedure, 378
in Linear Regression procedure, 726
in Means procedure, 549
in Report Summaries in Rows procedure, 776
in Summarize procedure, 864

mean substitution
in Discriminant Analysis procedure, 264
in Factor Analysis procedure, 324
in Linear Regression procedure, 730

Means procedure, 547
layers, 549
missing values, 551
statistics, 549

measurement level
specifying, 928

median
in Explore procedure, 310
in Frequencies procedure, 378
in Report Summaries in Rows procedure, 777

median method
in Hierarchical Cluster Analysis procedure, 141

Subject Index 1015

median test
in Tests for Several Independent Samples

procedure, 587
merging data files

files with different cases, 74
files with different variables, 516
raw data files, 77, 519
see also Add Cases procedure
See also Add Variables procedure

M-estimators
in Explore procedure, 310

minimum
in Descriptives procedure, 247
in Explore procedure, 310
in Frequencies procedure, 378
in Report Summaries in Rows procedure, 776

Minkowski measure
in Distances procedure, 672
in Hierarchical Cluster Analysis procedure, 134

missing values
and aggregated data, 91
and logical operators, 278, 456
counting occurrences, 169
defining, 552
functions, 48, 49
in control charts, 853
in functions, 156
in logical expressions, 48, 49
in loop structures, 514
in Multiple Response Crosstabs procedure, 562
in Multiple Response Frequencies procedure, 562
in numeric expressions, 40
MISSING function, 48
NMISS function, 49
replacing, 793
See also individual procedures
SYSMIS function, 49
system-missing, 552
time series settings, 875
user-missing, 552
VALUE function, 49
with logical operators, 48

missing-value functions, 158
mixed files, 345, 704
mode

in Frequencies procedure, 378
in Report Summaries in Rows procedure, 777

Moses test

in Two-Independent-Samples Tests procedure, 588
moving averages, 175

see also centered moving average function
see also prior moving average function

moving range charts, 846
control limits, 853
sigma, 852
span, 852
subgroup labels, 847

Multiplan files
read range, 418
read variable names, 417
reading, 412
saving, 811

multiple classification analysis
analysis of variance, 102

multiple comparisons
analysis of variance, 602
in GLM General Factorial, 906

multiple R
in Linear Regression procedure, 722

multiple regression, 715
See also Linear Regression procedure

multiple response analysis, 555
defining sets, 555
multiple category, 555
multiple dichotomy, 555
See also Define Multiple Response Sets procedure
See also Multiple Response Crosstabs procedure
See also Multiple Response Frequencies procedure

Multiple Response Crosstabs procedure, 560
cell percentages, 561
defining value ranges, 558
matching variables across response sets, 561
missing values, 562
percents based on cases, 562
percents based on responses, 562
value labels, 563

Multiple Response Frequencies procedure, 559
missing values, 562
table format, 563
value labels, 563

multipunch data, 338

natural log transformation
in Autocorrelations procedure, 70, 612

1016 Subject Index

in Cross-correlations procedure, 126
in normal probability plots, 642
in sequence charts, 118, 882

nearest neighbor method
in Hierarchical Cluster Analysis procedure, 140

negative binomial distribution function, 40
nested conditions, 282
nested design

in GLM General Factorial, 912
nested files, 346, 704
nesting

multiple, 912
normal distribution function, 38
normal probability plots, 635

detrended, 640
in Explore procedure, 309
in Linear Regression procedure, 734
specifying periodicity, 642
transforming values, 641
using a previously defined model, 643

np charts, 847
conforming values, 852
data organization, 848
nonconforming values, 852
sigma, 852
subgroup identifier, 850

NPAR TESTS (command)
exact tests, 594

numeric data
input formats, 198, 213
output formats, 367, 659, 944

numeric expressions, 34
missing values, 40

oblimin rotation
in Factor Analysis procedure, 331

oblique rotation
in Factor Analysis procedure, 331

observed count
in Crosstabs procedure, 184
in Linear Regression procedure, 727

observed power
in GLM General Factorial, 900

Ochiai measure
in Distances procedure, 677

in Hierarchical Cluster Analysis procedure, 139
ODBC, 811
One-Sample Kolmogorov-Smirnov Test procedure,

581
test distribution, 581

One-Sample T Test procedure
dependent variables, 890
limitations, 889
missing values, 891
test value, 890

one-sample t test. See t test
ONEWAY (command)

POSTHOC subcommand, 602
One-Way ANOVA procedure, 599

contrasts, 601
defining factor ranges, 601
factor variables, 601
limitations, 600
matrix input, 606
matrix output, 606
missing values, 605, 607
multiple comparisons, 602
orthogonal polynomials, 601
statistics, 605

online documentation, 487
opening files

data files, 380
options, 821

displaying, 834
See also preferences

order of commands, 6
order of operations

numeric expressions, 34
orthogonal contrasts, 906
orthogonal polynomials

analysis of variance, 601
orthogonal rotation

in Factor Analysis procedure, 331
OSIRIS files

conversion to SPSS, 395
reading, 394

outliers
identifying, 307
in Linear Regression procedure, 734, 735

output files
borders for tables, 831
chart characters, 831

Subject Index 1017

destination of, 827
display command syntax, 827
display output page titles, 832
page size, 832

output formats, 200, 659, 944
custom currency, 367, 659, 944
displaying, 660, 945
format specification, 659, 944
print (display), 367
string data, 367
write, 367, 944

overlay plots, 627

p charts, 847
conforming values, 852
data organization, 848
nonconforming values, 852
sigma, 852
subgroup identifier, 850

padding strings, 44, 45
page ejection, 656

missing values, 657
variable list, 657

page size, 832
Paired-Samples T Test procedure, 888

missing values, 891
variable list, 891

paired-samples t test. See t test
parameter estimates

in GLM General Factorial, 900
Pareto charts, 448

simple, 449
stacked, 449

Pareto distribution function, 39
part correlation

in Linear Regression procedure, 722
partial autocorrelation, 609

see also Autocorrelations procedure
partial correlation, 615

in Linear Regression procedure, 722
See also Bivariate Correlation procedure

partial eta-squared, 900
pattern difference measure

in Distances procedure, 678
in Hierarchical Cluster Analysis procedure, 140

pattern matrix
in Discriminant Analysis procedure, 263

Pearson chi-square
in Crosstabs procedure, 185

Pearson correlation coefficient
in Bivariate Correlation procedure, 162
in Crosstabs procedure, 185
in Distances procedure, 671
in Factor Analysis procedure, 326
in Hierarchical Cluster Analysis procedure, 133

Pearson’s r. See Pearson correlation coefficient
percentages

in Crosstabs procedure, 184
in Report Summaries in Rows procedure, 777

percentiles
break points, 307
estimating from grouped data, 376
in Explore procedure, 307
in Frequencies procedure, 377
methods, 307

periodic lags
in Autocorrelations procedure, 612

periodicity
in Autocorrelations procedure, 70, 612
in Cross-correlations procedure, 126
in normal probability plots, 642
in sequence charts, 118, 882
time series settings, 875

phi
in Crosstabs procedure, 185

phi 4-point correlation
in Distances procedure, 678
in Hierarchical Cluster Analysis procedure, 139

phi-square measure
in Distances procedure, 673
in Hierarchical Cluster Analysis procedure, 134

pie charts, 438
in Interactive Charts procedure, 471

Poisson distribution function, 40
polynomial contrasts, 905
portable files. See SPSS portable files
post hoc test

See also individual test names
post hoc tests

alpha value, 906
Bonferroni test, 603, 907, 908
Duncan’s multiple comparison procedure, 603,

1018 Subject Index

907, 908
Dunnett’s C, 604, 907, 909
Dunnett’s one-tailed t test, 907
Gabriel test, 907
Gabriel’s pairwise comparisons test, 604, 909
Games and Howell’s pairwise comparisons test,

604, 907, 909
GLM General Factorial, 906
Hochberg’s GT2, 604, 907, 909
in GLM General Factorial, 906
in One-Way ANOVA, 602
least significant difference, 603, 907, 908
One-Way ANOVA, 602
Ryan-Einot-Gabriel-Welsch’s multiple stepdown

procedure, 604, 907, 909
Scheffe test, 603, 907, 908
Sidak test, 604, 907, 909
statistical purpose, 907
Student-Newman-Keuls test, 603, 907, 908
Tamhane’s T2, 604, 907, 909
Tamhane’s T3, 604, 907, 909
Tukey’s b, 603, 907, 908
Tukey’s honestly significant difference, 603, 907,

908
Waller-Duncan test, 604, 907, 909

posterior probability
in Discriminant Analysis procedure, 260

POSTHOC (subcommand)
ONEWAY command, 602

post-hoc tests. See multiple comparisons
power, 899
power model

in Curve Estimation procedure, 193, 194
P-P normal probability plots, 640
predictability measures

in Distances procedure, 676
in Hierarchical Cluster Analysis procedure, 138

predicted values
adjusted, 733
saving in Curve Estimation procedure, 196
standard errors, 733
standardized, 733
unstandardized, 732

prediction intervals
in Interactive Charts procedure, 477
saving in Curve Estimation procedure, 196

preferences, 821
blank data fields, 829

borders for tables, 831
charts, 831
custom currency formats, 832
data compression, 830
default file extension, 830
default variable format, 824
display errors, 827
display macro commands, 828
display resource messages, 827
display statistical results, 827
display warnings, 827
displaying, 834
errors, 829
graphics, 831
invalid data, 829
journal file, 828
macro expansion, 828
maximum loops, 830
output, 827, 832
output page size, 832
preserving, 649, 792
random number seed, 826
restoring, 649, 792
time series, 873
warnings, 829

principal components
in Factor Analysis procedure, 330

principal-axis factoring
in Factor Analysis procedure, 330

print formats. See output formats
printing cases, 650, 662

column headings, 656
displaying blank lines, 662
formats, 650, 652, 941
missing values, 651
number of records, 654
output file, 650, 654, 662
page ejection, 656
strings, 650, 653
summary table, 650, 655

prior moving average function, 176
prior probability

in Discriminant Analysis procedure, 259
probability of F-to-enter

in Discriminant Analysis procedure, 257
in Linear Regression procedure, 724

probability of F-to-remove
in Discriminant Analysis procedure, 257

Subject Index 1019

in Linear Regression procedure, 724
procedure output

output file, 665
writing to a file, 665

procedures
update documentation, 489

profile plots, 901
program states, 953
promax rotation

in Factor Analysis procedure, 331
proportional sample, 797
proximity measures, 667

See also Distances procedure

Q. See Cochran’s Q
Q-Q normal probability plots, 639
quadratic model

in Curve Estimation procedure, 193, 194
quartimax rotation

in Factor Analysis procedure, 331

R
in Means procedure, 551
in Summarize procedure, 866

r
See also Pearson correlation coefficient

R charts, 843
control limits, 853
data organization, 844
minimum sample size, 852
sigma, 852
subgroup identifier, 845

R2

in Linear Regression procedure, 722
random effects, 896
random number seed

specifying, 826
random sample

in nonparametric tests, 594
random-number functions, 160
range

in Descriptives procedure, 247
in Explore procedure, 310

in Frequencies procedure, 378
range bar charts, 427
ranking data, 692

method, 694
missing values, 697
new variable names, 695
order, 693
proportion estimates, 696
tied values, 639, 696
within subgroups, 693

Rankit method
in normal probability plots, 639

rank-order correlation coefficients
in Bivariate Correlation procedure, 568

Rao’s V
in Discriminant Analysis procedure, 256, 258

raw data files
blanks, 201
data types, 198
fixed format, 200, 201, 202, 209
freefield format, 200, 201, 202, 211
reading, 198
variable definition, 208, 704

raw matrix data files, 525
factors, 537, 541
format, 525, 528
N, 543
record types, 539
split files, 535
within-cells records, 539, 541

recoding values, 698
converting strings to numeric, 107, 702
limitations, 700
missing values, 699
numeric variables, 699
string variables, 700
target variable, 701

records
defining, 205, 704
duplicate, 711
missing, 710
skipping, 708
types, 704

reference lines
in sequence charts, 120, 884, 886

regression coefficients
in Linear Regression procedure, 722

regression factor scores

1020 Subject Index

in Factor Analysis procedure, 332
regression lines

in Interactive Charts procedure, 477
regression plots, 627
relational operators, 46, 275, 454, 816

defined, 46
relative risk ratio

in Crosstabs procedure, 186
repeated contrasts, 906
repeating data, 742

case identification, 754
defining variables, 750
input file, 750
repeating groups, 749
starting column, 748
summary table, 755

repeating data groups, 704
repeating fields. See repeating data
replacing missing values, 793

linear interpolation, 794
linear trend, 796
mean of nearby points, 795
median of nearby points, 795
series mean, 796

Report Summaries in Rows procedure, 756
column contents, 768, 772
column headings, 757, 769, 772
column spacing, 758
column width, 758, 769, 773
defining subgroups, 771
footnotes, 782
format, 762
limitations, 761
missing values, 760, 784
output file, 760, 765
page layout, 765
print formats, 780
report types, 760
string variables, 770
summary statistics, 760, 775
summary titles, 779
titles, 782
variable list, 768

reports, 756
See also Report Summaries in Rows procedure

reproduced correlation matrix
in Factor Analysis procedure, 327

re-reading records, 785
input file, 788
starting column, 790

residual plots
in GLM General Factorial, 901

residuals
degrees of freedom, 361
deleted, 733
descriptive statistics, 359
goodness of fit, 359
in Crosstabs procedure, 184
saving in Curve Estimation procedure, 196
saving in Linear Regression procedure, 738
standardized, 733
Studentized, 733
Studentized deleted, 733
unstandardized, 732

reverse Helmert contrasts, 905
ribbon charts

in Interactive Charts procedure, 473
Rogers and Tanimoto measure

in Distances procedure, 675
in Hierarchical Cluster Analysis procedure, 137

row percentages
in Crosstabs procedure, 184

running commands
batch mode, 4
interactive mode, 3

running median function, 176
runs test

in Runs Test procedure, 590
Runs Test procedure, 590

cutting point, 590
Russell and Rao measure

in Distances procedure, 675
in Hierarchical Cluster Analysis procedure, 136

Ryan-Einot-Gabriel-Welsch’s multiple stepdown
procedure, 604, 907, 909

s charts, 843
control limits, 853
data organization, 844
minimum sample size, 852
sigma, 852
subgroup identifier, 845

sample

Subject Index 1021

exact-size, 797
proportional, 797

sampling cases, 797
See also subsets of cases

SAS files
conversion to SPSS, 402
reading, 400

saving files
aggregated data files, 87
data compression, 805, 951
data files, 800, 947
dBASE format, 806
dropping variables, 803, 949
Excel format, 806
keeping variables, 803, 949
Lotus 1-2-3, 806
renaming variables, 804, 950
spreadsheet format, 806
SPSS portable files, 314
SYLK format, 806
tab-delimited data files, 806
variable map, 951

scatterplots, 444, 624
all-groups, 264
control variables, 626
horizontal axis, 626, 627
in Interactive Charts procedure, 469
limitations, 625
missing values, 628
overlay plots, 627
plot scaling, 627
plot types, 624
regression plots, 627
separate-groups, 265
titles, 628
vertical axis, 626, 627

Scheffe test, 603, 907, 908
Schwarz Bayesian criterion

in Linear Regression procedure, 722
scratch variables

defined, 22
scree plots

in Factor Analysis procedure, 328
SCSS files

conversion to SPSS, 408
reading, 408, 411

seasonal difference function, 177
seasonal difference transformation

in Autocorrelations procedure, 70, 611
in Cross-correlations procedure, 125
in normal probability plots, 642
in sequence charts, 117

seed. See random-number seed
selecting cases, 920
semi-partial correlation. See part correlation
sequence charts, 115, 878

area charts, 119, 884
connecting cases between variables, 120, 885
line charts, 119, 884
multiple variables, 120, 885
plotting highest and lowest values, 120, 885
scale axis reference line, 120, 884
specifying periodicity, 118, 882
split-file scaling, 120, 886
time axis reference lines, 120, 886
transforming values, 117, 881
using previously defined specifications, 121, 887

settings, 821
displaying, 834
See also preferences

Shapiro-Wilks’ test
in Explore procedure, 309

short string variables, 30
Sidak test, 604, 907, 909
sign test

in Two-Related-Samples Tests procedure, 590
significance level

in Linear Regression procedure, 727
significance levels

in Factor Analysis procedure, 326
similarity measures, 667

See also Distances procedure
simple contrasts, 905
Simple Factorial ANOVA procedure

covariates, 96, 97
defining factor ranges, 96
factor variables, 96
interaction effects, 97
limitations, 95
methods, 97
missing values, 102
multiple classification analysis, 102
statistics, 101
sums of squares, 97, 100

simple matching measure

1022 Subject Index

in Distances procedure, 675
in Hierarchical Cluster Analysis procedure, 136

size difference measure
in Distances procedure, 678
in Hierarchical Cluster Analysis procedure, 139

skewness
in Descriptives procedure, 247
in Explore procedure, 310
in Frequencies procedure, 378
in Report Summaries in Rows procedure, 776

smallest F-ratio criterion
in Discriminant Analysis procedure, 256

smoothers
in Interactive Charts procedure, 477

smoothing function, 178
Sokal and Sneath measures

in Distances procedure, 675
in Hierarchical Cluster Analysis procedure, 137

Somers’ d
in Crosstabs procedure, 185

sorting cases, 838
sort keys, 838
sort order, 838

Spearman correlation coefficient
in Bivariate Correlation procedure, 570
in Crosstabs procedure, 185

special contrasts, 906
split-file processing, 854

break variables, 854
matrices, 855
scratch variables, 854
system variables, 854
temporary, 868
with matrix system files, 17

spread vs. level plots
in GLM General Factorial, 901

spread-and-level plots
in Explore procedure, 309

spreadsheet files
read ranges, 418
read variable names, 417
reading, 412
saving, 806

SPSS data files
documents, 273, 289
reading, 380

SPSS PC+ files

saving, 811
SPSS portable files, 11

reading, 481
saving, 314

SPSS/PC+ files
reading, 481

square root function, 35
squared Euclidean distance

in Distances procedure, 671
in Hierarchical Cluster Analysis procedure, 133

standard deviation
in Descriptives procedure, 247
in Discriminant Analysis procedure, 262
in Explore procedure, 310
in Factor Analysis procedure, 326
in Frequencies procedure, 378
in Linear Regression procedure, 726
in Means procedure, 549
in Report Summaries in Rows procedure, 776
in Summarize procedure, 864

standard deviation function, 36
standard error

in Explore procedure, 310
in Linear Regression procedure, 722

standard error of the mean
in Descriptives procedure, 247
in Frequencies procedure, 378

standard errors
in GLM General Factorial, 911

standardization
in Distances procedure, 669

standardized residuals
in GLM General Factorial, 911

standardized values
in normal probability plots, 641

stand-in variable, 284
statistical functions, 158
stem-and-leaf plots

in Explore procedure, 309
stepwise selection

in Discriminant Analysis procedure, 255
in Linear Regression procedure, 720

string data
computing values, 155, 157, 161
conditional transformations, 276, 277, 455, 456
converting to numeric, 107
input formats, 198, 215

Subject Index 1023

missing values, 552
output formats, 367, 659, 944
value labels, 82, 923

string expressions
defined, 41

string functions, 41, 161
macro facility, 237

string variables
in logical expressions, 41

structure matrix
in Discriminant Analysis procedure, 262, 263

Studentized residuals
in GLM General Factorial, 911

Student-Newman-Keuls, 907
Student-Newman-Keuls test, 603, 908
subcommand

syntax, 4
subgroups

splitting data files into, 854
subsets of cases

based on dates and times, 920
conditional expressions, 816
exact-size sample, 797
filter status, 355
filtering unselected cases, 355
if condition is satisfied, 816
proportional sample, 797
selecting, 816, 920
temporary sample, 797

substrings, 44
subtitles, 859

apostrophes in, 859
length, 859
quotation marks in, 859
suppressing, 859
with inline data, 859

sum
in Descriptives procedure, 248
in Frequencies procedure, 378
in Report Summaries in Rows procedure, 776

sum of squares
Type I, 897
Type II, 897
Type III, 898
Type IV, 898

Summarize procedure
statistics, 864

survival tables
writing to a file, 665

sweep matrix
in Linear Regression procedure, 722

SYLK files
read ranges, 418
read variable names, 417
reading, 412
saving, 811

syntax, 1
syntax charts, 1
system variables, 21
system-missing value, 552

t distribution function, 39
t test

in Independent-Samples T Test procedure, 888
in One-Sampt T Test procedure, 888
in Paired-Samples T Test procedure, 888

T4253H smoothing, 178
tab-delimited files

reading, 412
saving, 809, 811

table lookup files, 520
table specifications

in GLM General Factorial, 910
Tamhane’s T2, 604, 907, 909
Tamhane’s T3, 604, 907, 909
target variables

computing values, 155
counting values, 168, 169
formats, 156
in COMPUTE command, 41

tau. See Goodman and Kruskal’s tau
tau-b. See Kendall’s tau-b
tau-c. See Kendall’s tau-c
templates

in charts, 450
temporary transformations, 868
temporary variables, 868

See also scratch variables, 868
territorial map

in Discriminant Analysis procedure, 264
Tests for Several Independent Samples procedure,

1024 Subject Index

583, 587
grouping variables, 580, 583, 587

Tests for Several Related Samples procedure, 579,
583

time functions, 51
time intervals, 51
time series analysis

autocorrelation, 67
cross-correlation, 123
data transformations, 170, 217, 793
date variables, 217
partial autocorrelation, 609
preferences, 873
sequence charts, 115, 878

time series functions, 172
time series variables

creating, 170
titles, 871

apostrophes in, 871
displaying, 832
length, 871
quotation marks in, 871
See also subtitles
with inline data, 871

tolerance
in Discriminant Analysis procedure, 257
in Linear Regression procedure, 722, 723, 724

tolerance level, 899
total percentage

in Crosstabs procedure, 184
transaction files, 913
transformations

temporary, 868
translating data files. See data files
transposing cases and variables, 363, 366
trimmed mean

in Explore procedure, 310
Tukey’s b, 907
Tukey’s b, 603, 908
Tukey’s honestly significant difference, 603, 907, 908
Tukey’s transformation, 696

in normal probability plots, 639
Two-Independent-Samples Tests procedure, 582, 584,

588, 591
grouping variables, 582, 584, 589, 591
outlier trimming, 589

Two-Related-Samples Tests procedure, 585, 587, 590,
592

u charts, 850
data organization, 851
sigma, 852
subgroup identifier, 851

U. See Mann-Whitney U
uncentered leverage values

in GLM General Factorial, 911
uncertainty coefficient

in Crosstabs procedure, 185
unexplained variance criterion

in Discriminant Analysis procedure, 256
UNIANOVA , 893

Levene’s test, 900
univariate syntax, 893
unstandardized residuals, 911

uniform distribution function, 39
unstandardized predicted values

in GLM General Factorial, 911
unstandardized residuals

in GLM General Factorial, 911
update documentation, 487
updating data files, 913

dropping variables, 918
flag variables, 918
input files, 916
keeping variables, 918
key variables, 913
limitations, 915
master files, 913
raw data files, 916
renaming variables, 917
transaction files, 913
variable map, 919

user-missing values, 552

V. See Cramér’s V
value

syntax, 5
value labels, 81, 923

adding, 923
apostrophes in, 923

Subject Index 1025

concatenating strings, 923, 924
length, 923
revising, 81
string data, 82, 923

Van der Waerden’s transformation, 696
in normal probability plots, 639

variable labels, 926
apostrophes in, 926
concatenating strings, 926, 927

variables
controlling default forma, 824
defining, 208, 597, 704, 857
naming rules, 209
scratch, 22
temporary, 868

variance
in Descriptives procedure, 247
in Explore procedure, 310
in Frequencies procedure, 378
in Linear Regression procedure, 722, 726
in Means procedure, 550
in Report Summaries in Rows procedure, 776
in Summarize procedure, 864

variance inflation factor
in Linear Regression procedure, 722

varimax rotation
in Factor Analysis procedure, 331

vectors, 929
index, 929, 933
variable list, 929

V-to-enter
in Discriminant Analysis procedure, 258

W. See Kendall’s W
Wald-Wolfowitz test

in Two-Independent-Samples Tests procedure, 591
Waller-Duncan t test, 907
Waller-Duncan test, 604, 909
Ward’s method

in Hierarchical Cluster Analysis procedure, 141
warnings

displaying, 827
maximum number, 829

Weibull distribution function, 39
weighted least-squares

in Linear Regression procedure, 725
weighted unstandardized predicted values

in GLM General Factorial, 911
weighted unstandardized residuals

in GLM General Factorial, 911
weighting cases, 937
Wilcoxon test

in Two-Related-Samples Tests procedure, 592
write formats, 944
writing cases, 939

X-bar charts, 843
control limits, 853
data organization, 844
minimum sample size, 852
sigma, 852
subgroup identifier, 845

Yates’ correction for continuity
in Crosstabs procedure, 185

Yule’s Q
in Distances procedure, 677
in Hierarchical Cluster Analysis procedure, 139

Yule’s Y
in Distances procedure, 677
in Hierarchical Cluster Analysis procedure, 138

Z scores
in Descriptives procedure, 246
in Distances procedure, 669
saving as variables, 246

1026 Subject Index

1027

Syntax Index

Symbols
!BLANKS (function)

DEFINE command 239
!BREAK (command)

DEFINE command 241
!BY (keyword)

DEFINE command 241
!CHAREND (keyword)

DEFINE command 233
!CMDEND (keyword)

DEFINE command 233
!CONCAT (function)

DEFINE command 238
!DEFAULT (keyword)

DEFINE command 236
!DO (command)

DEFINE command 241
!DOEND (command)

DEFINE command 241
!ELSE (keyword)

DEFINE command 241
!ENCLOSE (keyword)

DEFINE command 233
!ENDDEFINE (command) 226

See also DEFINE command
!EVAL (function)

DEFINE command 239
!HEAD (function)

DEFINE command 239
!IF (command)

DEFINE command 241
!IFEND (command)

DEFINE command 241
!IN (keyword)

DEFINE command 242
!INDEX (function)

DEFINE command 238

!LENGTH (function)
DEFINE command 238

!LET (command)
DEFINE command 243

!NOEXPAND (keyword)
DEFINE command 237

!NULL (function)
DEFINE command 239

!OFFEXPAND (keyword)
DEFINE command 237

!ONEXPAND (keyword)
DEFINE command 237

!POSITIONAL (keyword)
DEFINE command 230

!QUOTE (function)
DEFINE command 239

!SUBSTRING (function)
DEFINE command 238

!TAIL (function)
DEFINE command 239

!THEN (keyword)
DEFINE command 241

!TO (keyword)
DEFINE command 241

!TOKENS (keyword)
DEFINE command 233

!UNQUOTE (function)
DEFINE command 239

!UPCASE (function)
DEFINE command 239

$CASE (keyword)
IGRAPH command 464

$COUNT (keyword)
IGRAPH command 464, 466, 469, 471,

474, 476
$PCT (keyword)

IGRAPH command 464, 466, 469, 471,

1028 Syntax Index

474, 476
$VARS (subcommand)

SHOW command 837
A
A (keyword)

DESCRIPTIVES command 248
SORT CASES command 838

ABSOLUTE (keyword)
PROXIMITIES command 670

ACF (command) 67
APPLY subcommand 72
DIFF subcommand 69
LN/NOLOG subcommands 70
MXAUTO subcommand 71
PACF subcommand 72
PERIOD subcommand 70
SDIFF subcommand 70
SEASONAL subcommand 71
SERROR subcommand 72
VARIABLES subcommand 69

ADD (function)
REPORT command 778

ADD FILES (command) 74
BY subcommand 78
DROP subcommand 78
FILE subcommand 77
FIRST subcommand 80
IN subcommand 79
KEEP subcommand 78
key variables 78
LAST subcommand 80
limitations 76
MAP subcommand 80
RENAME subcommand 77
with DATA LIST command 77
with SORT CASES command 76, 839
working data file 77

ADD VALUE LABELS (command) 81
compared with VALUE LABELS

command 923
limitations 82
string variables 82

ADJPRED (keyword)
REGRESSION command 733

AEMPIRICAL (keyword)
EXAMINE command 308

AFREQ (keyword)
FREQUENCIES command 373

AFTER (keyword)
ANOVA command 97

AGGREGATE (command) 84
BREAK subcommand 87
DOCUMENT subcommand 88
functions 89
MISSING subcommand 91
OUTFILE subcommand 87
PRESORTED subcommand 88
variable definitions 88
with MATCH FILES command 86
with SORT CASES command 839
with SPLIT FILE command 86, 855

AIC (keyword)
FACTOR command 327

ALIGN (keyword)
REPORT command 763

ALL (keyword)
ANOVA command 97, 101
CORRELATIONS command 164
CROSSTABS command 184, 186, 188
DESCRIPTIVES command 248
DISCRIMINANT command 263, 265
EXAMINE command 309, 310, 311
FREQUENCIES command 378
IGRAPH command 466
INFO command 489
MEANS command 550, 551
MULT RESPONSE command 562
NPAR TESTS command 576, 593
PARTIAL CORR command 618
PLOT command 626
PRINT command 651
SUMMARIZE command 865
USE command 920
WRITE command 940

Syntax Index 1029

ALPHA (keyword)
FACTOR command 330
UNIANOVA command 899

ALPHA (subcommand)
REFORMAT command 713

ANALYSIS (keyword)
NPAR TESTS command 593
ONEWAY command 605
PARTIAL CORR command 619
T-TEST command 892

ANALYSIS (subcommand)
DISCRIMINANT command 254
FACTOR command 325

ANDREW (keyword)
EXAMINE command 311

ANOVA (command) 94
cell means 101
covariates 101
COVARIATES subcommand 97
interaction effects 97
limitations 95
MAXORDERS subcommand 97
METHOD subcommand 97
MISSING subcommand 102
multiple classification analysis 102
sums of squares 97
VARIABLES subcommand 96
with AUTORECODE command 109

ANOVA (keyword)
CURVEFIT command 196
MEANS command 550
QUICK CLUSTER command 689
REGRESSION command 722
SUMMARIZE command 866

APPEND (subcommand)
MCONVERT command 546
SAVE TRANSLATE command 810

APPLY (subcommand)
ACF command 72
CASEPLOT command 121
CCF command 128
CURVEFIT command 197

FIT keyword 197
PACF command 613
PPLOT command 643
SPECIFICATIONS keyword 197
TSPLOT command 887

APPLY DICTIONARY (command) 103
formats 105
FROM subcommand 106
missing values 104
value labels 104
variable labels 104
weight 105

AR (keyword)
FACTOR command 332

AREA (keyword)
GRAPH command 432

ASRESID (keyword)
CROSSTABS command 184

asterisk (filename)
in ADD FILES command 77
in MATCH FILES command 519

AUTOMATIC (keyword)
REPORT command 763

AUTORECODE (command) 107
compared to RECODE 107
compared to RECODE command 698
DESCENDING subcommand 111
INTO subcommand 110
missing values 108
PRINT subcommand 111
VARIABLES subcommand 110
with ANOVA command 109
with MANOVA command 110
with TABLES command 109

AVALUE (keyword)
CROSSTABS command 187
FREQUENCIES command 373

AVERAGE (function)
REPORT command 778

B
BACKWARD (keyword)

REGRESSION command 720

1030 Syntax Index

BADCORR (keyword)
PARTIAL CORR command 618
REGRESSION command 727

BANDWIDTH (keyword)
IGRAPH command 478

BAR (subcommand)
GRAPH command 426
IGRAPH command 469

BARBASE (keyword)
IGRAPH command 470

BARCHART (subcommand)
CROSSTABS command 188
FREQUENCIES command 374

BART (keyword)
FACTOR command 332

BASE (subcommand)
MULT RESPONSE command 562

BASELINE (keyword)
IGRAPH command 470, 476

BAVERAGE (keyword)
CLUSTER command 140

BCOV (keyword)
REGRESSION command 722

BEGIN DATA (command) 112
in a prompted session 113
with INCLUDE command 113
with SUBTITLE command 859
with TITLE command 871

BEUCLID (keyword)
CLUSTER command 139
PROXIMITIES command 678

BINOMIAL (subcommand)
NPAR TESTS command 577

BIVARIATE (keyword)
GRAPH command 444

BLANK (keyword)
FACTOR command 325
REPORT command 771

BLANKS (subcommand)
SET command 829
SHOW command 835

BLKSIZE (subcommand)

SHOW command 835
BLOCK (keyword)

CLUSTER command 134
PROXIMITIES command 672

BLOCK (subcommand)
SET command 831
SHOW command 835

BLOM (keyword)
PPLOT command 639
RANK command 696

BLWMN (keyword)
CLUSTER command 140
PROXIMITIES command 679

BONFERRONI (keyword)
ONEWAY command 603
UNIANOVA command 908

BOTH (keyword)
IGRAPH command 475
NONPAR CORR command 570
PPLOT command 640

BOTTOM (keyword)
TSPLOT command 883

BOX (subcommand)
IGRAPH command 472
SET command 831
SHOW command 835

BOXBASE (keyword)
IGRAPH command 472

BOXM (keyword)
DISCRIMINANT command 262

BOXPLOT (keyword)
EXAMINE command 308

BREAK (command) 114
with DO IF command 114
with LOOP command 114

BREAK (keyword)
IGRAPH command 474

BREAK (subcommand)
AGGREGATE command 87
REPORT command 771

BREAKDOWN (command)
see MEANS

Syntax Index 1031

BRIEF (keyword)
TSET command 876

BRKSPACE (keyword)
REPORT command 764

BSEUCLID (keyword)
CLUSTER command 139
PROXIMITIES command 678

BSHAPE (keyword)
CLUSTER command 140
PROXIMITIES command 678

BTAU (keyword)
CROSSTABS command 185

BTUKEY (keyword)
ONEWAY command 603
UNIANOVA command 908

BUFFNO (subcommand)
SHOW command 835

BY (keyword)
ANOVA command 96
CROSSTABS command 182
DATE command 219
LIST command 506
LOOP command 513
MEANS command 549
MULT RESPONSE command 560
NPAR TESTS command 576, 580
PARTIAL CORR command 616
PLOT command 626, 627
RANK command 693
SORT CASES command 838
SPLIT FILE command 854
SUMMARIZE command 863
WEIGHT command 937

BY (subcommand)
ADD FILES command 78
MATCH FILES command 519
UPDATE command 917

C
C (keyword)

ONEWAY command 604
UNIANOVA command 909

C (subcommand)

data organization 851
SPCHART command 850
variable specification 851

CAPSTYLE (keyword)
IGRAPH command 476

CAPTION (subcommand)
IGRAPH command 467

CAPWIDTH (keyword)
IGRAPH command 473, 476

CASE (keyword)
FILE TYPE command 350
PROXIMITIES command 669, 670

CASE (subcommand)
FILE TYPE command 347
RECORD TYPE command 709

CASENUM (keyword)
SUMMARIZE command 865

CASENUM$ (system variable)
in PRINT EJECT command 658
with SELECT IF command 817

CASEPLOT (command) 115
APPLY subcommand 121
DIFF subcommand 117
FORMAT subcommand 119
ID subcommand 119
LN/NOLOG subcommands 118
MARK subcommand 120
PERIOD subcommand 118
SDIFF subcommand 117
SPLIT subcommand 120

CASES (keyword)
DISCRIMINANT command 264
MULT RESPONSE command 562

CASES (subcommand)
LIST command 505

CASEWISE (subcommand)
REGRESSION command 735

CAT (keyword)
IGRAPH command 474

CATEGORICAL (keyword)
IGRAPH command 464

CC (keyword)

1032 Syntax Index

CROSSTABS command 185
CC (subcommand)

SET command 832
SHOW command 835

CCF (command) 123
APPLY subcommand 128
DIFF subcommand 125
LN/NOLOG subcommands 126
MXCROSS subcommand 127
PERIOD subcommand 126
SDIFF subcommand 125
SEASONAL subcommand 127
VARIABLES subcommand 125

CCW (keyword)
IGRAPH command 471

CELLS (keyword)
CROSSTABS command 188

CELLS (subcommand)
CROSSTABS command 184
MATRIX DATA command 539
MEANS command 549
MULT RESPONSE command 561
SUMMARIZE command 864

CENTER (keyword)
REPORT command 769, 773, 782

CENTROID (keyword)
CLUSTER command 141

CHA (keyword)
REGRESSION command 722

CHALIGN (keyword)
REPORT command 763

CHARTLOOK (subcommand)
IGRAPH command 468

CHDSPACE (keyword)
REPORT command 764

CHEBYCHEV (keyword)
CLUSTER command 134
PROXIMITIES command 672

CHISQ (keyword)
CLUSTER command 134
CROSSTABS command 185
PROXIMITIES command 672

CHISQUARE (subcommand)
NPAR TESTS command 578

CHWRAP (keyword)
REPORT command 764

CI (keyword)
GRAPH command 442
IGRAPH command 475
REGRESSION command 722

CIN (keyword)
CROSSTABS command 186
CURVEFIT command 196
NPAR TESTS command 594
REGRESSION command 724

CIN (subcommand)
CURVEFIT command 196

CINTERVAL (subcommand)
EXAMINE command 310

CJUMP (keyword)
IGRAPH command 474

CLASS (keyword)
DISCRIMINANT command 260

CLASSIFY (keyword)
QUICK CLUSTER command 688

CLASSIFY (subcommand)
DISCRIMINANT command 263

CLEAR TRANSFORMATIONS (command)
129
CLUSTER (command) 130

compared with QUICK CLUSTER
command 685

ID subcommand 142
limitations 132
matrix input 144
matrix output 144
MATRIX subcommand 144
MEASURE subcommand 133
MISSING subcommand 144
missing values 144, 146
PLOT subcommand 143
PRINT subcommand 142
SAVE subcommand 141
variable list 132

Syntax Index 1033

with SET command 132
CLUSTER (keyword)

CLUSTER command 142
IGRAPH command 471
QUICK CLUSTER command 687, 689

CLUSTER (subcommand)
IGRAPH command 466

COCHRAN (subcommand)
NPAR TESTS command 579

CODE (subcommand)
GET BMDP command 387

COEFF (keyword)
DISCRIMINANT command 263
REGRESSION command 722

COINCIDENT (keyword)
IGRAPH command 469

COLLECT (keyword)
REGRESSION command 719

COLLIN (keyword)
REGRESSION command 722

COLOR (subcommand)
IGRAPH command 465

COLSPACE (keyword)
REPORT command 763

COLUMN (keyword)
CROSSTABS command 184
MULT RESPONSE command 561

COLUMN (subcommand)
REREAD command 790

COLUMNWISE (keyword)
AGGREGATE command 91, 92

COMBINED (keyword)
DISCRIMINANT command 264

COMM (keyword)
EXPORT command 317
IMPORT command 482

COMMENT (command) 149
COMPARE (subcommand)

EXAMINE command 306
COMPLETE (keyword)

CLUSTER command 140
COMPOUND (keyword)

CURVEFIT command 194
COMPRESSED (subcommand)

SAVE command 805
XSAVE command 951

COMPRESSION (subcommand)
SET command 830
SHOW command 835

COMPUTE (command) 150
functions 150
missing values 156
with DO IF command 157
with STRING command 157, 161

CONDENSE (keyword)
MULT RESPONSE command 564
RANK command 639, 696

CONDENSED (keyword)
PARTIAL CORR command 619

CONFORM (subcommand)
SPCHART command 852

CONNECT(subcommand)
SAVE TRANSLATE command 810

CONSTANT (subcommand)
CURVEFIT command 195

CONTENT (subcommand)
GET BMDP command 387

CONTENTS (subcommand)
MATRIX DATA command 539

CONTINUED (subcommand)
REPEATING DATA command 752

CONTOUR (keyword)
PLOT command 627

CONTRAST (subcommand)
ONEWAY command 601
UNIANOVA command 904

CONVERGE (keyword)
QUICK CLUSTER command 688

CONVERT (keyword)
RECODE command 702

COOK (keyword)
REGRESSION command 733
UNIANOVA command 911

COORDINATE (subcommand)

1034 Syntax Index

IGRAPH command 467
CORR (keyword)

CROSSTABS command 185
DISCRIMINANT command 262
MATRIX DATA command 539
PARTIAL CORR command 618

CORRELATION (keyword)
CLUSTER command 133
FACTOR command 326
PROXIMITIES command 671
REGRESSION command 727

CORRELATIONS (command) 162
limitations 163
matrix output 17, 165
MATRIX subcommand 165
MISSING subcommand 165
PRINT subcommand 164
significance tests 164
STATISTICS subcommand 164
with REGRESSION command 728

COSINE (keyword)
CLUSTER command 133
PROXIMITIES command 672

COUNT (command) 168
missing values 169

COUNT (function)
GRAPH command 423

COUNT (keyword)
CROSSTABS command 184
MATRIX DATA command 540
MEANS command 549
MULT RESPONSE command 561
SUMMARIZE command 864

COV (keyword)
DISCRIMINANT command 262
MATRIX DATA command 539
REGRESSION command 727

COVARIANCE (keyword)
FACTOR command 326

COVARIATES (subcommand)
ANOVA command 97

COVRATIO (keyword)

REGRESSION command 733
CREATE (command) 170

CSUM function 172
DIFF function 172
FFT function 173
IFFT function 173
LAG function 174
LEAD function 174
MA function 175
PMA function 176
RMED function 176
SDIFF function 177
T4253H function 178

CRITERIA (subcommand)
FACTOR command 329
QUICK CLUSTER command 687
REGRESSION command 723
UNIANOVA command 899

CROSSTABS (command) 179
BARCHART subcommand 188
cell percentages 184
CELLS subcommand 184
exact tests 186
expected count 184
FORMAT subcommand 187
general mode 183
integer mode 183
limitations 181
METHOD subcommand 186
MISSING subcommand 187
residuals 184
STATISTICS subcommand 185
TABLES subcommand 182
VARIABLES subcommand 182
with PROCEDURE OUTPUT command

188, 189, 665
with WEIGHT 190
WRITE subcommand 188

CROSSVALID (keyword)
DISCRIMINANT command 263

CSTEP (keyword)
IGRAPH command 474

Syntax Index 1035

CSUM (function)
CREATE command 172

CTAU (keyword)
CROSSTABS command 185

CTEMPLATE (subcommand)
SET command 825
SHOW command 835

CUBIC (keyword)
CURVEFIT command 194

CUFREQ (function)
GRAPH command 423

CUM (keyword)
GRAPH command 448
IGRAPH command 476

CUPCT (function)
GRAPH command 423

CURVE (keyword)
IGRAPH command 476

CURVEFIT (command) 191
APPLY subcommand 197
CIN subcommand 196
CONSTANT/NOCONSTANT

subcommands 195
ID subcommand 196
MODEL subcommand 194
PLOT subcommand 196
PRINT subcommand 196
SAVE subcommand 196
UPPERBOUND subcommand 195
VARIABLES subcommand 194

CUSUM (function)
GRAPH command 423

CW (keyword)
IGRAPH command 471

CYCLE (keyword)
DATE command 217

D
D (keyword)

CLUSTER command 138
CROSSTABS command 185
DESCRIPTIVES command 248
PROXIMITIES command 677

SORT CASES command 838
DATA (subcommand)

GET OSIRIS command 397
REPEATING DATA command 750

DATA LIST (command) 198
column-style formats 212
END subcommand 206
FILE subcommand 202
FIXED keyword 202
fixed-format data 200, 201, 202, 209
FORTRAN-like formats 212
FREE keyword 202
freefield data 200, 201, 201, 202, 211
inline data 200, 202
LIST keyword 202
NOTABLE subcommand 205
RECORDS subcommand 205
TABLE subcommand 205
variable definition 208
variable formats 198, 211
variable names 209
with ADD FILES command 77
with INPUT PROGRAM command 206,

282
with MATCH FILES command 519
with NUMERIC command 598
with POINT command 631
with RECORD TYPE command 704
with REPEATING DATA command 742,

743, 745
with REREAD command 785
with UPDATE command 916
with VECTOR command 934

DATE (argument)
REPORT command 783

DATE (command) 217
BY keyword 219
examples 220
keywords 217
starting value 218

DAY (keyword)
DATE command 217

1036 Syntax Index

DB2 (keyword)
SAVE TRANSLATE command 811

DB3 (keyword)
SAVE TRANSLATE command 811

DB4 (keyword)
SAVE TRANSLATE command 811

DEFAULT (keyword)
DESCRIPTIVES command 248
FREQUENCIES command 378
MEANS command 549
PLOT command 627
SUMMARIZE command 864
TSET command 876

DEFAULT (subcommand)
TSET command 875

DEFINE (command) 226
!BREAK command 241
!BY keyword 241
!CHAREND keyword 233
!CMDEND keyword 233
!DEFAULT keyword 236
!DO command 241
!DOEND command 241
!ELSE keyword 241
!ENCLOSE keyword 233
!IF command 241
!IFEND command 241
!IN keyword 242
!LET command 243
!NOEXPAND keyword 237
!OFFEXPAND keyword 237
!ONEXPAND keyword 237
!POSITIONAL keyword 230
!THEN keyword 241
!TO keyword 241
!TOKENS keyword 233
limitations 228
macro arguments 230
string functions 237
tokens 233
with SET command 239

DENDROGRAM (keyword)

CLUSTER command 143
DEPENDENT (keyword)

MEANS command 551
SUMMARIZE command 865

DEPENDENT (subcommand)
REGRESSION command 719

DESCENDING (subcommand)
AUTORECODE command 111

DESCRIPTIVES (command) 244
MISSING subcommand 249
SAVE subcommand 246
SORT subcommand 248
STATISTICS subcommand 247
VARIABLES subcommand 245
Z scores 246

DESCRIPTIVES (keyword)
CORRELATIONS command 164
EXAMINE command 310
NPAR TESTS command 593
ONEWAY command 605
PARTIAL CORR command 618
UNIANOVA command 900

DESCRIPTIVES (subcommand)
REGRESSION command 726

DET (keyword)
FACTOR command 327

DETAILED (keyword)
TSET command 876

DETRENDED (keyword)
PPLOT command 640

DEVIATION (keyword)
UNIANOVA command 905

DFBETA (keyword)
REGRESSION command 733

DFE (keyword)
MATRIX DATA command 540

DFE (subcommand)
FIT command 361

DFFIT (keyword)
REGRESSION command 733

DFH (subcommand)
FIT command 361

Syntax Index 1037

DFREQ (keyword)
FREQUENCIES command 373

DIAGONAL (keyword)
MATRIX DATA command 534

DIAGONAL (subcommand)
FACTOR command 328

DICE (keyword)
CLUSTER command 137
PROXIMITIES command 675

DICTIONARY (keyword)
DISPLAY command 270

DICTIONARY (subcommand)
GET OSIRIS command 397

DIFF (function)
CREATE command 172

DIFF (subcommand)
ACF command 69
CASEPLOT command 117
CCF command 125
PACF command 611
PPLOT command 641
TSPLOT command 881

DIFFERENCE (keyword)
GRAPH command 432
UNIANOVA command 905

DIGITS (subcommand)
EXPORT command 319

DIRECT (keyword)
DISCRIMINANT command 256

DIRECTION (keyword)
IGRAPH command 475

DISCRIMINANT (command) 250
analysis block 252
ANALYSIS subcommand 254
CLASSIFY subcommand 263
FIN subcommand 257
FOUT subcommand 257
FUNCTIONS subcommand 258
GROUPS subcommand 253
HISTORY subcommand 263
inclusion levels 255
limitations 252

matrix input 265
matrix output 265
MATRIX subcommand 265
MAXSTEPS subcommand 258
METHOD subcommand 256
MISSING subcommand 265
missing values 265, 267
PIN subcommand 257
PLOT subcommand 264
POUT subcommand 257
PRIORS subcommand 259
ROTATE subcommand 263
SAVE subcommand 260
SELECT subcommand 253
STATISTICS subcommand 262
TOLERANCE subcommand 257
VARIABLES subcommand 253
VIN subcommand 258
with MATRIX DATA command 529

DISPER (keyword)
CLUSTER command 140
PROXIMITIES command 678

DISPLAY (command) 270
VARIABLES subcommand 271
with PRINT FORMATS command 660
with WRITE FORMATS command 945

DISTANCE (keyword)
CLUSTER command 142
QUICK CLUSTER command 689

DISTRIBUTION (subcommand)
PPLOT command 637

DIVIDE (function)
REPORT command 778

DO IF (command) 275
logical expressions 276
missing values 278
nested 282
string data 276, 277
with ELSE command 279
with ELSE IF command 280
with INPUT PROGRAM command 283
with PRINT command 653

1038 Syntax Index

with PRINT EJECT command 656
with PRINT SPACE command 662
with SAMPLE command 799
with SELECT IF command 820

DO REPEAT (command) 284
PRINT subcommand 287
stand-in variable 284
with INPUT PROGRAM command 286
with LOOP command 286

DO REPEAT command
with XSAVE command 948

DOCUMENT (subcommand)
AGGREGATE command 88

DOCUMENTS (keyword)
DISPLAY command 270

DOT (keyword)
IGRAPH command 474

DOTLINE (keyword)
IGRAPH command 474

DOUBLE (keyword)
MULT RESPONSE command 563

DOWN (keyword)
IGRAPH command 475
SORT CASES command 838

DRESID (keyword)
REGRESSION command 733
UNIANOVA command 911

DROP (keyword)
GRAPH command 432

DROP (subcommand)
ADD FILES command 78
EXPORT command 318
GET BMDP command 387
GET command 382
GET OSIRIS command 397
GET TRANSLATE command 418
IMPORT command 482
MATCH FILES command 521
SAVE command 803
SAVE TRANSLATE command 813
UPDATE command 918
XSAVE command 949

DROP DOCUMENTS (command) 289
with MATCH FILES command 518
with UPDATE command 914

DROPLINE (keyword)
IGRAPH command 474

DUMMY (keyword)
REPORT command 768

DUNCAN (keyword)
ONEWAY command 603
UNIANOVA command 908

DUNNETT (keyword)
ONEWAY command 603
UNIANOVA command 908

DUNNETTL (keyword)
ONEWAY command 603
UNIANOVA command 908

DUNNETTR (keyword)
ONEWAY command 603
UNIANOVA command 908

DUPLICATE (subcommand)
FILE TYPE command 350
RECORD TYPE command 711

DURBIN (keyword)
REGRESSION command 735

DVALUE (keyword)
CROSSTABS command 187
FREQUENCIES command 373

E
ECONVERGE (keyword)

FACTOR command 329
EDIT (command) 290
EFFECT (subcommand)

IGRAPH command 467
EFFECTS (keyword)

ONEWAY command 605
EFSIZE (keyword)

UNIANOVA command 900
EIGEN (keyword)

FACTOR command 328
ELSE (command)

see DO IF command
ELSE (keyword)

Syntax Index 1039

RECODE command 699
ELSE IF (command)

see DO IF command
EMMEANS (subcommand)

UNIANOVA command 909
EMPIRICAL (keyword)

EXAMINE command 308
END (keyword)

DISCRIMINANT command 263
END (subcommand)

DATA LIST command 206
END CASE (command) 292

with LOOP command 515
with VECTOR command 293, 299

END DATA (command) 112
END FILE (command) 301

with END CASE command 302
with LOOP command 515

END FILE TYPE (command). See FILE TYPE
command
END IF (command). See DO IF command
END INPUT PROGRAM (command). See
INPUT PROGRAM command
END LOOP (command) 507

see also LOOP command
END REPEAT (command). See DO REPEAT
command
ENTER (keyword)

REGRESSION command 720
EPANECHNIKOV (keyword)

IGRAPH command 477
EPOCH (subcommand) 826
EPS (keyword)

UNIANOVA command 899
EQUAL (keyword)

DISCRIMINANT command 259
EQUAMAX (keyword)

FACTOR command 331
ERASE (command) 303
ERRORBAR (subcommand)

GRAPH command 442
IGRAPH command 475

ERRORS (keyword)
INFO command 489

ERRORS (subcommand)
FIT command 360
SET command 827
SHOW command 835

ETA (keyword)
CROSSTABS command 185

ETASQ (keyword)
UNIANOVA command 900

EUCLID (keyword)
CLUSTER command 133
PROXIMITIES command 671

EXACT (keyword)
CROSSTABS command 186
NPAR TESTS command 594

EXAMINE (command) 304
CINTERVAL subcommand 310
COMPARE subcommand 306
ID subcommand 307
limitations 305
MESTIMATORS subcommand 310
MISSING subcommand 311
NOTOTAL subcommand 307
PERCENTILES subcommand 307
PLOT subcommand 308
STATISTICS subcommand 310
TOTAL subcommand 307
VARIABLES subcommand 306

EXCLUDE (keyword)
ANOVA command 102
CORRELATIONS command 165
DISCRIMINANT command 265
EXAMINE command 312
GRAPH command 452
ONEWAY command 605
PARTIAL CORR command 619
RANK command 697
SUMMARIZE command 865
TSET command 875
UNIANOVA command 898, 899

EXECUTE (command) 313

1040 Syntax Index

EXPECTED (keyword)
CROSSTABS command 184

EXPECTED (subcommand)
NPAR TESTS command 578

EXPERIMENTAL (keyword)
ANOVA command 97

EXPONENTIAL (keyword)
CURVEFIT command 194
NPAR TESTS command 581

EXPORT (command) 314
DIGITS subcommand 319
DROP subcommand 318
KEEP subcommand 318
MAP subcommand 319
OUTFILE subcommand 317
RENAME subcommand 318
TYPE subcommand 317
UNSELECTED subcommand 317

EXTENSIONS (subcommand)
SET command 830
SHOW command 835

EXTRACTION (keyword)
FACTOR command 326

EXTRACTION (subcommand)
FACTOR command 330

EXTREME (keyword)
EXAMINE command 310
IGRAPH command 472

F
F (keyword)

REGRESSION command 723
FACILITIES (keyword)

INFO command 489
FACTOR (command) 320

analysis block 322
ANALYSIS subcommand 325
CRITERIA subcommand 329
DIAGONAL subcommand 328
extraction block 322
EXTRACTION subcommand 330
FORMAT subcommand 325
matrix input 333

matrix output 17, 333
MATRIX subcommand 333
MISSING subcommand 323
missing values 323
PLOT subcommand 327
PRINT subcommand 326
rotation block 322
ROTATION subcommand 331
SAVE subcommand 332
SELECT subcommand 324
VARIABLES subcommand 323
with PROXIMITIES command 684

FACTORS (keyword)
FACTOR command 329

FACTORS (subcommand)
MATRIX DATA command 537

FANCY (keyword)
IGRAPH command 473, 476

FFT (function)
CREATE command 173

FGT (function)
AGGREGATE command 89

FIELDNAMES (subcommand)
GET TRANSLATE command 417
SAVE TRANSLATE command 812

FILE (keyword)
SYSFILE INFO command 867

FILE (subcommand)
ADD FILES command 77
DATA LIST command 202
FILE TYPE command 347
GET BMDP command 386
GET command 381
GET TRANSLATE command 416
IMPORT command 482
INCLUDE command 486
KEYED DATA LIST command 499
MATCH FILES command 518
MATRIX DATA command 533
POINT command 633
QUICK CLUSTER command 689
REPEATING DATA command 750

Syntax Index 1041

REREAD command 788
UPDATE command 916

FILE HANDLE (command) 337
LRECL subcommand 338
MODE subcommand 337
RECFORM subcommand 338
with POINT command 633

FILE LABEL (command) 339
FILE TYPE (command) 340

CASE subcommand 347
DUPLICATE subcommand 350
FILE subcommand 347
GROUPED keyword 345
MISSING subcommand 351
MIXED keyword 345
NESTED keyword 345
ORDERED subcommand 353
RECORD subcommand 347
subcommand summary 346
WILD subcommand 350
with RECORD TYPE command 704
with REPEATING DATA command 742,

743, 746
with SAMPLE command 798

FILTER (command) 355
FIN (function)

AGGREGATE command 89
FIN (keyword)

REGRESSION command 724
FIN (subcommand)

DISCRIMINANT command 257
FINISH (command) 357, 815
FIRST (function)

AGGREGATE command 90
FIRST (keyword)

ANOVA command 97
IGRAPH command 478
MEANS command 550
SUMMARIZE command 864
USE command 920

FIRST (subcommand)
ADD FILES command 80

MATCH FILES command 522
FIT (command) 359

DFE/DFH subcommands 361
ERRORS subcommand 360
OBS subcommand 360

FIT (keyword)
CURVEFIT command 196, 197

FITLINE (subcommand)
IGRAPH command 477

FITS (keyword)
REGRESSION command 738

FIXED (keyword)
DATA LIST command 202

FLIP (command) 363–366
NEWNAMES subcommand 365–366
VARIABLES subcommand 364–365

FLT (function)
AGGREGATE command 89

FOOTNOTE (subcommand)
GRAPH command 426
REPORT command 782
SPCHART command 843
SUMMARIZE command 863

FORMAT (subcommand)
CASEPLOT command 119
CROSSTABS command 187
FACTOR command 325
FREQUENCIES command 373
LIST command 505
MATRIX DATA command 534
MULT RESPONSE command 563
PARTIAL CORR command 619
PLOT command 626
REPORT command 762
SET command 824
SHOW command 835
SUMMARIZE command 865
TSPLOT command 883

FORMATS (command) 367
with REFORMAT command 713

FORWARD (keyword)
REGRESSION command 720

1042 Syntax Index

FOUT (function)
AGGREGATE command 90

FOUT (keyword)
REGRESSION command 724

FPAIR (keyword)
DISCRIMINANT command 262

FRACTION (subcommand)
PPLOT command 639
RANK command 696

FREE (keyword)
DATA LIST command 202
MATRIX DATA command 534

FREGW (keyword)
ONEWAY command 604
UNIANOVA command 909

FREQ (keyword)
FREQUENCIES command 374, 375

FREQUENCIES (command) 371
BARCHART subcommand 374
FORMAT subcommand 373
GROUPED subcommand 376
HISTOGRAM subcommand 375
limitations 372
MISSING subcommand 379
NTILES subcommand 377
PERCENTILES subcommand 377
STATISTICS subcommand 378
VARIABLES subcommand 373
with PROCEDURE OUTPUT command

666
FREQUENCIES (subcommand)

MULT RESPONSE command 559
FREQUENCY (function)

REPORT command 777
FRIEDMAN (subcommand)

NPAR TESTS command 579
FROM (keyword)

LIST command 506
SAMPLE command 797

FROM (subcommand)
APPLY DICTIONARY command 106

FSCORE (keyword)

FACTOR command 327
FTSPACE (keyword)

REPORT command 764
FULL (keyword)

MATRIX DATA command 534
FUNCTIONS (subcommand)

DISCRIMINANT command 258
G
GABRIEL (keyword)

ONEWAY command 604
UNIANOVA command 909

GAMMA (keyword)
CROSSTABS command 185

GCOV (keyword)
DISCRIMINANT command 262

GEF (keyword)
UNIANOVA command 900

GEOMETRIC (keyword)
MEANS command 550
SUMMARIZE command 864

GET (command) 380
DROP subcommand 382
FILE subcommand 381
KEEP subcommand 382
MAP subcommand 383
RENAME subcommand 382

GET BMDP (command) 384
BMDP to SPSS conversion 385
CODE subcommand 387
CONTENT subcommand 387
DROP subcommand 387
FILE subcommand 386
KEEP subcommand 387
LABEL subcommand 387
MAP subcommand 389
RENAME subcommand 388
SCAN subcommand 386

GET OSIRIS (command) 394
DATA subcommand 397
DICTIONARY subcommand 397
DROP subcommand 397
KEEP subcommand 397

Syntax Index 1043

limitations 396
MAP subcommand 398
OSIRIS to SPSS conversion 395
RENAME subcommand 398

GET SCSS (command) 408–411
$ convention 410–411
MASTERFILE subcommand 409
SCSS to SPSS conversion 408–409
VARIABLES subcommand 410–411
WORKFILE subcommand 409–410

GET TRANSLATE (command) 412
database files 415
DROP subcommand 418
FIELDNAMES subcommand 417
FILE subcommand 416
KEEP subcommand 418
limitations 416
MAP subcommand 419
RANGE subcommand 418
RENAME subcommand 419
spreadsheet files 413
tab-delimited files 415
TYPE subcommand 416

GH (keyword)
ONEWAY command 604
UNIANOVA command 909

GLS (keyword)
FACTOR command 330

GMEDIAN (keyword)
MEANS command 549

GMEIDAN (keyword)
SUMMARIZE command 864

GRAPH (command)
BAR subcommand 426
BIVARIATE keyword 444
CI keyword 442
count functions 423
CUM keyword 448
DROP keyword 432
ERRORBAR subcommand 442
FOOTNOTE subcommand 426
GROUPED keyword 440

HILO subcommand 440
HISTOGRAM subcommand 447
INCLUDE keyword 452, 453
LINE subcommand 432
LISTWISE keyword 452
MATRIX keyword 445
MISSING subcommand 452
NOCUM keyword 448
NOREPORT keyword 452
OVERLAY keyword 444
PARETO subcommand 448
PIE subcommand 438
RANGE keyword 427
REPORT keyword 452
SCATTERPLOT subcommand 444
SIMPLE keyword 426, 432, 440, 449
STACKED keyword 449
STDDEV keyword 443
STERROR keyword 442
SUBTITLE subcommand 426
summary functions 423
TITLE subcommand 426
VARIABLE keyword 452
XYZ keyword 445

GREAT (function)
REPORT command 778

GROUPED (keyword)
FILE TYPE command 345
GRAPH command 426, 440

GROUPED (subcommand)
FREQUENCIES command 376

GROUPS (keyword)
EXAMINE command 306

GROUPS (subcommand)
DISCRIMINANT command 253
MULT RESPONSE command 557
T-TEST command 890

GROWTH (keyword)
CURVEFIT command 194

GT2 (keyword)
ONEWAY command 604
UNIANOVA command 909

1044 Syntax Index

H
HAMANN (keyword)

CLUSTER command 138
PROXIMITIES command 676

HAMPEL (keyword)
EXAMINE command 311

HARMONIC (keyword)
MEANS command 550
SUMMARIZE command 864

HAVERAGE (keyword)
EXAMINE command 308

HEADER (subcommand)
SET command 832
SHOW command 835

HELMERT (keyword)
UNIANOVA command 905

HICICLE (keyword)
CLUSTER command 143

HIERARCHICAL (keyword)
ANOVA command 97, 98

Hierarchical Cluster Analysis procedure
cluster membership 142

HIGH (keyword)
RANK command 639, 696

HIGHEST (keyword)
COUNT command 168
MISSING VALUES command 554
RECODE command 699

HIGHRES (subcommand)
SET command 831
SHOW command 835

HILO (keyword)
CASEPLOT command 119
TSPLOT command 883

HILO (subcommand)
GRAPH command 440

HISTOGRAM (keyword)
EXAMINE command 309
REGRESSION command 734

HISTOGRAM (subcommand)
FREQUENCIES command 375
GRAPH command 447

IGRAPH command 476
HISTORY (subcommand)

DISCRIMINANT command 263
HOMOGENEITY (keyword)

ONEWAY command 605
UNIANOVA command 900

HORIZONTAL (keyword)
IGRAPH command 467

HORIZONTAL (subcommand)
PLOT command 627

HOUR (keyword)
DATE command 217

HUBER (keyword)
EXAMINE command 311

I
I (subcommand)

data organization 847
SPCHART command 846
variable specification 847

ICIN (keyword)
REGRESSION command 733

ID (keyword)
QUICK CLUSTER command 689
REGRESSION command 735

ID (subcommand)
CASEPLOT command 119
CLUSTER command 142
CURVEFIT command 196
EXAMINE command 307
PROXIMITIES command 680
REPEATING DATA command 754
TSET command 875
TSPLOT command 883

IF (command) 454
compared to RECODE command 698
logical expressions 454
missing values 455, 456
string data 455, 456
with LOOP command 458

IF (keyword)
LOOP command 509

IFFT (function)

Syntax Index 1045

CREATE command 173
IGRAPH (command) 460–480

BAR subcommand 469
BOX subcommand 472
CAPTION subcommand 467
CHARTLOOK subcommand 468
CLUSTER subcommand 466
COLOR subcommand 465
COORDINATE subcommand 467
EFFECT subcommand 467
ERRORBAR subcommand 475
FITLINE subcommand 477
HISTOGRAM subcommand 476
LINE subcommand 473
PANEL subcommand 466
PIE subcommand 471
POINTLABEL subcommand 466
SCATTER subcommand 469
SIZE subcommand 465
STYLE subcommand 465
SUBTITLE subcommand 467
summary functions 478
SUMMARYVAR subcommand 466
TITLE subcommand 467
VIEWNAME subcommand 467
X1 subcommand 464
X1LENGTH subcommand 464
X2 subcommand 464
X2LENGTH subcommand 464
Y subcommand 464
YLENGTH subcommand 464

IMAGE (keyword)
FACTOR command 330

IMPORT (command) 481
DROP subcommand 482
FILE subcommand 482
KEEP subcommand 482
MAP subcommand 484
RENAME subcommand 483
TYPE subcommand 482

IN (keyword)
CLUSTER command 144

DISCRIMINANT command 265
FACTOR command 333
ONEWAY command 606, 728
PARTIAL CORR command 620
PROXIMITIES command 680
REGRESSION command 728

IN (subcommand)
ADD FILES command 79
KEYED DATA LIST command 500
MATCH FILES command 522
UPDATE command 918

INCLUDE (command) 485
FILE subcommand 486

INCLUDE (keyword)
ANOVA command 102
CLUSTER command 144
CORRELATIONS command 165
CROSSTABS command 187
DESCRIPTIVES command 249
DISCRIMINANT command 265
EXAMINE command 312
FACTOR command 324
FREQUENCIES command 379
GRAPH command 453
MEANS command 551
MULT RESPONSE command 563
NONPAR CORR command 571
NPAR TESTS command 593
ONEWAY command 605
PARTIAL CORR command 619
PLOT command 628
PROXIMITIES command 680
RANK command 697
REGRESSION command 730
SUMMARIZE command 865
TSET command 875
T-TEST command 892
UNIANOVA command 898, 899

INDENT (keyword)
REPORT command 764

INDEX (keyword)
DISPLAY command 270

1046 Syntax Index

INDIVIDUAL (keyword)
IGRAPH command 477

INFO (command) 487
known errors 489
local documentation 487, 489
new releases 489
OUTFILE (subcommand) 490
procedures 489
update documentation 487, 489

INITIAL (keyword)
FACTOR command 326
QUICK CLUSTER command 689

INITIAL (subcommand)
QUICK CLUSTER command 688

INLINE (keyword)
MATRIX DATA command 533

INPUT PROGRAM (command) 491
examples 207, 283, 286, 293, 302
with DATA LIST command 282
with END subcommand on DATA LIST

206
with NUMERIC command 597
with REPEATING DATA command 742,

743, 745
with REREAD command 785
with SAMPLE command 798
with STRING command 857
with VECTOR command 932

INSIDE (keyword)
IGRAPH command 470, 471

INTERCEPT (subcommand)
UNIANOVA command 898

INTERPOLATE (keyword)
IGRAPH command 474

INTERVAL (keyword)
IGRAPH command 477

INTO (keyword)
RANK command 695
RECODE command 701

INTO (subcommand)
AUTORECODE command 110

INV (keyword)

FACTOR command 327
INVERSE (keyword)

CURVEFIT command 194
IR (subcommand)

data organization 847
SPCHART command 846
variable specification 847

ITERATE (keyword)
FACTOR command 329

J
JACCARD (keyword)

CLUSTER command 136
PROXIMITIES command 675

JITTER (keyword)
IGRAPH command 469

JOIN (keyword)
CASEPLOT command 119
TSPLOT command 883

JOURNAL (subcommand)
SET command 828
SHOW command 835

J-T (subcommand)
NPAR TESTS command 580

K
K1 (keyword)

CLUSTER command 137
PROXIMITIES command 676

K2 (keyword)
CLUSTER command 137
PROXIMITIES command 676

KAISER (keyword)
FACTOR command 329

KAPPA (keyword)
CROSSTABS command 185

KEEP (subcommand)
ADD FILES command 78
EXPORT command 318
GET BMDP command 387
GET command 382
GET OSIRIS command 397
GET TRANSLATE command 418
IMPORT command 482

Syntax Index 1047

MATCH FILES command 521
SAVE command 803
SAVE TRANSLATE command 813
UPDATE command 918
XSAVE command 949

KENDALL (keyword)
NONPAR CORR command 570

KENDALL (subcommand)
NPAR TESTS command 583

KEY (subcommand)
KEYED DATA LIST command 499
POINT command 633

KEYED DATA LIST (command) 495
direct-access files 495
FILE subcommand 499
IN subcommand 500
KEY subcommand 499
keyed files 495, 496
NOTABLE subcommand 500
TABLE subcommand 500

KMATRIX (subcommand)
UNIANOVA command 904

KMEANS (keyword)
QUICK CLUSTER command 688

KMO (keyword)
FACTOR command 327

K-S (subcommand)
NPAR TESTS command 581

KURT (keyword)
MEANS command 550
SUMMARIZE command 864

KURTOSIS (function)
REPORT command 776

KURTOSIS (keyword)
DESCRIPTIVES command 247, 248
FREQUENCIES command 378
IGRAPH command 479

K-W (subcommand)
NPAR TESTS command 583

L
LABEL (keyword)

IGRAPH command 469, 471, 472, 474, 475

REPORT command 768, 772
LABEL (subcommand)

GET BMDP command 387
LABELS (keyword)

DISPLAY command 271
MULT RESPONSE command 563

LAG (function)
CREATE command 174

LAGRANGE3 (keyword)
IGRAPH command 474

LAGRANGE5 (keyword)
IGRAPH command 475

LAMBDA (keyword)
CLUSTER command 138
CROSSTABS command 185
PROXIMITIES command 676

LAST (function)
AGGREGATE command 90

LAST (keyword)
IGRAPH command 478
MEANS command 550
SUMMARIZE command 864
USE command 920

LAST (subcommand)
ADD FILES command 80
MATCH FILES command 522

LEAD (function)
CREATE command 174

LEAST (function)
REPORT command 778

LEAVE (command) 501
LEFT (keyword)

CASEPLOT command 119
REPORT command 769, 773, 782

LEGEND (keyword)
IGRAPH command 465

LENGTH (keyword)
REPORT command 763

LENGTH (subcommand)
REPEATING DATA command 751
SET command 832
SHOW command 836

1048 Syntax Index

LEVER (keyword)
REGRESSION command 733
UNIANOVA command 911

LGSTIC (keyword)
CURVEFIT command 194

LIMIT (keyword)
FREQUENCIES command 373

limitations. See individual procedures
LINE (keyword)

IGRAPH command 473, 474, 477
LINE (subcommand)

GRAPH command 432
IGRAPH command 473

LINEAR (keyword)
CURVEFIT command 194
IGRAPH command 477

LINEARITY (keyword)
MEANS command 551
SUMMARIZE command 866

LINELABEL (keyword)
IGRAPH command 474

LINT (function)
RMV command 794

LIST (command) 503
CASES subcommand 505
FORMAT subcommand 505
VARIABLES subcommand 504
with SAMPLE command 505
with SELECT IF command 505
with SPLIT FILE command 506

LIST (keyword)
DATA LIST command 202
MATRIX DATA command 534
REPORT command 763, 784

LIST (subcommand)
SUMMARIZE command 865

LISTING (keyword)
SET command 827

LISTWISE (keyword)
CLUSTER command 144
CORRELATIONS command 165
DESCRIPTIVES command 249

EXAMINE command 311
FACTOR command 323
GRAPH command 452
NONPAR CORR command 571
NPAR TESTS command 593
ONEWAY command 605
PARTIAL CORR command 619
PLOT command 628
PROXIMITIES command 680
REGRESSION command 730
T-TEST command 892

LJUMP (keyword)
IGRAPH command 474

LLEFT (keyword)
IGRAPH command 471

LLR (keyword)
IGRAPH command 477

LMATRIX (subcommand)
UNIANOVA command 902

LN (subcommand)
ACF command 70
CASEPLOT command 118
CCF command 126
PACF command 612
PPLOT command 642
TSPLOT command 882

LOCAL (keyword)
INFO command 489

LOF (keyword)
UNIANOVA command 900

LOGARITHMIC (keyword)
CURVEFIT command 194

LOOP (command) 507
examples 293
increment value 513
indexing clause 509
initial value 510
logical expressions 509
missing values 514
nested 508, 511
terminal value 510
with END CASE command 515

Syntax Index 1049

with END FILE command 515
with SET command 830
with SET MXLOOPS command 507, 508,

510
with VECTOR command 929, 930

LOW (keyword)
RANK command 639, 696

LOWER (keyword)
MATRIX DATA command 534

LOWEST (keyword)
COUNT command 168
MISSING VALUES command 554
RECODE command 699

LRECL (subcommand)
FILE HANDLE command 338

LRIGHT (keyword)
IGRAPH command 471

LSD (keyword)
ONEWAY command 603
UNIANOVA command 908

LSL (subcommand)
SPCHART command 853

LSTEP (keyword)
IGRAPH command 474

M
MA (function)

CREATE command 175
MACROS (keyword)

DISPLAY command 271
MAHAL (keyword)

DISCRIMINANT command 256
REGRESSION command 733

MANOVA (command)
with AUTORECODE command 110

MANUAL (keyword)
REPORT command 763

MAP (keyword)
DISCRIMINANT command 264

MAP (subcommand)
ADD FILES command 80
EXPORT command 319
GET BMDP command 389

GET command 383
GET OSIRIS command 398
GET TRANSLATE command 419
IMPORT command 484
MATCH FILES command 523
SAVE command 804
SAVE TRANSLATE command 814
UPDATE command 919
XSAVE command 951

MARGINS (keyword)
REPORT command 763

MARK (subcommand)
CASEPLOT command 120
TSPLOT command 886

MASTERFILE (subcommand)
GET SCSS command 409

MAT (keyword)
MATRIX DATA command 540

MATCH FILES (command) 516
BY subcommand 519
DROP subcommand 521
duplicate cases 520
FILE subcommand 518
FIRST subcommand 522
IN subcommand 522
KEEP subcommand 521
LAST subcommand 522
limitations 518
MAP subcommand 523
RENAME subcommand 521
table lookup files 520
TABLE subcommand 520
with DATA LIST command 519
with DROP DOCUMENTS command 518
with SORT CASES command 839
working data file 519

MATRIX (keyword)
GRAPH command 445
PARTIAL CORR command 619

MATRIX (subcommand)
CLUSTER command 144
CORRELATIONS command 165

1050 Syntax Index

DISCRIMINANT command 265
FACTOR command 333
MCONVERT command 545
NONPAR CORR command 571
ONEWAY command 606
PARTIAL CORR command 620
PROXIMITIES command 680
REGRESSION command 728

MATRIX DATA (command) 525
CELLS subcommand 539
CONTENTS subcommand 539
data-entry format 534
entering data 528
FACTORS subcommand 537
field separators 528
FILE subcommand 533
FORMAT subcommand 534
matrix shape 534
N subcommand 543
ROWTYPE_ variable 526, 532
scientific notation 528
SPLIT subcommand 535
VARIABLES subcommand 531
VARNAME_ variable 532
with DISCRIMINANT command 529
with ONEWAY command 531
with REGRESSION command 530

MAX (function)
AGGREGATE command 89
REPORT command 776

MAX (keyword)
DESCRIPTIVES command 248
IGRAPH command 465
MEANS command 550
PLOT command 627
PROXIMITIES command 670
SUMMARIZE command 864

MAXIMUM (function)
GRAPH command 423

MAXIMUM (keyword)
FREQUENCIES command 374, 375, 378
IGRAPH command 478

MAXMINF (keyword)
DISCRIMINANT command 256

MAXORDERS (subcommand)
ANOVA command 97

MAXSTEPS (keyword)
REGRESSION command 724

MAXSTEPS (subcommand)
DISCRIMINANT command 258

MC (keyword)
CROSSTABS command 186
NPAR TESTS command 594

MCA (keyword)
ANOVA command 101

MCIN (keyword)
REGRESSION command 733

MCNEMAR (subcommand)
NPAR TESTS command 585

MCONVERT (command) 544
APPEND subcommand 546
MATRIX subcommand 545
REPLACE subcommand 546

MDGROUP (keyword)
MULT RESPONSE command 563

MEAN (function)
AGGREGATE command 89
GRAPH command 423
REPORT command 776
RMV command 795

MEAN (keyword)
ANOVA command 101
DESCRIPTIVES command 247, 248
DISCRIMINANT command 262
FREQUENCIES command 378
IGRAPH command 477, 478
MATRIX DATA command 540
MEANS command 549
NPAR TESTS command 590
PROXIMITIES command 670
RANK command 639, 696
REGRESSION command 726
SUMMARIZE command 864

MEANS (command) 547

Syntax Index 1051

CELLS subcommand 549
limitations 548
MISSING subcommand 551
STATISTICS subcommand 550
TABLES subcommand 549

MEANSUBSTITUTION (keyword)
DISCRIMINANT command 264
FACTOR command 324
REGRESSION command 730

MEASURE (subcommand)
CLUSTER command 133
PROXIMITIES command 670

MEDIAN (function)
GRAPH command 423
REPORT command 777
RMV command 795

MEDIAN (keyword)
CLUSTER command 141
FREQUENCIES command 378
IGRAPH command 472, 479
MEANS command 549
NPAR TESTS command 590
SUMMARIZE command 864

MEDIAN (subcommand)
NPAR TESTS command 587

MEFFECT (keyword)
IGRAPH command 477

MESSAGES (subcommand)
SET command 827
SHOW command 836

MESTIMATORS (subcommand)
EXAMINE command 310

METHOD (subcommand)
ANOVA command 97
CLUSTER command 140
CROSSTABS command 186
DISCRIMINANT command 256
NPAR TESTS command 580, 594
QUICK CLUSTER command 688
REGRESSION command 719
UNIANOVA command 897

MEXPAND (subcommand)

SET command 239, 833
SHOW command 836

MH (subcommand)
NPAR TESTS command 587

MIN (function)
AGGREGATE command 89
REPORT command 776

MIN (keyword)
DESCRIPTIVES command 247, 248
IGRAPH command 465
MEANS command 550
PLOT command 627
SUMMARIZE command 864

MINEIGEN (keyword)
FACTOR command 329

MINIMUM (function)
GRAPH command 423

MINIMUM (keyword)
FREQUENCIES command 374, 375, 378
IGRAPH command 478

MINKOWSKI (keyword)
CLUSTER command 134
PROXIMITIES command 672

MINRESID (keyword)
DISCRIMINANT command 256

MINSAMPLE (subcommand)
SPCHART command 852

MINUTE (keyword)
DATE command 217

MISSING (keyword)
COUNT command 168, 169
IGRAPH command 474
RECODE command 699
REPORT command 764
SUMMARIZE command 865

MISSING (subcommand)
AGGREGATE command 91
ANOVA command 102
CLUSTER command 144
CORRELATIONS command 165
CROSSTABS command 187
DESCRIPTIVES command 249

1052 Syntax Index

DISCRIMINANT command 265
EXAMINE command 311
FACTOR command 323
FILE TYPE command 351
FREQUENCIES command 379
GRAPH command 452
MEANS command 551
MULT RESPONSE command 562
NONPAR CORR command 571
NPAR TESTS command 593
ONEWAY command 605
PARTIAL CORR command 619
PLOT command 628
PROXIMITIES command 680
QUICK CLUSTER command 691
RANK command 697
RECORD TYPE command 710
REGRESSION command 730
REPORT command 784
SPCHART command 853
SUMMARIZE command 865
TSET command 875
T-TEST command 891
UNIANOVA command 899

MISSING VALUES (command) 552
value range 554
with RECODE command 700

MITERATE (subcommand)
SET command 240, 829
SHOW command 836

MIXED (keyword)
FILE TYPE command 345

ML (keyword)
FACTOR command 330

MNEST (subcommand)
SET command 239, 829
SHOW command 836

MODE (function)
GRAPH command 423
REPORT command 777

MODE (keyword)
FREQUENCIES command 378

IGRAPH command 469, 474, 479
NPAR TESTS command 590

MODE (subcommand)
FILE HANDLE command 337

MODEL (subcommand)
CURVEFIT command 194

MONTH (keyword)
DATE command 217

MOSES (subcommand)
NPAR TESTS command 588

MPRINT (subcommand)
SET command 239, 833
SHOW command 836

MRGROUP (keyword)
MULT RESPONSE command 563

MSE (keyword)
MATRIX DATA command 540

MULT RESPONSE (command) 555
BASE subcommand 562
CELLS subcommand 561
FORMAT subcommand 563
FREQUENCIES subcommand 559
GROUPS subcommand 557
limitations 557
MISSING subcommand 562
multiple-dichotomy groups 555
multiple-response groups 555
PAIRED keyword 561
TABLES subcommand 560
VARIABLES subcommand 558

MULTIPLE (keyword)
GRAPH command 432

MULTIPLY (function)
REPORT command 778

MULTIPUNCH (keyword)
FILE HANDLE command 338

M-W (subcommand)
NPAR TESTS command 584

MXAUTO (subcommand)
ACF command 71
PACF command 613

MXCELLS (subcommand)

Syntax Index 1053

SHOW command 824, 836
MXCROSS (subcommand)

CCF command 127
MXERRS (subcommand)

SET command 829
MXITER (keyword)

QUICK CLUSTER command 688
MXLOOPS (subcommand)

SET command 830
SHOW command 836
with LOOP command 507, 508, 510

MXMEMORY (subcommand)
SHOW command 824, 836

MXNEWVAR (subcommand)
TSET command 875

MXPREDICT (subcommand)
TSET command 875

MXWARNS (subcommand)
SET command 829
SHOW command 836

N
N (function)

AGGREGATE command 90
GRAPH command 423

N (keyword)
IGRAPH command 469, 471, 472, 474, 475
MATRIX DATA command 540
REGRESSION command 727

N (subcommand)
MATRIX DATA command 543
RANK command 694
SHOW command 836

N OF CASES (command) 565
with SAMPLE command 565, 798
with SELECT IF command 565, 817
with TEMPORARY command 565

N_MATRIX (keyword)
MATRIX DATA command 540

N_SCALAR (keyword)
MATRIX DATA command 540

N_VECTOR (keyword)
MATRIX DATA command 540

NAME (keyword)
DESCRIPTIVES command 248
REPORT command 774

NAMES (keyword)
DISPLAY command 270

NEQ (keyword)
IGRAPH command 471, 479

NESTED (keyword)
FILE TYPE command 345

NEW FILE (command) 567
NEWNAMES (subcommand)

FLIP command 365–366
NGE (keyword)

IGRAPH command 471, 479
NGT (function)

GRAPH command 423
NGT (keyword)

IGRAPH command 471, 479
NIN (function)

GRAPH command 424
NIN (keyword)

IGRAPH command 471, 479
NLE (keyword)

IGRAPH command 471, 479
NLT (function)

GRAPH command 423
NLT (keyword)

IGRAPH command 471, 479
NMISS (function)

AGGREGATE command 90
NO (keyword)

SET command 823
NOCASENUM (keyword)

SUMMARIZE command 865
NOCONFORM (subcommand)

SPCHART command 852
NOCONSTANT (subcommand)

CURVEFIT command 195
NOCUM (keyword)

GRAPH command 448
NODIAGONAL (keyword)

MATRIX DATA command 534

1054 Syntax Index

NOFILL (keyword)
CASEPLOT command 119
TSPLOT command 883

NOINITIAL (keyword)
QUICK CLUSTER command 687

NOJOIN (keyword)
CASEPLOT command 119
TSPLOT command 883

NOKAISER (keyword)
FACTOR command 329

NOLABELS (keyword)
MULT RESPONSE command 563

NOLIST (keyword)
REPORT command 763
SUMMARIZE command 865

NOLOG (subcommand)
ACF command 70
CASEPLOT command 118
CCF command 126
PACF command 612
PPLOT command 642
TSPLOT command 882

NONAME (keyword)
REPORT command 774

NONE (keyword)
ANOVA command 97, 101
CLUSTER command 143
CROSSTABS command 185, 186, 188
CURVEFIT command 196
DISCRIMINANT command 263
EXAMINE command 308, 309, 310, 311
FREQUENCIES command 378
IGRAPH command 466, 469, 474, 476, 477
MEANS command 551
PARTIAL CORR command 618
QUICK CLUSTER command 690
REPORT command 784
SET command 827
SUMMARIZE command 866

NONMISSING (keyword)
DISCRIMINANT command 264

NONORMAL (keyword)

FREQUENCIES command 375
NONPAR CORR (command) 568

limitations 569
matrix output 568
MATRIX subcommand 571
MISSING subcommand 571
missing values 572
PRINT subcommand 570
random sampling 568, 570
SAMPLE subcommand 570
significance tests 568, 570
VARIABLES subcommand 569
with RECODE command 571

NOORIGIN (subcommand)
REGRESSION command 724

NOREFERENCE (keyword)
CASEPLOT command 119
TSPLOT command 883

NOREPORT (keyword)
EXAMINE command 312
GRAPH command 452

NORMAL (keyword)
FREQUENCIES command 375
IGRAPH command 477
NPAR TESTS command 581
PPLOT command 640

NORMAL (subcommand)
RANK command 694

NORMPROB (keyword)
REGRESSION command 734

NOROTATE (keyword)
FACTOR command 331

NOSIG (keyword)
CORRELATIONS command 164
NONPAR CORR command 570

NOSTANDARDIZE (subcommand)
PPLOT command 641

NOTABLE (keyword)
FREQUENCIES command 373

NOTABLE (subcommand)
DATA LIST command 205
KEYED DATA LIST command 500

Syntax Index 1055

PRINT command 655
REPEATING DATA command 755
WRITE command 943

NOTABLES (keyword)
CROSSTABS command 188

NOTOTAL (keyword)
SUMMARIZE command 865

NOTOTAL (subcommand)
EXAMINE command 307

NOWARN (keyword)
FILE TYPE command 350
RECORD TYPE command 710
SET command 829

NP (subcommand)
data organization 848
SPCHART command 847
variable specification 849

NPAR TESTS (command) 574
BINOMIAL subcommand 577
CHISQUARE subcommand 578
COCHRAN subcommand 579
EXPECTED subcommand 578
FRIEDMAN subcommand 579
independent-samples test 575
J-T subcommand 580
KENDALL subcommand 583
K-S subcommand 581
K-W subcommand 583
limitations 576
MCNEMAR subcommand 585
MEDIAN subcommand 587
METHOD subcommand 594
MH subcommand 587
MISSING subcommand 593
MOSES subcommand 588
M-W subcommand 584
one-sample test 575
pairing variables 585, 588
random sampling 594
related-samples test 575
RUNS subcommand 590
SAMPLE subcommand 594

SIGN subcommand 590
STATISTICS subcommand 593
WILCOXON subcommand 592
W-W subcommand 591

NPCT (keyword)
LAYERED REPORTS command 864
MEANS command 550

NPCT(var) (keyword)
MEANS command 550

NPPLOT (keyword)
EXAMINE command 309

NPPLOT. See PPLOT.
NTILES (subcommand)

FREQUENCIES command 377
NTILES(k) (subcommand)

RANK command 695
NU (function)

AGGREGATE command 90
NUM (keyword)

IGRAPH command 476
NUMBERED (command) 596
NUMBERED (keyword)

LIST command 505
NUMERIC (command) 597

formats 597, 598
with DATA LIST command 598
with INPUT PROGRAM command 597,

598
with SET command 597

NUMERIC (subcommand)
REFORMAT command 713

NUMIN (keyword)
IGRAPH command 471

NUMISS (function)
AGGREGATE command 90

O
OBELISK (keyword)

IGRAPH command 470
OBLIMIN (keyword)

FACTOR command 331
OBS (keyword)

DATE command 217

1056 Syntax Index

OBS (subcommand)
FIT command 360

OCCURS (subcommand)
REPEATING DATA command 749

OCHIAI (keyword)
CLUSTER command 139
PROXIMITIES command 677

OFF (keyword)
SPLIT FILE command 854

OFFSET (keyword)
REPORT command 770, 773

ONEBREAKCOLUMN (keyword)
REPORT command 764

ONEPAGE (keyword)
MULT RESPONSE command 564

ONETAIL (keyword)
CORRELATIONS command 164
NONPAR CORR command 570
PARTIAL CORR command 618

ONEWAY (command) 599
analysis design 601
BONFERRONI keyword 603
BTUKEY keyword 603
C keyword 604
CONTRAST subcommand 601
DUNCAN keyword 603
DUNNETT keyword 603
DUNNETTL keyword 603
DUNNETTR keyword 603
FREGW keyword 604
GABRIEL keyword 604
GH keyword 604
GT2 keyword 604
limitations 600
LSD keyword 603
matrix input 606
matrix output 606
MATRIX subcommand 606
MISSING subcommand 605
PLOT MEANS subcommand 605
POLYNOMIAL subcommand 601
QREGW 604

RANGES subcommand 604
SCHEFFE keyword 603
SIDAK keyword 604
SNK keyword 603
STATISTICS subcommand 605
T2 keyword 604
T3 keyword 604
TUKEY keyword 603
WALLER keyword 604
with MATRIX DATA command 531

One-Way ANOVA
post hoc tests 602

ONUMBERS (subcommand)
SET command 825
SHOW command 836

OPOWER (keyword)
UNIANOVA command 900

ORDERED (subcommand)
FILE TYPE command 353

ORIGIN (keyword)
IGRAPH command 477

ORIGIN (subcommand)
REGRESSION command 724

OTHER (keyword)
RECORD TYPE command 707

OUT (keyword)
CLUSTER command 144
CORRELATIONS command 165
DISCRIMINANT command 265
FACTOR command 333
NONPAR CORR command 571
ONEWAY command 606
PARTIAL CORR command 620
PROXIMITIES command 680
REGRESSION command 728

OUTFILE (subcommand)
AGGREGATE command 87
EXPORT command 317
INFO command 490
PRINT command 654
PRINT SPACE command 662
PROCEDURE OUTPUT command 665

Syntax Index 1057

QUICK CLUSTER command 690
REGRESSION command 737
REPORT command 765
SAVE command 802
SAVE TRANSLATE command 810
UNIANOVA command 911
WRITE command 943
XSAVE command 949

OUTLIERS (keyword)
IGRAPH command 472
REGRESSION command 734, 735

OUTS (keyword)
REGRESSION command 722

OUTSIDE (keyword)
IGRAPH command 470, 471

OVARS (subcommand)
SET command 825
SHOW command 836

OVERLAY (keyword)
GRAPH command 444
PLOT command 627

OVERVIEW (keyword)
INFO command 489

P
P (subcommand)

data organization 848
SPCHART command 847
variable specification 849

PA1 (keyword)
FACTOR command 330

PA2 (keyword)
FACTOR command 330

PACF (command) 609
APPLY subcommand 613
DIFF subcommand 611
LN/NOLOG subcommands 612
MXAUTO subcommand 613
PERIOD subcommand 612
SDIFF subcommand 611
SEASONAL subcommand 612
VARIABLES subcommand 611

PACF (subcommand)

ACF command 72
PAF (keyword)

FACTOR command 330
PAGE (argument)

REPORT command 783
PAGE (keyword)

REPORT command 763, 774
PAIR (keyword)

PLOT command 626
PAIRED (keyword)

MULT RESPONSE command 561
NPAR TESTS command 576, 585, 588,

591, 592
T-TEST command 891

PAIRS (subcommand)
T-TEST command 891

PAIRWISE (keyword)
CORRELATIONS command 165
EXAMINE command 312
FACTOR command 323
NONPAR CORR command 571
REGRESSION command 730

PANEL (subcommand)
IGRAPH command 466

PARAMETER (keyword)
UNIANOVA command 900

PARETO (subcommand)
GRAPH command 448

PARTIAL CORR (command) 615
control variables 617
correlation list 617
FORMAT subcommand 619
limitations 616
matrix input 620
matrix output 620
MATRIX subcommand 620
MISSING subcommand 619
order values 617
SIGNIFICANCE subcommand 618
STATISTICS subcommand 618
VARIABLES subcommand 617

PARTIALPLOT (subcommand)

1058 Syntax Index

REGRESSION command 736
PATTERN (keyword)

CLUSTER command 140
PROXIMITIES command 678

PC (keyword)
FACTOR command 330

PCT (function)
GRAPH command 423
REPORT command 778

PCT (keyword)
IGRAPH command 471, 474

PEARSON CORR (command)
see CORRELATIONS

PEQ (keyword)
IGRAPH command 479

PERCENT (function)
REPORT command 777

PERCENT (keyword)
FREQUENCIES command 375

PERCENT (subcommand)
RANK command 694

PERCENTILES (subcommand)
EXAMINE command 307
FREQUENCIES command 377

PERIOD (subcommand)
ACF command 70
CASEPLOT command 118
CCF command 126
PACF command 612
PPLOT command 642
TSET command 875
TSPLOT command 882

PGE (keyword)
IGRAPH command 479

PGT (function)
AGGREGATE command 89
GRAPH command 423
REPORT command 777

PGT (keyword)
IGRAPH command 479

PH2 (keyword)
CLUSTER command 134

PROXIMITIES command 673
PHI (keyword)

CLUSTER command 139
CROSSTABS command 185
PROXIMITIES command 678

PIE (subcommand)
GRAPH command 438
IGRAPH command 471

PIN (function)
AGGREGATE command 89
GRAPH command 424
REPORT command 777

PIN (keyword)
IGRAPH command 479
REGRESSION command 724

PIN (subcommand)
DISCRIMINANT command 257

PLAIN (keyword)
REPORT command 781

PLE (keyword)
IGRAPH command 479

PLOT (command) 624
control variables 626
FORMAT subcommand 626
HORIZONTAL subcommand 627
limitations 625
MISSING subcommand 628
missing values 628
plot labeling 627
plot scaling 627
PLOT subcommand 625
plot types 624, 626
TITLE subcommand 628
VERTICAL subcommand 627

PLOT (keyword)
REGRESSION command 735

PLOT (subcommand)
CLUSTER command 143
CURVEFIT command 196
DISCRIMINANT command 264
EXAMINE command 308
FACTOR command 327

Syntax Index 1059

PLOT command 625
PPLOT command 640
UNIANOVA command 901

PLOT MEANS (subcommand)
ONEWAY command 605

PLOTWISE (keyword)
PLOT command 628

PLT (function)
AGGREGATE command 89
GRAPH command 423
REPORT command 777

PLT (keyword)
IGRAPH command 479

PMA (function)
CREATE command 176

POINT (command) 631
FILE subcommand 633
KEY subcommand 633
with DATA LIST command 631
with FILE HANDLE command 633

POINTLABEL (subcommand)
IGRAPH command 466

POISSON (keyword)
NPAR TESTS command 581

POLYNOMIAL (keyword)
UNIANOVA command 905

POLYNOMIAL (subcommand)
ONEWAY command 601

POOLED (keyword)
DISCRIMINANT command 264
REGRESSION command 735

POSTHOC (subcommand)
UNIANOVA command 906

POUT (function)
AGGREGATE command 89

POUT (keyword)
REGRESSION command 724

POUT (subcommand)
DISCRIMINANT command 257

POWER (keyword)
CLUSTER command 134
CURVEFIT command 194

PROXIMITIES command 672
P-P (keyword)

PPLOT command 640
PPLOT (command) 635

APPLY subcommand 643
DIFF subcommand 641
DISTRIBUTION subcommand 637
FRACTION subcommand 639
LN/NOLOG subcommands 642
PERIOD subcommand 642
PLOT subcommand 640
SDIFF subcommand 642
STANDARDIZE/NOSTANDARDIZE

subcommands 641
TYPE subcommand 639
VARIABLES subcommand 637

PRED (keyword)
CURVEFIT command 196
REGRESSION command 732
UNIANOVA command 911

PRESERVE (command) 649
macro facility 240
with RESTORE command 792
with SET command 822

PRESORTED (subcommand)
AGGREGATE command 88

PREVIEW (keyword)
REPORT command 765

PREVIOUS (keyword)
REPORT command 782

PRINT (command) 650
formats 650, 652
missing values 651
NOTABLE subcommand 655
OUTFILE subcommand 654
RECORDS subcommand 654
strings 650, 653
TABLE subcommand 655
variable list 651
with DO IF command 653
with PRINT EJECT command 656
with SET command 651

1060 Syntax Index

with SORT CASES command 839
PRINT (subcommand)

AUTORECODE command 111
CLUSTER command 142
CORRELATIONS command 164
CURVEFIT command 196
DO REPEAT command 287
FACTOR command 326
NONPAR CORR command 570
PROXIMITIES command 679
QUICK CLUSTER command 689
RANK command 697
TSET command 876
UNIANOVA command 899

PRINT EJECT (command) 656
CASENUM$ system variable 658
missing values 657
with DO IF command 656
with PRINT command 656
with SET command 657

PRINT FORMATS (command) 659
format specification 659
string variables 659
with DISPLAY command 660

PRINT SPACE (command) 662
number of lines 662
OUTFILE subcommand 662
with DO IF command 662

PRINTBACK (subcommand)
SET command 827
SHOW command 836

PRIORS (subcommand)
DISCRIMINANT command 259

PROBS (keyword)
DISCRIMINANT command 260

PROCEDURE OUTPUT (command) 665
OUTFILE subcommand 665
with CROSSTABS 188, 189
with CROSSTABS command 665
with FREQUENCIES command 666

PROCEDURES (keyword)
INFO command 489

PROFILE (keyword)
UNIANOVA command 901

PROMAX (keyword)
FACTOR command 331

PROPORTION (subcommand)
RANK command 694

PROXIMITIES (command) 667
ID subcommand 680
limitations 669
matrix input 681
matrix output 17, 680
MATRIX subcommand 680
MEASURE subcommand 670
MISSING subcommand 680
PRINT subcommand 679
STANDARDIZE subcommand 669
variable list 669
VIEW subcommand 670
with FACTOR command 684

PROXIMITIES (keyword)
PROXIMITIES command 679

PTILE (function)
GRAPH command 423

PTILE (keyword)
IGRAPH command 479

PYRAMID (keyword)
IGRAPH command 470

Q
Q (keyword)

CLUSTER command 139
PROXIMITIES command 677

Q-Q (keyword)
PPLOT command 639

QREGW (keyword)
ONEWAY command 604
UNIANOVA command 909

QUADRATIC (keyword)
CURVEFIT command 194

QUARTILES (keyword)
NPAR TESTS command 593

QUARTIMAX (keyword)
FACTOR command 331

Syntax Index 1061

QUICK CLUSTER (command) 685
compared with CLUSTER command 685
CRITERIA subcommand 687
FILE subcommand 689
INITIAL subcommand 688
METHOD subcommand 688
MISSING subcommand 691
missing values 691
OUTFILE subcommand 690
PRINT subcommand 689
SAVE subcommand 690
variable list 687
with large number of cases 686

R
R (keyword)

REGRESSION command 722
RANDOM (keyword)

SET command 826
RANDOM (subcommand)

UNIANOVA command 896
RANGE (keyword)

DESCRIPTIVES command 247, 248
FREQUENCIES command 378
GRAPH command 427
MEANS command 550
PROXIMITIES command 670
SUMMARIZE command 864

RANGE (subcommand)
GET TRANSLATE command 418

RANGES (subcommand)
ONEWAY command 604

RANK (command) 692
FRACTION subcommand 696
handling of ties 639, 696
MISSING subcommand 697
missing values 697
N subcommand 694
NORMAL subcommand 694
NTILES(k) subcommand 695
PERCENT subcommand 694
PRINT subcommand 697
PROPORTION subcommand 694

rank functions 694
RANK subcommand 694
ranking order 693
RFRACTION subcommand 694
SAVAGE subcommand 694
saving rank variables 695
TIES subcommand 696
VARIABLES subcommand 693

RANK (subcommand)
RANK command 694

RANKIT (keyword)
PPLOT command 639
RANK command 696

RAO (keyword)
DISCRIMINANT command 256

RAW (keyword)
DISCRIMINANT command 263

RCONVERGE (keyword)
FACTOR command 329

RECFORM (subcommand)
FILE HANDLE command 338

RECODE (command) 698
compared to AUTORECODE 107
compared to AUTORECODE command

698
compared to IF command 698
limitations 700
missing values 699
numeric variables 699
string variables 700
target variable 701
with MISSING VALUES command 700
with NONPAR CORR command 571

RECORD (subcommand)
FILE TYPE command 347

RECORD TYPE (command) 704
CASE subcommand 709
DUPLICATE subcommand 711
MISSING subcommand 710
SKIP subcommand 708
SPREAD subcommand 711
with DATA LIST command 704

1062 Syntax Index

with FILE TYPE command 704
RECORDS (subcommand)

DATA LIST command 205
PRINT command 654
WRITE command 942

RECTANGLE (keyword)
IGRAPH command 470

REFERENCE (keyword)
CASEPLOT command 119
PLOT command 627
TSPLOT command 883

REFORMAT (command) 713
ALPHA subcommand 713
missing values 713
NUMERIC subcommand 713
with FORMATS command 713

REG (keyword)
ANOVA command 101
FACTOR command 332

REGRESSION (command) 715, 731
case selection 727
CASEWISE subcommand 735
CRITERIA subcommand 723
DEPENDENT subcommand 719
dependent variable 719
DESCRIPTIVES subcommand 726
diagnostic measures 716
diagnostic variables 732
matrix data 728
MATRIX subcommand 728
METHOD subcommand 719
MISSING subcommand 730
missing values 716, 729, 732
model criteria 723
NOORIGIN subcommand 724
ORIGIN subcommand 724
OUTFILE subcommand 737
PARTIALPLOT subcommand 736
REGWGT subcommand 725
RESIDUALS subcommand 734
SAVE subcommand 738
saving variables 738

SCATTERPLOT subcommand 736
SELECT subcommand 727
STATISTICS subcommand 721
variable selection 719, 723
VARIABLES subcommand 718
weighted models 725
with CORRELATIONS command 728
with MATRIX DATA command 530
with SAMPLE command 728, 732
with SELECT IF command 728, 732
with SET command 734
with TEMPORARY command 728

REGRESSION (keyword)
IGRAPH command 477
PLOT command 627

REGWGT (subcommand)
REGRESSION command 725
UNIANOVA command 897

REMOVE (keyword)
REGRESSION command 720

RENAME (command)
SAVE TRANSLATE command 813

RENAME (subcommand)
ADD FILES command 77
EXPORT command 318
GET BMDP command 388
GET command 382
GET OSIRIS command 398
GET TRANSLATE command 419
IMPORT command 483
MATCH FILES command 521
SAVE command 804
UPDATE command 917
XSAVE command 950

RENAME VARIABLES (command) 740
REPEATED (keyword)

UNIANOVA command 906
REPEATING DATA (command) 742

CONTINUED subcommand 752
DATA subcommand 750
FILE subcommand 750
ID subcommand 754

Syntax Index 1063

LENGTH subcommand 751
NOTABLE subcommand 755
OCCURS subcommand 749
STARTS subcommand 748
with DATA LIST command 742, 743, 745
with FILE TYPE command 742, 743, 746
with INPUT PROGRAM command 742,

743, 745
REPLACE (subcommand)

MCONVERT command 546
SAVE TRANSLATE command 810

REPORT (command) 756
BREAK subcommand 771
CHWRAP keyword 764
column contents 768, 772
column headings 757, 769, 772
column spacing 758
column width 758, 758, 769, 773
defining subgroups 771
footnotes 782
FORMAT subcommand 762
INDENT keyword 764
limitations 761
MISSING subcommand 784
missing values 760, 784
ONEBREAKCOLUMN keyword 764
OUTFILE subcommand 765
output file 760, 765
page layout 765
PREVIEW keyword 765
print formats 780
report types 760
STRING subcommand 770
string variables 770
summary statistics 760, 775
SUMMARY subcommand 775
summary titles 779
titles 782
VARIABLES subcommand 768
with SET command 760
with SORT CASES command 839

REPORT (keyword)

CROSSTABS command 187
EXAMINE command 312
GRAPH command 452

REPR (keyword)
FACTOR command 327

REREAD (command) 785
COLUMN subcommand 790
FILE subcommand 788
with DATA LIST command 785
with INPUT PROGRAM command 785

RESCALE (keyword)
PROXIMITIES command 670, 671

RESID (keyword)
CROSSTABS command 184
CURVEFIT command 196
REGRESSION command 732
UNIANOVA command 911

RESIDUALS (keyword)
UNIANOVA command 901

RESIDUALS (subcommand)
REGRESSION command 734

RESPONSES (keyword)
MULT RESPONSE command 562

RESTORE (command) 649, 792
macro facility 240
with PRESERVE command 792
with SET command 792, 822

RESULTS (subcommand)
SET command 827
SHOW command 836

REVERSE (keyword)
PROXIMITIES command 670

RFRACTION (subcommand)
RANK command 694

RIGHT (keyword)
CASEPLOT command 119
REPORT command 769, 773, 782

RISK (keyword)
CROSSTABS command 186

RJUMP (keyword)
IGRAPH command 474

RMED (function)

1064 Syntax Index

CREATE command 176
RMV (command) 793

LINT function 794
MEAN function 795
MEDIAN function 795
SMEAN function 796
TREND function 796

ROTATE (subcommand)
DISCRIMINANT command 263

ROTATION (keyword)
FACTOR command 326, 328

ROTATION (subcommand)
FACTOR command 331

ROUND (keyword)
EXAMINE command 308
IGRAPH command 470, 472

ROW (keyword)
CROSSTABS command 184
MULT RESPONSE command 561

ROWTYPE_ (variable)
MATRIX DATA command 526, 532

RR (keyword)
CLUSTER command 136
PROXIMITIES command 675

RSTEP (keyword)
IGRAPH command 474

RT (keyword)
CLUSTER command 137
PROXIMITIES command 675

RUNS (subcommand)
NPAR TESTS command 590

S
S (keyword)

CURVEFIT command 194
SAMPLE (command) 797

limitations 798
with DO IF command 799
with FILE TYPE command 798
with INPUT PROGRAM command 798
with N OF CASES command 565, 798
with REGRESSION command 728, 732
with SELECT IF command 797

with SET command 797
with TEMPORARY command 797

SAMPLE (subcommand)
NONPAR CORR command 570
NPAR TESTS command 594

SAMPLES (keyword)
CROSSTABS command 186
NPAR TESTS command 594

SAVAGE (subcommand)
RANK command 694

SAVE (command) 800
compared to XSAVE command 800, 947
COMPRESSED subcommand 805
DROP command 803
KEEP subcommand 803
MAP subcommand 804
OUTFILE subcommand 802
RENAME subcommand 804
UNCOMPRESSED subcommand 805
UNSELECTED subcommand 803
with TEMPORARY command 870

SAVE (subcommand)
CLUSTER command 141
CURVEFIT command 196
DESCRIPTIVES command 246
DISCRIMINANT command 260
FACTOR command 332
QUICK CLUSTER command 690
UNIANOVA command 910

SAVE TRANSLATE (command) 806
APPEND subcommand 810
CONNECT subcommand 810
DROP subcommand 813
FIELDNAMES subcommand 812
KEEP subcommand 813
limitations 809
MAP subcommand 814
missing values 808
OUTFILE subcommand 810
RENAME subcommand 813
REPLACE subcommand 810
TABLE subcommand 810

Syntax Index 1065

TYPE subcommand 811
UNSELECTED subcommand 812

SCALE (keyword)
IGRAPH command 464

SCAN (subcommand)
GET BMDP command 386

SCATTER (subcommand)
IGRAPH command 469

SCATTERPLOT (subcommand)
GRAPH command 444
REGRESSION command 736

SCHEDULE (keyword)
CLUSTER command 142

SCHEFFE (keyword)
ONEWAY command 603
UNIANOVA command 908

SCOMPRESSION (subcommand)
SHOW command 836

SCORES (keyword)
DISCRIMINANT command 260

SCRATCH (keyword)
DISPLAY command 271

SCRIPT (command) 815
SD (function)

AGGREGATE command 89
SD (keyword)

IGRAPH command 475
MATRIX DATA command 540
PROXIMITIES command 670

SDBETA (keyword)
REGRESSION command 733

SDFIT (keyword)
REGRESSION command 733

SDIFF (function)
CREATE command 177

SDIFF (subcommand)
ACF command 70
CASEPLOT command 117
CCF command 125
PACF command 611
PPLOT command 642
TSPLOT command 882

SDRESID (keyword)
REGRESSION command 733

SE (keyword)
IGRAPH command 475

SEASONAL (subcommand)
ACF command 71
CCF command 127
PACF command 612

SECOND (keyword)
DATE command 217

SEED (subcommand)
SET command 826
SHOW command 836

SEKURT (keyword)
FREQUENCIES command 378
IGRAPH command 480
MEANS command 550

SELECT (subcommand)
DISCRIMINANT command 253
FACTOR command 324
REGRESSION command 727

SELECT IF (command) 816
limitations 818
logical expressions 816
missing values 817, 819
with CASENUM$ system variable 817
with DO IF command 820
with N OF CASES command 565, 817
with REGRESSION command 728, 732
with SAMPLE command 797
with TEMPORARY command 816

SELECTION (keyword)
REGRESSION command 722

SELIRT (keyword)
SUMMARIZE command 864

SEMEAN (keyword)
DESCRIPTIVES command 247, 248
FREQUENCIES command 378
IGRAPH command 480
MEANS command 550
SUMMARIZE command 864

SEPARATE (keyword)

1066 Syntax Index

DISCRIMINANT command 264
REGRESSION command 735

SEPRED (keyword)
REGRESSION command 733
UNIANOVA command 911

SERIAL (keyword)
PARTIAL CORR command 619

SERROR (subcommand)
ACF command 72

SES (keyword)
REGRESSION command 722

SESKEW (keyword)
FREQUENCIES command 378
IGRAPH command 480
MEANS command 550
SUMMARIZE command 864

SET (command) 821
BLANKS subcommand 829
BLOCK subcommand 831
BOX subcommand 831
CC subcommand 832
COMPRESSION subcommand 830
CTEMPLATE subcommand 825
EPOCH subcommand 826
ERRORS subcommand 827
EXTENSIONS subcommand 830
FORMAT subcommand 824
HEADER subcommand 832
HIGHRES subcommand 831
JOURNAL subcommand 828
LENGTH subcommand 832
MESSAGES subcommand 827
MEXPAND subcommand 833
MITERATE subcommand 829
MNEST subcommand 829
MPRINT subcommand 833
MXCELLS subcommand 824
MXERRS subcommand 829
MXLOOPS subcommand 830
MXMEMORY subcommand 824
MXWARNS subcommand 829
ONUMBERS subcommand 825

OVARS subcommand 825
PRINTBACK subcommand 827
RANDOM keyword 826
RESULTS subcommand 827
SEED subcommand 826
TLOOK subcommand 825
TNUMBERS subcommand 825
TVARS subcommand 825
UNDEFINED subcommand 829
WIDTH subcommand 832
with CLUSTER command 132
with LOOP command 830
with NUMERIC command 597
with PRESERVE command 649, 822
with PRINT command 651
with PRINT EJECT command 657
with REGRESSION command 734
with REPORT command 760
with RESTORE command 649, 792, 822
with SAMPLE command 797
with SHOW command 822
with SUBTITLE (command) 859
with TITLE command 871
with WRITE command 940
with WRITE FORMATS command 946
WORKSPACE subcommand 824

SET command 826
SEUCLID (keyword)

CLUSTER command 133
PROXIMITIES command 671

SHAPE (keyword)
IGRAPH command 470, 476

SHOW (command) 834
$VARS subcommand 837
BLANKS subcommand 835
BLKSIZE subcommand 835
BLOCK subcommand 835
BOX subcommand 835
BUFFNO subcommand 835
CC subcommand 835
COMPRESSION subcommand 835
CTEMPLATE subcommand 835

Syntax Index 1067

ERRORS subcommand 835
EXTENSIONS subcommand 835
FORMAT subcommand 835
HEADER subcommand 835
HIGHRES subcommand 835
JOURNAL subcommand 835
LENGTH subcommand 836
MESSAGES subcommand 836
MEXPAND subcommand 836
MITERATE subcommand 836
MNEST subcommand 836
MPRINT subcommand 836
MXCELLS subcommand 836
MXLOOPS subcommand 836
MXMEMORY subcommand 836
MXWARNS subcommand 836
N subcommand 836
ONUMBERS subcommand 836
OVARS subcommand 836
PRINTBACK subcommand 836
RESULTS subcommand 836
SCOMPRESSION subcommand 836
SEED subcommand 836
SYSMIS subcommand 836
TFIT subcommand 837
TLOOK subcommand 837
TNUMBERS subcommand 837
TVARS subcommand 837
UNDEFINED subcommand 837
WEIGHT subcommand 837
WIDTH subcommand 837
with SET command 822
WORKSPACE subcommand 837

SIDAK (keyword)
ONEWAY command 604
UNIANOVA command 909

SIG (keyword)
CORRELATIONS command 164
FACTOR command 326
NONPAR CORR command 570
REGRESSION command 727

SIGMA (subcommand)

SPCHART command 852
SIGN (keyword)

IGRAPH command 475
SIGN (subcommand)

NPAR TESTS command 590
SIGNIFICANCE (subcommand)

PARTIAL CORR command 618
SIMPLE (keyword)

GRAPH command 426, 432, 440, 449
UNIANOVA command 905

SINCE (keyword)
INFO command 489

SINGLE (keyword)
CLUSTER command 140
LIST command 505

SIZE (keyword)
CLUSTER command 139
DISCRIMINANT command 259
PROXIMITIES command 678

SIZE (subcommand)
IGRAPH command 465

SKEW (keyword)
IGRAPH command 479
MEANS command 550
SUMMARIZE command 864

SKEWNESS (function)
REPORT command 776

SKEWNESS (keyword)
DESCRIPTIVES command 247, 248
FREQUENCIES command 378

SKIP (keyword)
REPORT command 774, 782

SKIP (subcommand)
RECORD TYPE command 708

SLICE (keyword)
IGRAPH command 471

SLK (keyword)
SAVE TRANSLATE command 811

SM (keyword)
CLUSTER command 136
PROXIMITIES command 675

SMEAN (function)

1068 Syntax Index

RMV command 796
SNK (keyword)

ONEWAY command 603
UNIANOVA command 908

SORT (keyword)
FACTOR command 325

SORT (subcommand)
DESCRIPTIVES command 248

SORT CASES (command) 838
with ADD FILES command 76, 839
with AGGREGATE command 839
with MATCH FILES command 839
with PRINT command 839
with REPORT command 839
with SPLIT FILE command 854
with UPDATE command 839, 915

SORTED (keyword)
DISPLAY command 271

SPAN (subcommand)
SPCHART command 852

SPCHART (command) 840
C subcommand 850
CONFORM subcommand 852
FOOTNOTE subcommand 843
I subcommand 846
IR subcommand 846
LSL subcommand 853
MINSAMPLE subcommand 852
MISSING subcommand 853
NOCONFORM subcommand 852
NP subcommand 847
P subcommand 847
SIGMA subcommand 852
SPAN subcommand 852
SUBTITLE subcommand 843
TITLE subcommand 843
U subcommand 850
USL subcommand 853
XR subcommand 843
XS subcommand 843

SPCT (keword)
SUMMARIZE command 864

SPCT (keyword)
MEANS command 550
SUMMARIZE command 864

SPCT(var) (keyword)
MEANS command 550

SPEARMAN (keyword)
NONPAR CORR command 570

SPECIAL (keyword)
UNIANOVA command 906

SPECIFICATIONS (keyword)
CURVEFIT command 197

SPLINE (keyword)
IGRAPH command 474

SPLIT (subcommand)
CASEPLOT command 120
MATRIX DATA command 535
TSPLOT command 886

SPLIT FILE (command)
limitations 855
with AGGREGATE command 86, 855
with SORT CASES command 854
with TEMPORARY command 854, 869

SPREAD (subcommand)
RECORD TYPE command 711

SPREADLEVEL (keyword)
EXAMINE command 309
UNIANOVA command 901

SQUARE (keyword)
IGRAPH command 470, 472

SRESID (keyword)
CROSSTABS command 184
REGRESSION command 733
UNIANOVA command 911

SS1 through SS5 (keywords)
CLUSTER command 137
PROXIMITIES command 675

SSTYPE (keyword)
UNIANOVA command 897

STACKED (keyword)
GRAPH command 426, 449

STANDARDIZE (keyword)
PLOT command 627

Syntax Index 1069

STANDARDIZE (subcommand)
PPLOT command 641
PROXIMITIES command 669

START (keyword)
IGRAPH command 471

STARTS (subcommand)
REPEATING DATA command 748

STATISTICS (subcommand)
CORRELATIONS command 164
CROSSTABS command 185
DESCRIPTIVES command 247
DISCRIMINANT command 262
EXAMINE command 310
FREQUENCIES command 378
MEANS command 550
NPAR TESTS command 593
ONEWAY command 605
PARTIAL CORR command 618
REGRESSION command 721
SUMMARIZE command 866

STDDEV (function)
GRAPH command 423
REPORT command 776

STDDEV (keyword)
DESCRIPTIVES command 247, 248
DISCRIMINANT command 262
FREQUENCIES command 378
GRAPH command 443
IGRAPH command 479
MATRIX DATA command 540
MEANS command 549
REGRESSION command 726
SUMMARIZE command 864

STEMLEAF (keyword)
EXAMINE command 309

STEP (keyword)
DISCRIMINANT command 263

STEPWISE (keyword)
REGRESSION command 720

STERROR (keyword)
GRAPH command 442

STRAIGHT (keyword)

IGRAPH command 474
STRING (command) 857

with INPUT PROGRAM command 857
STRING (subcommand)

REPORT command 770
STRUCTURE (keyword)

DISCRIMINANT command 263
STYLE (keyword)

IGRAPH command 474
STYLE (subcommand)

IGRAPH command 465
SUBTITLE (command) 859

with BEGIN DATA command 859
with SET command 859
with TITLE command 859, 871

SUBTITLE (subcommand)
GRAPH command 426
IGRAPH command 467
SPCHART command 843

SUBTRACT (function)
REPORT command 778

SUM (function)
AGGREGATE command 89
GRAPH command 423
REPORT command 776

SUM (keyword)
DESCRIPTIVES command 248
FREQUENCIES command 378
IGRAPH command 471, 480
MEANS command 550
SUMMARIZE command 864

SUMAV (keyword)
IGRAPH command 471, 480

SUMMARIZE (command) 861
CELLS subcommand 864
FOOTNOTE subcommand 863
FORMAT subcommand 865
MISSING subcommand 865
missing values 865
STATISTICS subcommand 866
TABLES subcommand 863
TITLE subcommand 863

1070 Syntax Index

SUMMARY (subcommand)
REPORT command 775

summary function
GRAPH command 423

summary functions
IGRAPH command 469, 471, 474, 478

summary functions, multiple
GRAPH command 424

SUMMARYVAR (subcommand)
IGRAPH command 466

SUMSPACE (keyword)
REPORT command 764

SUMSQ (keyword)
IGRAPH command 471, 480

SYMBOL (keyword)
IGRAPH command 476

SYSFILE INFO (command) 867
SYSMIS (keyword)

COUNT command 168, 169
RECODE command 699

SYSMIS (subcommand)
SHOW command 836

T
T (keyword)

IGRAPH command 473, 476
T2 (keyword)

ONEWAY command 604
UNIANOVA command 909

T3 (keyword)
ONEWAY command 604
UNIANOVA command 909

T4253H (function)
CREATE command 178

TAB (keyword)
SAVE TRANSLATE command 811

TABLE (keyword)
CROSSTABS command 187
DISCRIMINANT command 263
MEANS command 551
MULT RESPONSE command 563, 564
SUMMARIZE command 865

TABLE (subcommand)

DATA LIST command 205
KEYED DATA LIST command 500
MATCH FILES command 520
PRINT command 655
SAVE TRANSLATE command 810
WRITE command 943

TABLES (keyword)
CROSSTABS command 187
UNIANOVA command 910

TABLES (subcommand)
CROSSTABS command 182
MEANS command 549
MULT RESPONSE command 560
SUMMARIZE command 863

TAPE (keyword)
EXPORT command 317
IMPORT command 482

TCOV (keyword)
DISCRIMINANT command 262

TEMPORARY (command) 868
with N OF CASES command 565
with REGRESSION command 728
with SAMPLE command 797
with SAVE command 870
with SELECT IF command 816
with SPLIT FILE command 854, 869
with WEIGHT command 937
with XSAVE command 870

TEST (keyword)
REGRESSION command 720

TEST(ESTIMABLE) (keyword)
UNIANOVA command 900

TEST(LMATRIX) (keyword)
UNIANOVA command 900

TESTVAL (subcommand)
T-TEST command 890

TEXTIN (keyword)
IGRAPH command 471

THRU (keyword)
COUNT command 168
MISSING VALUES command 554
RECODE command 699

Syntax Index 1071

USE command 920
TIES (subcommand)

RANK command 696
TIFT (subcommand)

SHOW command 837
TIMER (keyword)

CROSSTABS command 186
NPAR TESTS command 594

TITLE (command) 871
with BEGIN DATA command 871
with SET command 871
with SUBTITLE command 859, 871

TITLE (keyword)
IGRAPH command 464, 466

TITLE (subcommand)
GRAPH command 426
IGRAPH command 467
PLOT command 628
REPORT command 782
SPCHART command 843
SUMMARIZE command 863

TLOOK (subcommand)
SET command 825
SHOW command 837

TNUMBERS (subcommand)
SET command 825
SHOW command 837

TO (keyword)
LIST command 506
REGRESSION command 718, 720
RENAME VARIABLES command 740
STRING command 857
VECTOR command 929

TOLERANCE (keyword)
REGRESSION command 722, 724

TOLERANCE (subcommand)
DISCRIMINANT command 257

TOP (keyword)
TSPLOT command 883

TOTAL (keyword)
CROSSTABS command 184
IGRAPH command 477

MULT RESPONSE command 562
REPORT command 774
SUMMARIZE command 865

TOTAL (subcommand)
EXAMINE command 307

TREND (function)
RMV command 796

TSET (command) 873
DEFAULT subcommand 875
ID subcommand 875
MISSING subcommand 875
MXNEWVAR subcommand 875
MXPREDICT subcommand 875
PERIOD subcommand 875
PRINT subcommand 876

TSHOW (command) 877
TSPACE (keyword)

REPORT command 764
TSPLOT (command) 878

APPLY subcommand 887
DIFF subcommand 881
FORMAT subcommand 883
ID subcommand 883
LN/NOLOG subcommands 882
MARK subcommand 886
PERIOD subcommand 882
SDIFF subcommand 882
SPLIT subcommand 886
VARIABLES subcommand 881

T-TEST (command) 888
GROUPS subcommand 890
independent samples 889, 890
limitations 889
MISSING subcommand 891
one sample 889, 890
paired samples 889, 891
PAIRS subcommand 891
TESTVAL subcommand 890
VARIABLES subcommand 890

TUKEY (keyword)
EXAMINE command 311
ONEWAY command 603

1072 Syntax Index

PPLOT command 639
RANK command 696
UNIANOVA command 908

TVARS (subcommand)
SET command 825
SHOW command 837

TWOTAIL (keyword)
CORRELATIONS command 164
NONPAR CORR command 570
PARTIAL CORR command 618

TYPE (subcommand)
EXPORT command 317
GET TRANSLATE command 416
IMPORT command 482
PPLOT command 639
SAVE TRANSLATE command 811

U
U (subcommand)

data organization 851
SPCHART command 850
variable specification 851

UC (keyword)
CROSSTABS command 185

ULEFT (keyword)
IGRAPH command 471

ULS (keyword)
FACTOR command 330

UNCLASSIFIED (keyword)
DISCRIMINANT command 264

UNCOMPRESSED (subcommand)
SAVE command 805
XSAVE command 951

UNDEFINED (subcommand)
SET command 829
SHOW command 837

UNDERSCORE (keyword)
REPORT command 764, 774

UNIANOVA (command) 893
ALPHA keyword 899
BONFERRONI keyword 908
BTUKEY keyword 908
C keyword 909

CONTRAST subcommand 904
COOK keyword 911
CRITERIA subcommand 899
DESCRIPTIVES keyword 900
DEVIATION keyword 905
DIFFERENCE keyword 905
DRESID keyword 911
DUNCAN keyword 908
DUNNETT keyword 908
DUNNETTL keyword 908
DUNNETTR keyword 908
EFSIZE keyword 900
EMMEANS subcommand 909
EPS keyword 899
ETASQ keyword 900
EXCLUDE keyword 899
FREGW keyword 909
GABRIEL keyword 909
GEF keyword 900
GH keyword 909
GT2 keyword 909
HELMERT keyword 905
HOMOGENEITY keyword 900
INCLUDE keyword 898, 899
INTERCEPT subcommand 898
KMATRIX subcommand 904
LEVER keyword 911
LMATRIX subcommand 902
LOF keyword 900
LSD keyword 908
METHOD subcommand 897
MISSING subcommand 899
OPOWER keyword 900
OUTFILE subcommand 911
PARAMETER keyword 900
PLOT subcommand 901
POLYNOMIAL keyword 905
POSTHOC subcommand 906
PRED keyword 911
PRINT subcommand 899
PROFILE keyword 901
QREGW 909

Syntax Index 1073

RANDOM subcommand 896
REGWGT subcommand 897
REPEATED keyword 906
RESID keyword 911
RESIDUALS keyword 901
SAVE subcommand 910
SCHEFFE keyword 908
SEPRED keyword 911
SIDAK keyword 909
SIMPLE keyword 905
SNK keyword 908
SPECIAL keyword 906
SPREADLEVEL keyword 901
SSTYPE keyword 897
T2 keyword 909
T3 keyword 909
TABLES keyword 910
TEST(ESTIMABLE) keyword 900
TEST(LMATRIX) keyword 900
TUKEY keyword 908
univariate 893
WALLER keyword 909
WPRED keyword 911
WRESID keyword 911
ZRESID keyword 911

UNIFORM (keyword)
IGRAPH command 477
NPAR TESTS command 581
PLOT command 627

UNIQUE (keyword)
ANOVA command 97

UNIVARIATE (keyword)
FACTOR command 326

UNIVF (keyword)
DISCRIMINANT command 262

UNNUMBERED (command) 596
UNNUMBERED (keyword)

LIST command 505
UNSELECTED (keyword)

DISCRIMINANT command 264
UNSELECTED (subcommand)

EXPORT command 317

SAVE command 803
SAVE TRANSLATE command 812

UP (keyword)
IGRAPH command 475
SORT CASES command 838

UPDATE (command) 913
BY subcommand 917
DROP subcommand 918
FILE subcommand 916
IN subcommand 918
KEEP subcommand 918
limitations 915
MAP subcommand 919
RENAME subcommand 917
with DATA LIST command 916
with DROP DOCUMENTS command 914
with SORT CASES command 839, 915

UPPER (keyword)
MATRIX DATA command 534

UPPERBOUND (subcommand)
CURVEFIT command 195

URIGHT (keyword)
IGRAPH command 471

USE (command) 920
case specifications 920
DATE specifications 920
examples 921
FIRST and LAST keywords 920

USL (subcommand)
SPCHART command 853

V
VAL (keyword)

IGRAPH command 469, 471, 474, 475
VALIDLIST (subcommand)

SUMMARIZE command 865
VALIDN (function)

REPORT command 776
VALUE (keyword)

REPORT command 768, 772
VALUE LABELS (command) 923

compared with ADD VALUE LABELS
command 923

1074 Syntax Index

VAR (keyword)
IGRAPH command 464
REPORT command 784

VARIABLE (keyword)
DESCRIPTIVES command 249
GRAPH command 452
PROXIMITIES command 669, 670
SUMMARIZE command 865

VARIABLE LABELS (command) 926
VARIABLE LEVEL (command) 928
VARIABLES (keyword)

DISPLAY command 271
EXAMINE command 306

VARIABLES (subcommand)
ACF command 69
ANOVA command 96
AUTORECODE command 110
CCF command 125
CROSSTABS command 182
CURVEFIT command 194
DESCRIPTIVES command 245
DISCRIMINANT command 253
DISPLAY command 271
EXAMINE command 306
FACTOR command 323
FLIP command 364–365
FREQUENCIES command 373
GET SCSS command 410–411
LIST command 504
MATRIX DATA command 531
MULT RESPONSE command 558
NONPAR CORR command 569
PACF command 611
PARTIAL CORR command 617
PPLOT command 637
RANK command 693
REGRESSION command 718
REPORT command 768
TSPLOT command 881
T-TEST command 890
VERIFY command 936

VARIANCE (function)

GRAPH command 423
REPORT command 776

VARIANCE (keyword)
CLUSTER command 140
DESCRIPTIVES command 247, 248
FREQUENCIES command 378
IGRAPH command 480
MEANS command 550
PROXIMITIES command 679
REGRESSION command 726
SUMMARIZE command 864

VARIMAX (keyword)
FACTOR command 331

VECTOR (command) 929
examples 293, 299
index 929, 933
short form 931
TO keyword 929
variable list 929
with DATA LIST command 934
with INPUT PROGRAM command 932
with LOOP command 929, 930

VECTOR (keyword)
DISPLAY command 271

VERIFY (command) 935
VARIABLES subcommand 936

VERTICAL (keyword)
IGRAPH command 467

VERTICAL (subcommand)
PLOT command 627

VICICLE (keyword)
CLUSTER command 143

VIEW (subcommand)
PROXIMITIES command 670

VIEWNAME (subcommand)
IGRAPH command 467

VIN (subcommand)
DISCRIMINANT command 258

VW (keyword)
PPLOT command 639
RANK command 696

Syntax Index 1075

W
WALLER (keyword)

ONEWAY command 604
UNIANOVA command 909

WARD (keyword)
CLUSTER command 141

WARN (keyword)
FILE TYPE command 350
RECORD TYPE command 710
SET command 829

WAVERAGE (keyword)
CLUSTER command 140
EXAMINE command 308

WEEK (keyword)
DATE command 217

WEIGHT (command) 937
missing values 938
non-positive values 938
weight variable 937
with CROSSTABS 190
with TEMPORARY command 937

WEIGHT (subcommand)
SHOW command 837

WHISKER (keyword)
IGRAPH command 473

WIDTH (keyword)
IGRAPH command 476

WIDTH (subcommand)
REGRESSION command 730
SET command 832
SHOW command 837

WILCOXON (subcommand)
NPAR TESTS command 592

WILD (subcommand)
FILE TYPE command 350

WILKS (keyword)
DISCRIMINANT command 256

WITH (keyword)
ANOVA command 97
CORRELATIONS command 165
CURVEFIT command 194
NONPAR CORR command 569

NPAR TESTS command 576, 585, 588,
591, 592

PARTIAL CORR command 617
PLOT command 626
T-TEST command 891

WK1 (keyword)
SAVE TRANSLATE command 811

WKS (keyword)
SAVE TRANSLATE command 811

WORKFILE (subcommand)
GET SCSS command 409–410

WORKSPACE (subcommand)
SHOW command 824, 837

WPRED (keyword)
UNIANOVA command 911

WR1 (keyword)
SAVE TRANSLATE command 811

WRAP (keyword)
LIST command 505

WRESID 911
WRESID (keyword)

UNIANOVA command 911
WRITE (command) 939

formats 941
missing values 940
NOTABLE subcommand 943
OUTFILE subcommand 943
RECORDS subcommand 942
strings 942
TABLE subcommand 943
variable list 940
with SET command 940

WRITE (subcommand)
CROSSTABS command 188

WRITE FORMATS (command) 944
format specification 944
string variables 944
with DISPLAY command 945
with SET command 946

WRK (keyword)
SAVE TRANSLATE command 811

W-W (subcommand)

1076 Syntax Index

NPAR TESTS command 591
X
X1 (subcommand)

IGRAPH command 464
X1INTERVAL (keyword)

IGRAPH command 476
X1LENGTH (subcommand)

IGRAPH command 464
X1MULTIPLIER (keyword)

IGRAPH command 478
X1START (keyword)

IGRAPH command 477
X2 (subcommand)

IGRAPH command 464
X2INTERVAL (keyword)

IGRAPH command 476
X2LENGTH (subcommand)

IGRAPH command 464
X2MULTIPLIER (keyword)

IGRAPH command 478
X2START (keyword)

IGRAPH command 477
XLS (keyword)

SAVE TRANSLATE command 811
XPROD (keyword)

CORRELATIONS command 164
REGRESSION command 727

XR (subcommand)
data organization 844
SPCHART command 843
variable specification 845

XS (subcommand)
data organization 844
SPCHART command 843
variable specification 845

XSAVE (command) 947
compared to SAVE command 800, 947
COMPRESSED subcommand 951
DROP subcommand 949
KEEP subcommand 949
limitations 949
MAP subcommand 951

OUTFILE subcommand 949
RENAME subcommand 950
UNCOMPRESSED subcommand 951
with DO REPEAT command 948
with TEMPORARY command 870

XTX (keyword)
REGRESSION command 722

XYZ (keyword)
GRAPH command 445

Y
Y (keyword)

CLUSTER command 138
PROXIMITIES command 677

Y (subcommand)
IGRAPH command 464

YEAR (keyword)
DATE command 217

YES (keyword)
SET command 823

YLENGTH (subcommand)
IGRAPH command 464

Z
Z (keyword)

PROXIMITIES command 669
ZPP (keyword)

REGRESSION command 722
ZPRED (keyword)

REGRESSION command 733
ZRESID (keyword)

REGRESSION command 733
UNIANOVA command 911

	Universals
	Commands
	Syntax Diagrams
	Command Specification
	Running Commands
	Subcommands
	Keywords
	Values in Command Specifications
	String Values in Command Specifications
	Delimiters
	Command Order

	Files
	Command File
	Journal File
	Data Files

	Variables
	Variable Names
	Variable Formats

	Transformation Expressions
	Numeric Expressions
	String Expressions
	Logical Expressions
	Other Functions
	Treatment of Missing Values in Arguments

	Date and Time
	Date and Time Formats
	Arithmetic Operations with Date and Time Variables
	Date and Time Functions
	Precautions with Date and Time Variables

	Commands
	ACF
	Overview
	Basic Specification
	Subcommand Order
	Syntax Rules
	Operations
	Limitations
	Example
	VARIABLES Subcommand
	DIFF Subcommand
	SDIFF Subcommand
	PERIOD Subcommand
	LN and NOLOG Subcommands
	SEASONAL Subcommand
	MXAUTO Subcommand
	SERROR Subcommand
	PACF Subcommand
	APPLY Subcommand
	References

	ADD FILES
	Overview
	Basic Specification
	Subcommand Order
	Syntax Rules
	Operations
	Limitations
	Examples
	FILE Subcommand
	RENAME Subcommand
	BY Subcommand
	DROP and KEEP Subcommands
	IN Subcommand
	FIRST and LAST Subcommands
	MAP Subcommand

	ADD VALUE LABELS
	Overview
	Basic Specification
	Syntax Rules
	Operations
	Limitations
	Example
	Example
	Value Labels for String Variables

	AGGREGATE
	Overview
	Basic Specification
	Subcommand Order
	Operations
	Example
	Example
	OUTFILE Subcommand
	BREAK Subcommand
	DOCUMENT Subcommand
	PRESORTED Subcommand
	Aggregate Functions
	MISSING Subcommand

	ANOVA
	Overview
	Basic Specification
	Subcommand Order
	Operations
	Limitations
	Example
	Example
	VARIABLES Subcommand
	COVARIATES Subcommand
	MAXORDERS Subcommand
	METHOD Subcommand
	Summary of Analysis Methods
	STATISTICS Subcommand
	MISSING Subcommand
	References

	APPLY DICTIONARY
	Overview
	Basic Specification
	Syntax Rules
	Operation
	FROM Subcommand

	AUTORECODE
	Overview
	Basic Specification
	Subcommand Order
	Syntax Rules
	Operations
	Example
	Example
	Example
	VARIABLES Subcommand
	INTO Subcommand
	PRINT Subcommand
	DESCENDING Subcommand

	BEGIN DATA—END DATA
	Overview
	Basic Specification
	Syntax Rules
	Operations
	Example

	BREAK
	Overview
	Basic Specification
	Operations
	Example

	CASEPLOT
	Overview
	Basic Specification
	Subcommand Order
	Syntax Rules
	Operations
	Limitations
	Example
	VARIABLES Subcommand
	DIFF Subcommand
	SDIFF Subcommand
	PERIOD Subcommand
	LN and NOLOG Subcommands
	ID Subcommand
	FORMAT Subcommand
	MARK Subcommand
	SPLIT Subcommand
	APPLY Subcommand

	CCF
	Overview
	Basic Specification
	Subcommand Order
	Syntax Rules
	Operations
	Limitations
	Example
	VARIABLES Subcommand
	DIFF Subcommand
	SDIFF Subcommand
	PERIOD Subcommand
	LN and NOLOG Subcommands
	SEASONAL Subcommand
	MXCROSS Subcommand
	APPLY Subcommand
	References

	CLEAR TRANSFORMATIONS
	Overview
	Basic Specification
	Operations
	Example

	CLUSTER
	Overview
	Basic Specification
	Subcommand Order
	Syntax Rules
	Operations
	Limitations
	Example
	Variable List
	MEASURE Subcommand
	METHOD Subcommand
	SAVE Subcommand
	ID Subcommand
	PRINT Subcommand
	PLOT Subcommand
	MISSING Subcommand
	MATRIX Subcommand

	COMMENT
	Overview
	Syntax Rules
	Example
	Example

	COMPUTE
	Overview
	Basic Specification
	Syntax Rules
	Operations
	Examples

	CORRELATIONS
	Overview
	Basic Specification
	Subcommand Order
	Operations
	Limitations
	Example
	VARIABLES Subcommand
	PRINT Subcommand
	STATISTICS Subcommand
	MISSING Subcommand
	MATRIX Subcommand

	COUNT
	Overview
	Basic Specification
	Syntax Rules
	Operations
	Example
	Example
	Example

	CREATE
	Overview
	Basic Specification
	Syntax Rules
	Operations
	Limitations
	Example
	CSUM Function
	DIFF Function
	FFT Function
	IFFT Function
	LAG Function
	LEAD Function
	MA Function
	PMA Function
	RMED Function
	SDIFF Function
	T4253H Function
	References

	CROSSTABS
	Overview
	Basic Specification
	Subcommand Order
	Operations
	Limitations
	Example
	Example
	VARIABLES Subcommand
	TABLES Subcommand
	CELLS Subcommand
	STATISTICS Subcommand
	METHOD Subcommand
	MISSING Subcommand
	FORMAT Subcommand
	BARCHART Subcommand
	WRITE Subcommand
	References

	CURVEFIT
	Overview
	Basic Specification
	Subcommand Order
	Syntax Rules
	Operations
	Limitations
	Example
	VARIABLES Subcommand
	MODEL Subcommand
	UPPERBOUND Subcommand
	CONSTANT and NOCONSTANT Subcommands
	CIN Subcommand
	PLOT Subcommand
	ID Subcommand
	SAVE Subcommand
	PRINT Subcommand
	APPLY Subcommand
	References

	DATA LIST
	Overview
	Basic Specification
	Subcommand Order
	Syntax Rules
	Operations
	Example
	FILE Subcommand
	FIXED, FREE, and LIST Keywords
	TABLE and NOTABLE Subcommands
	RECORDS Subcommand
	END Subcommand
	Variable Definition
	Variable Names
	Variable Location
	Variable Formats

	DATE
	Overview
	Basic Specification
	Subcommand Order
	Syntax Rules
	Operations
	Limitations
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5
	Example 6
	Example 7

	DEFINE—!ENDDEFINE
	Overview
	Basic Specification
	Operations
	Limitations
	Example
	Example
	Example
	Macro Arguments
	Macro Directives
	String Manipulation Functions
	SET Subcommands for Use with Macro
	Restoring SET Specifications
	Conditional Processing
	Looping Constructs
	Direct Assignment of Macro Variables

	DESCRIPTIVES
	Overview
	Basic Specification
	Subcommand Order
	Operations
	Example
	Example
	VARIABLES Subcommand
	SAVE Subcommand
	STATISTICS Subcommand
	SORT Subcommand
	MISSING Subcommand

	DISCRIMINANT
	Overview
	Basic Specification
	Subcommand Order
	Syntax Rules
	Operations
	Limitations
	Example
	GROUPS Subcommand
	VARIABLES Subcommand
	SELECT Subcommand
	ANALYSIS Subcommand
	METHOD Subcommand
	TOLERANCE Subcommand
	PIN and POUT Subcommands
	FIN and FOUT Subcommands
	VIN Subcommand
	MAXSTEPS Subcommand
	FUNCTIONS Subcommand
	PRIORS Subcommand
	SAVE Subcommand
	STATISTICS Subcommand
	ROTATE Subcommand
	HISTORY Subcommand
	CLASSIFY Subcommand
	PLOT Subcommand
	MISSING Subcommand
	MATRIX Subcommand

	DISPLAY
	Overview
	Basic Specification
	Syntax Rules
	Operations
	Example
	SORTED Keyword
	VARIABLES Subcommand

	DOCUMENT
	Overview
	Basic Specification
	Syntax Rules
	Operations
	Example
	Example

	DO IF
	Overview
	Basic Specification
	Syntax Rules
	Operations
	Example
	Example
	ELSE Command
	ELSE IF Command
	Nested DO IF Structures
	Complex File Structures

	DO REPEAT—END REPEAT
	Overview
	Basic Specification
	Syntax Rules
	Operations
	Example
	Example
	PRINT Subcommand

	DROP DOCUMENTS
	Overview
	Basic Specification
	Operations
	Example

	EDIT
	Overview
	Syntax Rules
	Operations
	Example
	Example

	END CASE
	Overview
	Basic Specification
	Syntax Rules
	Operations
	Example
	Example
	Example
	Example
	Example

	END FILE
	Overview
	Basic Specification
	Syntax Rules
	Operations
	Example
	Example

	ERASE
	Overview
	Basic Specification
	Syntax Rules
	Operations
	Example

	EXAMINE
	Overview
	Basic Specification
	Subcommand Order
	Limitations
	Example
	Example
	VARIABLES Subcommand
	COMPARE Subcommand
	TOTAL and NOTOTAL Subcommands
	ID Subcommand
	PERCENTILES Subcommand
	PLOT Subcommand
	STATISTICS Subcommand
	CINTERVAL Subcommand
	MESTIMATORS Subcommand
	MISSING Subcommand
	References

	EXECUTE
	Overview
	Basic Specification
	Operations
	Example

	EXPORT
	Overview
	Basic Specification
	Subcommand Order
	Operations
	Example
	Methods of Transporting Portable Files
	Character Translation
	OUTFILE Subcommand
	TYPE Subcommand
	UNSELECTED Subcommand
	DROP and KEEP Subcommands
	RENAME Subcommand
	MAP Subcommand
	DIGITS Subcommand

	FACTOR
	Overview
	Basic Specification
	Subcommand Order
	Syntax Rules
	Operations
	Example
	VARIABLES Subcommand
	MISSING Subcommand
	METHOD Subcommand
	SELECT Subcommand
	ANALYSIS Subcommand
	FORMAT Subcommand
	PRINT Subcommand
	PLOT Subcommand
	DIAGONAL Subcommand
	CRITERIA Subcommand
	EXTRACTION Subcommand
	ROTATION Subcommand
	SAVE Subcommand
	MATRIX Subcommand

	FILE HANDLE
	Overview
	Syntax Rules
	Operations
	NAME Subcommand
	MODE Subcommand
	RECFORM Subcommand
	LRECL Subcommand

	FILE LABEL
	Overview
	Syntax Rules
	Operations
	Example

	FILE TYPE—END FILE TYPE
	Overview
	Basic Specification
	Specification Order
	Syntax Rules
	Operations
	Example
	Example
	Example
	Example
	Types of Files
	FILE Subcommand
	RECORD Subcommand
	CASE Subcommand
	WILD Subcommand
	DUPLICATE Subcommand
	MISSING Subcommand
	ORDERED Subcommand

	FILTER
	Overview
	Basic Specification
	Syntax Rules
	Operations
	Example
	Example

	FINISH
	Overview
	Basic Specification
	Operations
	Example
	Example

	FIT
	Overview
	Basic Specification
	Syntax Rules
	Operations
	Limitations
	Example
	ERRORS Subcommand
	OBS Subcommand
	DFE and DFH Subcommands
	Output Considerations for SSE
	References

	FLIP
	Overview
	Basic Specification
	Subcommand Order
	Operations
	Example
	VARIABLES Subcommand
	NEWNAMES Subcommand

	FORMATS
	Overview
	Basic Specification
	Syntax Rules
	Operations
	Example
	Example
	Example

	FREQUENCIES
	Overview
	Basic Specification
	Subcommand Order
	Syntax Rules
	Operations
	Limitations
	Example
	Example
	VARIABLES Subcommand
	FORMAT Subcommand
	BARCHART Subcommand
	PIECHART Subcommand
	HISTOGRAM Subcommand
	GROUPED Subcommand
	PERCENTILES Subcommand
	NTILES Subcommand
	STATISTICS Subcommand
	MISSING Subcommand
	ORDER Subcommand

	GET
	Overview
	Basic Specification
	Subcommand Order
	Syntax Rules
	Operations
	FILE Subcommand
	DROP and KEEP Subcommands
	RENAME Subcommand
	MAP Subcommand

	GET BMDP
	Overview
	Basic Specification
	Subcommand Order
	Operations
	FILE Subcommand
	SCAN Subcommand
	CONTENT, CODE, and LABEL Subcommands
	DROP and KEEP Subcommands
	RENAME Subcommand
	MAP Subcommand

	GET CAPTURE
	Overview
	Basic Specification
	Subcommand Order
	Syntax Rules
	Operations
	Limitations
	CONNECT Subcommand
	SELECT Subcommand
	Example
	Data Conversion

	GET OSIRIS
	Overview
	Basic Specification
	Subcommand Order
	Syntax Rules
	Operations
	Limitations
	DATA and DICTIONARY Subcommands
	DROP and KEEP Subcommands
	RENAME Subcommand
	MAP Subcommand

	GET SAS
	Overview
	Basic Specification
	Syntax Rules
	Operations
	DATA Subcommand
	FORMATS Subcommand
	SAS to SPSS Data Conversion
	Tips for Creating and Moving a SAS Transport File

	GET SCSS
	Overview
	Basic Specification
	Subcommand Order
	Operations
	MASTERFILE Subcommand
	WORKFILE Subcommand
	VARIABLES Subcommand

	GET TRANSLATE
	Overview
	Basic Specification
	Subcommand Order
	Operations
	Limitations
	FILE Subcommand
	TYPE Subcommand
	FIELDNAMES Subcommand
	RANGE Subcommand
	DROP and KEEP Subcommands
	RENAME Subcommand
	MAP Subcommand

	GRAPH
	Overview
	Basic Specification
	Subcommand Order
	Syntax Rules
	Operations
	Limitations
	Example
	TITLE, SUBTITLE, and FOOTNOTE Subcommands
	BAR Subcommand
	LINE Subcommand
	PIE Subcommand
	HILO Subcommand
	ERRORBAR Subcommand
	SCATTERPLOT Subcommand
	HISTOGRAM Subcommand
	PARETO Subcommand
	TEMPLATE Subcommand
	MISSING Subcommand

	IF
	Overview
	Basic Specification
	Syntax Rules
	Operations
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example

	IGRAPH
	Overview
	Basic Specification
	Subcommand Order
	Syntax Rules
	Operations
	General Syntax
	Element Syntax
	Summary Functions

	IMPORT
	Overview
	Basic Specification
	Subcommand Order
	Operations
	Example
	FILE Subcommand
	TYPE Subcommand
	DROP and KEEP Subcommands
	RENAME Subcommand
	MAP Subcommand

	INCLUDE
	Overview
	Basic Specification
	Syntax Rules
	Operations
	FILE Subcommand
	Example

	INFO
	Overview
	Basic Specification
	Syntax Rules
	Operations
	Example
	Types of Information
	SINCE Keyword
	OUTFILE Subcommand

	INPUT PROGRAM—END INPUT PROGRAM
	Overview
	Input Programs
	Basic Specification
	Operations
	Example
	Example
	More Examples

	KEYED DATA LIST
	Overview
	Basic Specification
	Subcommand Order
	Syntax Rules
	Operations
	Example
	Example
	Example
	FILE Subcommand
	KEY Subcommand
	IN Subcommand
	TABLE and NOTABLE Subcommands

	LEAVE
	Overview
	Basic Specification
	Syntax Rules
	Operations
	Example
	Example

	LIST
	Overview
	Basic Specification
	Subcommand Order
	Operations
	Example
	Example
	VARIABLES Subcommand
	FORMAT Subcommand
	CASES Subcommand

	LOOP—END LOOP
	Overview
	Basic Specification
	Syntax Rules
	Operations
	Example
	IF Keyword
	Indexing Clause
	BY Keyword
	Missing Values
	Creating Data

	MATCH FILES
	Overview
	Basic Specification
	Subcommand Order
	Syntax Rules
	Operations
	Limitations
	Example
	FILE Subcommand
	BY Subcommand
	TABLE Subcommand
	RENAME Subcommand
	DROP and KEEP Subcommands
	IN Subcommand
	FIRST and LAST Subcommands
	MAP Subcommand

	MATRIX DATA
	Overview
	Basic Specification
	Subcommand Order
	Syntax Rules
	Operations
	Example
	Example
	Example
	Example
	VARIABLES Subcommand
	FILE Subcommand
	FORMAT Subcommand
	SPLIT Subcommand
	FACTORS Subcommand
	CELLS Subcommand
	CONTENTS Subcommand
	N Subcommand

	MCONVERT
	Overview
	Basic Specification
	Syntax Rules
	Operations
	Limitations
	Example
	MATRIX Subcommand
	REPLACE and APPEND Subcommands

	MEANS
	Overview
	Basic Specification
	Subcommand Order
	Operations
	Limitations
	Example
	Example
	TABLES Subcommand
	CELLS Subcommand
	STATISTICS Subcommand
	MISSING Subcommand
	References

	MISSING VALUES
	Overview
	Basic Specification
	Syntax Rules
	Operations
	Example
	Example
	Example
	Example
	Specifying Ranges of Missing Values

	MULT RESPONSE
	Overview
	Basic Specification
	Subcommand Order
	Operations
	Limitations
	GROUPS Subcommand
	VARIABLES Subcommand
	FREQUENCIES Subcommand
	TABLES Subcommand
	CELLS Subcommand
	BASE Subcommand
	MISSING Subcommand
	FORMAT Subcommand

	N OF CASES
	Overview
	Basic Specification
	Syntax Rules
	Operations
	Example
	Example
	Example

	NEW FILE
	Overview
	Basic Specification
	Operations

	NONPAR CORR
	Overview
	Basic Specification
	Subcommand Order
	Operations
	Limitations
	Example
	VARIABLES Subcommand
	PRINT Subcommand
	SAMPLE Subcommand
	MISSING Subcommand
	MATRIX Subcommand

	NPAR TESTS
	Overview
	Basic Specification
	Subcommand Order
	Syntax Rules
	Operations
	Limitations
	BINOMIAL Subcommand
	CHISQUARE Subcommand
	COCHRAN Subcommand
	FRIEDMAN Subcommand
	J-T Subcommand
	K-S Subcommand (One-Sample)
	K-S Subcommand (Two-Sample)
	K-W Subcommand
	KENDALL Subcommand
	M-W Subcommand
	MCNEMAR Subcommand
	MEDIAN Subcommand
	MH Subcommand
	MOSES Subcommand
	RUNS Subcommand
	SIGN Subcommand
	W-W Subcommand
	WILCOXON Subcommand
	STATISTICS Subcommand
	MISSING Subcommand
	SAMPLE Subcommand
	METHOD Subcommand
	References

	NUMBERED and UNNUMBERED
	Overview
	Basic Specification
	Operations
	Example

	NUMERIC
	Overview
	Basic Specification
	Syntax Rules
	Operations
	Example
	Example
	Example
	Example

	ONEWAY
	Overview
	Basic Specification
	Subcommand Order
	Operations
	Limitations
	Example
	Analysis List
	POLYNOMIAL Subcommand
	CONTRAST Subcommand
	POSTHOC Subcommand
	RANGES Subcommand
	PLOT MEANS Subcommand
	STATISTICS Subcommand
	MISSING Subcommand
	MATRIX Subcommand
	Missing Values
	References

	PACF
	Overview
	Basic Specification
	Subcommand Order
	Syntax Rules
	Operations
	Limitations
	Example
	VARIABLES Subcommand
	DIFF Subcommand
	SDIFF Subcommand
	PERIOD Subcommand
	LN and NOLOG Subcommands
	SEASONAL Subcommand
	MXAUTO Subcommand
	APPLY Subcommand
	References

	PARTIAL CORR
	Overview
	Basic Specification
	Subcommand Order
	Operations
	Limitations
	Example
	VARIABLES Subcommand
	SIGNIFICANCE Subcommand
	STATISTICS Subcommand
	FORMAT Subcommand
	MISSING Subcommand
	MATRIX Subcommand

	PLOT
	Overview
	Basic Specification
	Subcommand Order
	Syntax Rules
	Limitations
	Example
	PLOT Subcommand
	FORMAT Subcommand
	VERTICAL and HORIZONTAL Subcommands
	TITLE Subcommand
	MISSING Subcommand

	POINT
	Overview
	Basic Specification
	Subcommand Order
	Syntax Rules
	Operations
	Example
	Example
	FILE Subcommand
	KEY Subcommand

	PPLOT
	Overview
	Basic Specification
	Subcommand Order
	Syntax Rules
	Operations
	Limitations
	Example
	VARIABLES Subcommand
	DISTRIBUTION Subcommand
	FRACTION Subcommand
	TIES Subcommand
	TYPE Subcommand
	PLOT Subcommand
	STANDARDIZE and NOSTANDARDIZE Subcommands
	DIFF Subcommand
	SDIFF Subcommand
	PERIOD Subcommand
	LN and NOLOG Subcommands
	APPLY Subcommand
	References

	PREDICT
	Overview
	Basic Specification
	Syntax Rules
	Operations
	Limitations
	Example
	Example
	Example
	Example
	Example

	PRESERVE
	Overview
	Basic Specification
	Example

	PRINT
	Overview
	Basic Specification
	Subcommand Order
	Syntax Rules
	Operations
	Example
	Example
	Formats
	Strings
	RECORDS Subcommand
	OUTFILE Subcommand
	TABLE Subcommand

	PRINT EJECT
	Overview
	Basic Specification
	Operations
	Example
	Example

	PRINT FORMATS
	Overview
	Basic Specification
	Syntax Rules
	Operations
	Example
	Example
	Example

	PRINT SPACE
	Overview
	Basic Specification
	Syntax Rules
	Operations
	Example
	Example
	Example

	PROCEDURE OUTPUT
	Overview
	Basic Specification
	Operations
	Example
	Example

	PROXIMITIES
	Overview
	Basic Specification
	Subcommand Order
	Operations
	Limitations
	Example
	Variable Specification
	STANDARDIZE Subcommand
	VIEW Subcommand
	MEASURE Subcommand
	PRINT Subcommand
	ID Subcommand
	MISSING Subcommand
	MATRIX Subcommand

	QUICK CLUSTER
	Overview
	Basic Specification
	Subcommand Order
	Operations
	Example
	Variable List
	CRITERIA Subcommand
	METHOD Subcommand
	INITIAL Subcommand
	FILE Subcommand
	PRINT Subcommand
	OUTFILE Subcommand
	SAVE Subcommand
	MISSING Subcommand

	RANK
	Overview
	Basic Specification
	Subcommand Order
	Operations
	Example
	VARIABLES Subcommand
	Function Subcommands
	TIES Subcommand
	FRACTION Subcommand
	PRINT Subcommand
	MISSING Subcommand
	References

	RECODE
	Overview
	Basic Specification
	Syntax Rules
	Operations
	Limitations
	Example
	Example
	INTO Keyword
	CONVERT Keyword

	RECORD TYPE
	Overview
	Basic Specification
	Syntax Rules
	Operations
	Example
	Example
	Example
	OTHER Keyword
	SKIP Subcommand
	CASE Subcommand
	MISSING Subcommand
	DUPLICATE Subcommand
	SPREAD Subcommand

	REFORMAT
	Overview
	Basic Specification
	Operations
	Example

	REGRESSION
	Overview
	Basic Specification
	Subcommand Order
	Syntax Rules
	Operations
	Example
	VARIABLES Subcommand
	DEPENDENT Subcommand
	METHOD Subcommand
	STATISTICS Subcommand
	CRITERIA Subcommand
	ORIGIN and NOORIGIN Subcommands
	REGWGT Subcommand
	DESCRIPTIVES Subcommand
	SELECT Subcommand
	MATRIX Subcommand
	MISSING Subcommand
	References

	REGRESSION: Residuals
	Overview
	Basic Specification
	Subcommand Order
	Operations
	Example
	RESIDUALS Subcommand
	CASEWISE Subcommand
	SCATTERPLOT Subcommand
	PARTIALPLOT Subcommand
	OUTFILE Subcommand
	SAVE Subcommand
	References

	RENAME VARIABLES
	Overview
	Basic Specification
	Syntax Rules
	Example
	Example
	Example

	REPEATING DATA
	Overview
	Basic Specification
	Subcommand Order
	Syntax Rules
	Operations
	Example
	Example
	Example
	STARTS Subcommand
	OCCURS Subcommand
	DATA Subcommand
	FILE Subcommand
	LENGTH Subcommand
	CONTINUED Subcommand
	ID Subcommand
	TABLE and NOTABLE Subcommands

	REPORT
	Overview
	Defaults
	Basic Specification
	Subcommand Order
	Syntax Rules
	Operations
	Limitations
	Example
	FORMAT Subcommand
	OUTFILE Subcommand
	VARIABLES Subcommand
	STRING Subcommand
	BREAK Subcommand
	SUMMARY Subcommand
	TITLE and FOOTNOTE Subcommands
	MISSING Subcommand

	REREAD
	Overview
	Basic Specification
	Subcommand Order
	Syntax Rules
	Operations
	Example
	Example
	FILE Subcommand
	COLUMN Subcommand

	RESTORE
	Overview
	Basic Specification
	Example

	RMV
	Overview
	Basic Specification
	Syntax Rules
	Operations
	Limitations
	LINT Function
	MEAN Function
	MEDIAN Function
	SMEAN Function
	TREND Function

	SAMPLE
	Overview
	Basic Specification
	Operations
	Limitations
	Example
	Example
	Example

	SAVE
	Overview
	Basic Specification
	Subcommand Order
	Syntax Rules
	Operations
	Example
	Example
	OUTFILE Subcommand
	VERSION Subcommand
	UNSELECTED Subcommand
	DROP and KEEP Subcommands
	RENAME Subcommand
	MAP Subcommand
	COMPRESSED and UNCOMPRESSED Subcommands

	SAVE TRANSLATE
	Overview
	Basic Specification
	Subcommand Order
	Operations
	Limitations
	OUTFILE Subcommand
	CONNECT Subcommand
	TABLE Subcommand
	REPLACE Subcommand
	APPEND Sucommand
	TYPE Subcommand
	FIELDNAMES Subcommand
	UNSELECTED Subcommand
	DROP and KEEP Subcommands
	RENAME Subcommand
	MAP Subcommand

	SCRIPT
	Overview
	Basic Specification
	Operations
	Running Scripts that Contain SPSS Commands

	SELECT IF
	Overview
	Basic Specification
	Syntax Rules
	Operations
	Limitations
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example

	SET
	Overview
	Basic Specification
	Subcommand Order
	Syntax Rules
	Operations
	Example
	WORKSPACE, MXMEMORY, and MXCELLS Subcommands
	FORMAT Subcommand
	TLOOK and CTEMPLATE Subcommands
	ONUMBERS, OVARS, TNUMBERS, and TVARS Subcommands
	TFIT Subcommand
	SEED Subcommand
	EPOCH Subcommand
	ERRORS, MESSAGES, RESULTS, and PRINTBACK Subcommands
	JOURNAL Subcommand
	MEXPAND and MPRINT Subcommands
	MITERATE and MNEST Subcommands
	BLANKS Subcommand
	UNDEFINED Subcommand
	MXWARNS Subcommand
	MXLOOPS Subcommand
	EXTENSIONS Subcommand
	COMPRESSION Subcommand
	HIGHRES Subcommand
	BLOCK Subcommand
	BOX Subcommand
	LENGTH and WIDTH Subcommands
	HEADER Subcommand
	CCA, CCB, CCC, CCD, and CCE Subcommands

	SHOW
	Overview
	Basic Specification
	Subcommand Order
	Syntax
	Example
	Subcommands

	SORT CASES
	Overview
	Basic Specification
	Syntax Rules
	Operations
	SORT CASES with Other Procedures
	Example
	Example

	SPCHART
	Overview
	Basic Specification
	Subcommand Order
	Syntax Rules
	Operations
	Limitations
	Example
	TITLE, SUBTITLE, and FOOTNOTE Subcommands
	XR and XS Subcommands
	I and IR Subcommands
	P and NP Subcommands
	C and U Subcommands
	SPAN Subcommand
	CONFORM and NOCONFORM Subcommands
	SIGMA Subcommand
	MINSAMPLE Subcommand
	LSL and USL Subcommand
	MISSING Subcommand

	SPLIT FILE
	Overview
	Basic Specification
	Syntax Rules
	Operations
	Limitations
	LAYERED and SEPARATE Subcommands
	Example
	Example
	Example
	Example

	STRING
	Overview
	Basic Specification
	Syntax Rules
	Operations
	Example
	Example

	SUBTITLE
	Overview
	Basic Specification
	Syntax Rules
	Operations
	Example
	Example

	SUMMARIZE
	Overview
	Options
	Basic Specification
	Syntax Rules
	Limitations
	Operations
	Example
	TABLES Subcommand
	TITLE and FOOTNOTE Subcommands
	CELLS Subcommand
	MISSING Subcommand
	FORMAT Subcommand
	STATISTICS Subcommand

	SYSFILE INFO
	Overview
	Basic Specification
	Syntax Rules
	Operations
	Example

	TEMPORARY
	Overview
	Basic Specification
	Operations
	Example
	Example
	Example

	TITLE
	Overview
	Basic Specification
	Syntax Rules
	Operations
	Example
	Example

	TSET
	Overview
	Basic Specification
	Subcommand Order
	Syntax Rules
	Operations
	DEFAULT Subcommand
	ID Subcommand
	MISSING Subcommand
	MXNEWVARS Subcommand
	MXPREDICT Subcommand
	PERIOD Subcommand
	PRINT Subcommand

	TSHOW
	Overview
	Basic Specification
	Operations
	Example

	TSPLOT
	Overview
	Basic Specification
	Subcommand Order
	Syntax Rules
	Operations
	Limitations
	Example
	VARIABLES Subcommand
	DIFF Subcommand
	SDIFF Subcommand
	PERIOD Subcommand
	LN and NOLOG Subcommands
	ID Subcommand
	FORMAT Subcommand
	MARK Subcommand
	SPLIT Subcommand
	APPLY Subcommand

	T-TEST
	Overview
	Basic Specification
	Subcommand Order
	Operations
	Limitations
	Example
	Example
	Example
	VARIABLES Subcommand
	TESTVAL Subcommand
	GROUPS Subcommand
	PAIRS Subcommand
	CRITERIA Subcommand
	MISSING Subcommand

	UNIANOVA
	Overview
	Basic Specification
	Subcommand Order
	Syntax Rules
	Limitations
	Example
	UNIANOVA Variable List
	RANDOM Subcommand
	REGWGT Subcommand
	METHOD Subcommand
	INTERCEPT Subcommand
	MISSING Subcommand
	CRITERIA Subcommand
	PRINT Subcommand
	PLOT Subcommand
	TEST Subcommand
	LMATRIX Subcommand
	KMATRIX Subcommand
	CONTRAST Subcommand
	POSTHOC Subcommand
	EMMEANS Subcommand
	SAVE Subcommand
	OUTFILE Subcommand
	DESIGN Subcommand

	UPDATE
	Overview
	Basic Specification
	Subcommand Order
	Syntax Rules
	Operations
	Limitations
	Example
	Example
	FILE Subcommand
	BY Subcommand
	RENAME Subcommand
	DROP and KEEP Subcommands
	IN Subcommand
	MAP Subcommand

	USE
	Overview
	Basic Specification
	Syntax Rules
	Operations
	Limitations
	Examples

	VALUE LABELS
	Overview
	Basic Specification
	Syntax Rules
	Operations
	Example
	Example
	Example
	Example

	VARIABLE LABELS
	Overview
	Basic Specification
	Syntax Rules
	Operations
	Example
	Example

	VARIABLE LEVEL
	Overview
	Basic Specification

	VECTOR
	Overview
	Basic Specification
	Syntax Rules
	Operations
	Examples
	More Examples
	VECTOR: Short Form
	VECTOR outside a Loop Structure

	VERIFY
	Overview
	Basic Specification
	Operations
	Limitations
	VARIABLES Subcommand
	Examples

	WEIGHT
	Overview
	Basic Specification
	Syntax Rules
	Operations
	Example
	Example

	WRITE
	Overview
	Subcommand Order
	Basic Specification
	Syntax Rules
	Operations
	Example
	Example
	Formats
	Strings
	RECORDS Subcommand
	OUTFILE Subcommand
	TABLE Subcommand

	WRITE FORMATS
	Overview
	Basic Specification
	Syntax Rules
	Operations
	Example
	Example
	Example

	XSAVE
	Overview
	Basic Specification
	Subcommand Order
	Syntax Rules
	Operations
	Limitations
	Example
	Example
	OUTFILE Subcommand
	DROP and KEEP Subcommands
	RENAME Subcommand
	MAP Subcommand
	COMPRESSED and UNCOMPRESSED Subcommands

	Appendix A Commands and Program States
	Program States
	Determining Command Order
	Unrestricted Utility Commands
	File Definition Commands
	Input Program Commands
	Transformation Commands
	Restricted Transformations
	Procedures

	Appendix B IMPORT/EXPORT Character Sets
	Appendix C Defining Complex Files
	A Rectangular File
	Nested Files
	Nested Files with Missing Records

	Grouped Data
	Using DATA LIST
	Using FILE TYPE GROUPED

	Mixed Files
	Reading Each Record in a Mixed File
	Reading a Subset of Records in a Mixed File

	Repeating Data
	Fixed Number of Repeating Groups
	Varying Number of Repeating Groups

	Appendix D Using the Macro Facility
	Example 1: Automating a File-Matching Task
	Example 2: Testing Correlation Coefficients
	Example 3: Generating Random Data

	Subject Index
	Syntax Index
	Advanced Statistics
	Categories
	Conjoint
	Missing Values
	Professional Statistics
	Tables
	Trends

